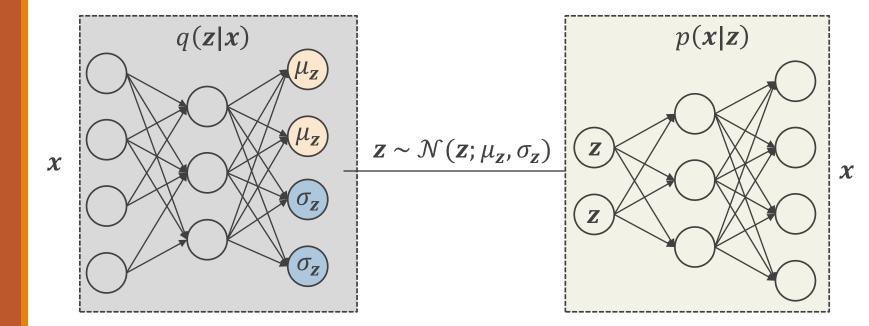
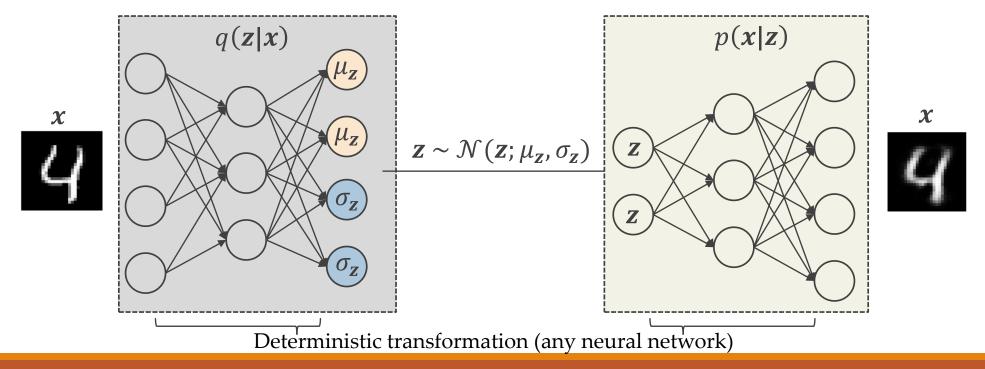
Variational autoencoders



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES – 1

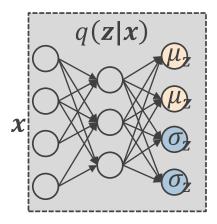
Variational autoencoders

- Variational autoencoders is the neural network implementation of the ELBO $ELBO = \mathbb{E}_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}[q_{\varphi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z})]$
- In the standard case the approximate posterior is Gaussian $q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \mu_{\mathbf{z}}, \sigma_{\mathbf{z}})$



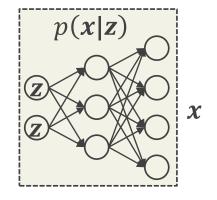
Encoder/inference network ⇔ approximate posterior

- The encoder is any standard neural network
 - Modelling the approximate posterior $q(\mathbf{z}|\mathbf{x})$
 - Remember: given input **x** we have a distribution over latent **z** (not single value)
 - The KL term KL[q(z|x) || p(z)] encourages the posterior to not deviate too much from the prior p(z)
- For Gaussian $q(\mathbf{z}|\mathbf{x})$ we need two neural networks for two outputs $\mu_{\mathbf{z}}$, $\sigma_{\mathbf{z}}$
 - The μ_z is a neural net encoding the mean of z given x
 - The σ_z is a neural net encoding the stdev of z given x
 - The two neural nets can share architecture before the outputs



Decoder network ⇔ generative model

- The decoder model is also a neural network
 - It receives a stochastic input *z* and returns as output a generation
- The output modelled with a distribution according to the data type
 - For continuous values could be a Gaussian
 - For binary values Bernoulli distribution
- With generative models often convenient to think of the generation process
 Then the encoder is the variational approximation to ensure tractability
- Check the graphical model
 Sample *z*~*p*(*z*) from the prior
 Given *z* generate *x*~*p*(*x*|*z*)

