Deep Learning: The *What* and *Why*

Long story short

A family of parametric non-linear and hierarchical representation learning functions, which are massively optimized with stochastic gradient descent to encode domain knowledge, i.e. domain invariances, stationarity.

$$a_L(x; \theta_{1,...,L}) = h_L(h_{L-1}(...(h_1(x, \theta_1), ...), \theta_{L-1}), \theta_L) \Rightarrow$$

 $\Rightarrow a_L = h_L \circ h_{L-1} \circ \cdots \circ h_1(x)$

- o x:input, θ_l : parameters for layer l, $a_l = h_l(x, \theta_l)$: (non-)linear function
- \circ Given training corpus $\{X,Y\}$ find optimal parameters

$$\theta^* \leftarrow \operatorname{arg\,min}_{\theta} \sum_{(x,y)\subseteq (X,Y)} \ell(y, a_L(x; \theta_{1,\dots,L}))$$

o But why all the trouble?

Simplest case: Linear machines (classifiers)

o Think of an SVM, a logistic regression, or the original perceptron on raw data

$$y = \sum_{j} w_j x_j$$

- Say our data (x, l) are images of either "cars" (l = +1) or "not cars" (l = -1)
- Task: Find a line that must separate the +1's from the -1's

Non-separability of linear machines

Let's abstractify

$$(x,l)_n: x_i \in \mathbb{R}^d$$

- We have $M = 2^n$ "possible datasets"
- Only (about) d out of M are linearly separable
- With n > d the probability X is linearly separable converges to 0 very fast
- The chances that a dichotomy is linearly separable is very small

Probability of linear separability

Idea: Non-linear features, linear classifiers

- Most interesting problems are non-linear
 - image classification, speech generation, machine translation, tumour detection, ...

- \circ Idea: have non-linear features x_j , then linear machines are good enough
 - E.g., kernel trick

What is a good feature?

- Invariant ... but not too invariant
- Repeatable ... but not bursty
- Discriminative ... but not too class-specific
- Robust ... but sensitive enough

How to get a good feature? Manual feature engineering

Non-linear kernels, e.g., polynomial, RBF, etc

Explicit design of features

**** **** ****

SIFT

HOG

Better: Learn non-linear features, linear classifiers

- Start from x_i being raw data (e.g., pixels)
- Transform them gradually till linear enough for classifiers
- Transformations learned from (raw) data for optimal separation
 If not raw data, data already transformed and little we can do about it

Why learn the features?

- Manually designed features
 - Expensive to research & validate
- Learned features
 - If data is enough, easy to learn, compact and specific
- Time spent for <u>designing features</u> now spent for <u>designing architectures</u>

How to get good features?

- Goal: discover these lower dimensional manifolds
 - These manifolds are most probably highly non-linear
- <u>First hypothesis:</u> Semantically similar things lie closer together than semantically dissimilar things
- Second hypothesis: All images (e.g., face) lie on a high-dimensional hidden manifold (manifold hypothesis)
 - Each face (or whatever data) is a coordinate on that manifold
 - That coordinate is a good feature as it places the data in relation to all others
 - We must only discover what the manifold

Manifolds

- Learning transformations to discover "latent" manifolds
- Raw data live in huge dimensionalities
- But, effectively lie in lower dimensional manifolds

The digits manifolds

- There are good features (manifolds) and bad features
- 28 pixels x 28 pixels = 784 dimensions

Deep learning ⇔ Learning Hierachical Representations

- A pipeline of successive, differentiable modules (transformations)
 - Each module's output is the input for the next module
- Each subsequent module produce higher abstraction features

Deep Learning Approximation Theory

Deep Networks are universal approximators

Theorem Let $\rho()$ be a bounded, non-constant continuous function. Let I_m denote the m-dimensional hypercube, and $C(I_m)$ denote the space of continuous functions on and $\epsilon > 0$, there exists N>0 and $v_i, w_i, b_i, i = 1, ..., N$ such that $F(x) = \sum_{i \leq N} v_i \rho(w_i^T x + b_i)$ satisfies $\sup_{x \in I_m} |f(x) - F(x)| < \epsilon$.

- Even a single hidden layer can approximate any function
 and represent any locally linear boundary.
- But what is the precise architecture? And how to train?
 - The theorem odes not answer that

So, why deep and not shallow?

- Deep architectures tend to be more data efficient
 - Better modelling capacity for the same number of parameters
- Otherwise, <u>very wide</u>, shallow networks
 - Wide and shallow are shown to also work pretty well
- Deep and narrow architectures show quite good generalization
 - Depth as a regularizer

Depth → Non-convexity

 Highly non-convex. Yet, stable & accurate learning

 Current hypothesis: Most local minima close to global minimum and hence roughly equivalent

With many assumptions

o In practice, ensembles of models even better

Roughly equivalent.

Combine them to ensembles

Deep learning is representation learning

- Deep learning makes sense if "raw" data is uninterpretable
 - In that case, you can either create a representation or learn it
- If "raw" data is interpretable, you already got good representations
 - Deep learning might not add much
 - You must search for the right level of abstraction for deep learning

Examples

- In images raw data is pixels → Each pixel by itself means nothing → Representations must be learned → deep learning thrives
- o In text words and letters are good representations already \rightarrow deep learning may not immediately do better \rightarrow go to higher abstraction, *e.g.*, semantics?

To conclude

Traditional pattern recognition

- End-to-end learning → Features are also learned from data
 - If no raw data, deep learning makes no much sense

Questions open?

- Unsupervised learning, reinforcement learning, world models, ...
- Deep generative models
- Deep temporal learning
- Deep stochastic models
- Deep causality
- Deep private & federated learning
- The maths and physics of deep learning
- O ...
- Hopefully, some will answered by you in the near future ;)

References

- http://www.deeplearningbook.org/
 - Chapter 1: Introduction, p.1-28

Extra reading for the interested reader

- A more comprehensive review of NN history
- o A 'Brief' History of Neural Nets and Deep Learning, Part 1, 2, 3, 4
- Deep Learning in a Nutshell: History and Training
- The Brain vs Deep Learning

Summary

- Course information
- A brief history of neural networks and perceptrons
- The arrival of deep learning
- Deep learning: The what and why

Next lecture: Deep modularity, backpropagation