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Perceptrons

o Rosenblatt proposed perceptrons for binary classifications

o A model comprising one weight w; per input x;

o Multiply weights with respective inputs and add bias xo = +1
Yy = 2 W]X] + X
=1

o If score y positive then return 1, otherwise -1
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1if X w:x:>0
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-1 otherwise
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Training a perceptron

o Main innovation: a learning algorithm for perceptrons

Perceptron learning algorithm

Comments

1. Set wj < random
2. Sample new (x;, [;)

3. Compute y; = [[Zwixij > O]]

4.Ifyi<0,li>0—>wi=wi+n-xi
5.Ifyi>0,li<0—>wi=wl-—n-xi

6. Goto 2

New train image, label

[-]: indicator function

Score too low. Increase weights!

Score too high. Decrease weights!

Repeat till happy ©
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From a single output to many outputs

o Perceptron was originally proposed for binary decisions
o What about multiple decisions, e.g. digit classification?

o Append as many outputs as categories - Neural network

4-way neural network
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XOR & 1-layer perceptrons

o The original perceptron has trouble with simple non-linear tasks though

o E.g., imagine a NN with two inputs that imitates the “exclusive-or” (XOR)

Inputl Input2 XOR

1 1 0
O-wi+1-wy>0->w, >0 wi +w, > 260 :
1 0 1 » 1wy 40wy >0 o w, >0 Wy +w, < 0 Inconsistent
0 ! 1 1w+l w,<0->w+w, <6
0 0 0
Output

No line can separate the
white from the black

A»

Input 1 Input 2

Minsky and Papert, “Perceptrons”, 1969
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Multi-layer perceptrons to the rescue

o Minsky never said XOR cannot be solved by neural networks
> Only that XOR cannot be solved with 1-layer perceptrons

o Multi-layer perceptrons (MLP) can solve XOR
> One layer’s output is input to the next layer
> Add nonlinearities between layers, e.g., sigmoids
° 9 years earlier Minsky built such a multi-layer perceptron

o Problem: how to train a multi-layer perceptron?

o Rosenblatt’s algorithm not applicable. Why?
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Multi-layer perceptrons to the rescue

o Minksy never said XOR cannot be solved by neural networks
> Only that XOR cannot be solved with 1-layer perceptrons

o Multi-layer perceptrons (MLP) can solve XOR
> One layer’s output is input to the next layer
> Add nonlinearities between layers, e.g., sigmoids
° 9 years earlier Minsky built such a multi-layer perceptron

o Problem: how to train a multi-layer perceptron?

o Rosenblatt’s algorithm not applicable. Why?

° Learning depends on “ground truth” [; for updating weights
> For the intermediate neurons q; there is no “ground truth”

> The Rosenblatt algorithm cannot train intermediate layers
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ite notable successes
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The first “Al winter”

o What everybody thought

“If a perceptron cannot even solve XOR, why bother?”

o Results not as promised (too much hype!)
— no further funding
— Al Winter

o Still, significant discoveries were made in this period
> Backpropagation = Learning algorithm for MLPs
> Recurrent networks = Neural Networks for infinite sequences
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The second “Al winter”

o Concurrently with Backprop and Recurrent Nets, new and promising Machine
Learning models were proposed

o Kernel Machines & Graphical Models

o Similar accuracies with better math and proofs and fewer heuristics
> Neural networks could not improve beyond a few layers
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