Transfer learning

Transfer learning

- Assume two datasets, *T* and *S*
- Dataset S is
 - fully annotated, plenty of images
 - We can build a model h_S
- Dataset *T* is
 - Not as much annotated, or much fewer images
 - The annotations of *T* do not need to overlap with *S*
- We can use the model h_S to learn a better h_T
- This is called transfer learning

"My dataset": 1,000

Why use Transfer Learning?

- A CNN can have millions of parameters
- But our datasets are not always as large
- Could we still train a CNN without overfitting problems?

Convnets are good in transfer learning

- Even if our dataset *T* is not large, we can train a CNN for it
- Pre-train a network on the dataset *S*
- Then, there are two solutions
 - Fine-tuning
 - CNN as feature extractor

Solution I: Fine-tune h_T using h_S as initialization

- Assume parameters trained on S are already a good initial solution
- Use them as the initial parameters for our new CNN for the target dataset

$$w_l^S = w_{l,init}^T$$
 for layers $l = 1, 2, ...$

- Better use when your source S is large and target T is small (relatively)
 - E.g. reuse parameters from Imagenet models for smaller datasets
- What layers to initialize and how?

Initializing h_T with h_S

- Classifier layer to loss
 - The loss layer essentially is the "classifier"
 - Same labels \rightarrow keep the weights from h_S
 - Different labels → delete the layer and start over
 - When too few data, fine-tune only this layer
- Fully connected layers
 - Very important for fine-tuning
 - Maybe delete the last layer before the classification layer if datasets are very different
 - Combine spatial features, more semantics
 - If you have more data, fine-tune these layers first

Classifier layer fc8

Fully connected layer fc7

Fully connected layer fc6

Convolutional Layer 5

Convolutional Layer 4

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

Initializing h_T with h_S

- Upper convolutional layers (conv4, conv5)
 - Mid-level spatial features (face, wheel detectors ...)
 - Can be different from dataset to dataset
 - Capture more generic information
 - Fine-tuning pays off
 - Fine-tune if dataset is big enough
- Lower convolutional layers (conv1, conv2)
 - They capture low level information
 - This information does not change usually
 - Probably, no need to fine-tune but no harm trying
 - At this level, maybe no fine-tuning needed

Classifier layer fc8

Fully connected layer fc7

Fully connected layer fc6

Convolutional Layer 5

Convolutional Layer 4

Convolutional Layer 3

Convolutional Layer 2

Convolutional Layer 1

How to fine-tune?

- For layers initialized from h_S use a mild learning rate
 - Your network is already close to a near optimum
 - If too aggressive, learning might diverge
 - A learning rate of 0.001 is a good starting choice (assuming 0.01 was the original learning rate)
- For completely new layers (e.g. loss) use aggressive learning rate
 - If too small, the training will converge very slowly
 - The rest of the network is near a solution, this layer is very far from one
 - A learning rate of 0.01 is a good starting choice
- If datasets are very similar, fine-tune only fully connected layers
- If datasets are different and you have enough data, fine-tune all layers

Solution II: Use h_s as a feature extractor for h_T

- Similar to a case of solution I where you train only the loss layer
 - But can be used with 'external classifiers'
 - Essentially use the network as a pretrained feature extractor
- Use when the target dataset *T* is very small
 - Any fine-tuning of layer might cause overfitting
 - Or when we don't have the resources to train a deep net
 - Or when we don't care for the best possible accuracy

Which layer?

Table 6. Analysis of the discriminative information contained in each layer of feature maps within our ImageNet-pretrained convnet. We train either a linear SVM or softmax on features from different layers (as indicated in brackets) from the convnet. Higher layers generally produce more discriminative features.

	Cal-101	Cal-256
	(30/class)	(60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	86.2 ± 0.8	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	$\textbf{71.7} \pm \textbf{0.2}$
Softmax (5)	82.9 ± 0.4	65.7 ± 0.5
Softmax (7)	85.4 ± 0.4	$\textbf{72.6} \pm \textbf{0.1}$

Lower layer features capture more basic information

– (texture, etc). Good for image-to-image comparisons, image retrieval

Higher layer features capture more semantic information. Good for → higher level classification

Visualizing and Understanding Convolutional Networks, Zeiler and Fergus, ECCV 2014

Summary

- Shared filters through local connectivity
- Convolutions
- Convolutional Neural Networks
- Alexnet case study
- Visualizing ConvNets
- Transfer learning

Reading material

Chapter 9