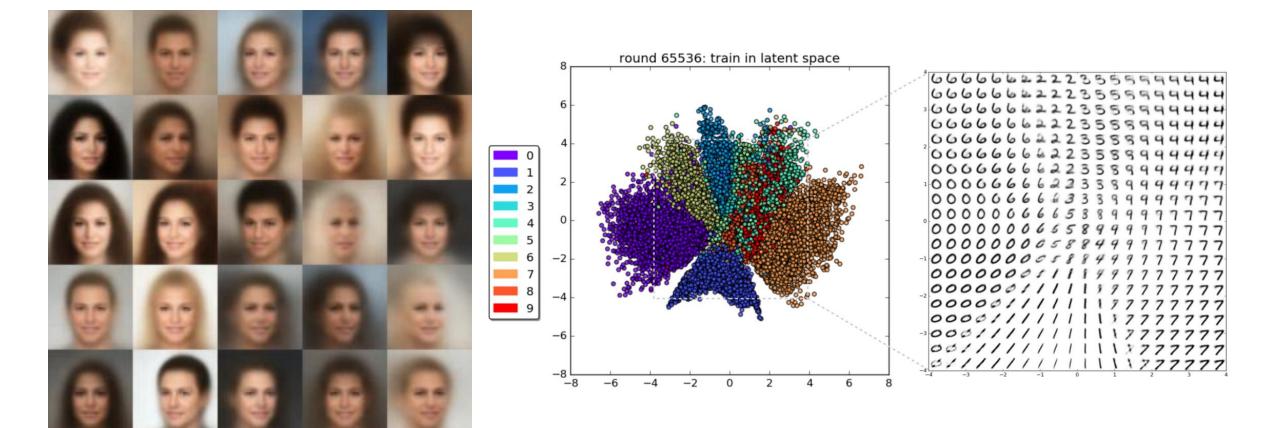


- The prior distribution acts as a regularizer
- The prior $p(\mathbf{z})$ is often the unit Gaussian $p(\mathbf{z}) \sim \mathcal{N}(0, 1)$
- If we expect/desire different nature of *z*, *e.g.*, sparsity or binary latents
 → pick a different prior
 - The sampled *z* will be from that prior
 - The KL term will regularize the encoder to be close to the prior

Learning the variational autoencoders

- The variational autoencoder is two neural networks with inputs or outputs that are stochastic (represented by distributions, not single values)
- We must train the neural networks
 - \circ I.e., fit good parameters $\pmb{\theta}$ and $\pmb{\varphi}$ for the decoder
- Objectives:
 - We want to predict to good distributions for **z** for (seen & unseen) inputs **x**
 - We want on average our approximate posterior to be close to the prior
 - We want to reconstruct inputs well
 - We want generations that look 'real' \rightarrow good extrapolations

Interpolation in the latent VAE space



UNIVERSITY OF AMSTERDAM

• Maximize the ELBO

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}) = \mathbb{E}_{q_{\boldsymbol{\varphi}}(Z|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|Z)] - \mathrm{KL}(q_{\boldsymbol{\varphi}}(Z|\boldsymbol{x})||p_{\boldsymbol{\lambda}}(Z))$$
$$= \int_{\boldsymbol{z}} q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{x}) \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z} - \int_{\boldsymbol{z}} q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{x}) \log \frac{q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{x})}{p(\boldsymbol{z})} d\boldsymbol{z}$$

- Normally you derive the math between each integral
 Good exercise: derive the ELBO for Gaussian latents and Bernoulli outputs
- Often, the integrals make some terms intractable. How to train?
 Backpropagation with Monte Carlo (MC) averaging
 - Forward propagation means evaluating the two terms
 - Backpropagation \rightarrow compute gradients with respect to the θ and φ

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}) = \int_{\mathbf{z}} q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x}) \log p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) d\mathbf{z} - \int_{\mathbf{z}} q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x}) \log \frac{q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x})}{p(\mathbf{z})} d\mathbf{z}$$

- The first term is an integral (expectation) that we cannot solve analytically
 - Sample from the approximate posterior $q_{\varphi}(\mathbf{z}|\mathbf{x})$ instead and do MC average
 - Pick a $p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$ that couples well with log
- O With a 'low variance estimator' a single sample *z* is enough
 O Stochasticity is desirable → reduces overfitting
- Reparameterization trick for low variance estimation

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}) = \int_{\mathbf{z}} q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x}) \log p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) \, d\mathbf{z} - \int_{\mathbf{z}} q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x}) \log \frac{q_{\boldsymbol{\varphi}}(\mathbf{z} | \mathbf{x})}{p(\mathbf{z})} \, d\mathbf{z}$$

- The second term is an integral which corresponds to KL distance
- For known distributions, *e.g.*, both $q_{\varphi}(z|x)$ and p(z) Gaussians, the KL often reduces to a closed formula \rightarrow very convenient
 - E.g., compute the KL divergence between a centered N(0, 1) and a non-centered $N(\mu, \sigma)$ gaussian
- If closed formula not easy, MC averaging with sampling from $q_{\varphi}(z|x)$ is possible