


Previous Lecture

o Recurrent Neural Networks (RNN) for sequences
o Backpropagation Through Time
o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks
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Lecture Overview

o Memory networks

o Recursive networks
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Why memory? Example!

o “Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the
ring. This sentence is random noise for illustration purposes. Bilbo went
back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo
journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.”
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Why memory? Example!

o “Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the
ring. This sentence is random noise for illustration purposes. Bilbo went
back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo
journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.”

o “Q: Where is the ring?” =2 “A: Mount-Doom”
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Why memory? Example!

o “Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the
ring. This sentence is random noise for illustration purposes. Bilbo went
back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo
journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.”

o “Q: Where is the ring?” =2 “A: Mount-Doom”

o “Q: Where is Bilbo now?” =2 “A: Grey-havens”
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Why memory? Example!

o “Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the
ring. This sentence is random noise for illustration purposes. Bilbo went
back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo
journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.”

o “Q: Where is the ring?” =2 “A: Mount-Doom”
o “Q: Where is Bilbo now?” =2 “A: Grey-havens”
o “Q: Where is Frodo now?” = “A: Shire”
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Why memory? Example!

o “Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the
ring. This sentence is random noise for illustration purposes. Bilbo went
back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo
journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.”

o “Q: Where is the ring?” =2 “A: Mount-Doom”
o “Q: Where is Bilbo now?” =2 “A: Grey-havens”
o “Q: Where is Frodo now?” = “A: Shire”

o Can we design a network that answers such questions?
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Memory networks

o Neural network models that
> have large memory that can store many facts
> have a learning component for how to read, store, forget and access these facts

o Intuitively, they should work like a “Neural RAM” or a “”Neural Wikipedia”

> The network processes Wikipedia like information. It needs to store them
appropriately for easy read/write/delete/access actions.

> You make a question
> The network should recognize the right types of memories
> The network should reply the question with a meaningful (non trivial) answer.
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What is difficult with memory?

o Some sentences are factual
° “Frodo got the ring”, “Frodo went back to the Shire”

o Some sentences might be random noise
o “This sentence is random noice for illustration purposes”

o To answer a question you might need to combine facts
o “Where did Frodo get the ring?”
> “Bilbo went back to the Shire” = “Bilbo left the ring there.” = “Frodo got the ring.”
o To answer correctly all three sentences need to be carefully analyzed

o TOO MUCH INFORMATION within a single story!!!

o Can a standard memory unit cope with that?
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What is difficult with memory? (2)

o Each new story can be completely different
> Very little data to actually train on

o If we use real data, we don’t (usually) have annotations
> How to analyze mistakes?

o Solution for the last two problems: Make own dataset
o Start from simple factual sentences and build artificial stories

o Example

> “John is in the playground.
Bob is in the office.
John picked up the football.
Bob went to the kitchen.”
“Q: Where is the football?” =2 “A:playground”
“Q: Where was Bob before the kitchen?” “A:office”
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Why not simply LSTMs?

o Probably its memory is not large enough

o In latest experiments it seems that LSTMSs are not flexible enough for
these tasks
> Although one could maybe create an LSTM-version more specific for the task

o At the end of the day this is still research of the last year

o “A research topic that has gained popularity within a small circle of deep learning
researchers over the last few months is the combination of a deep neural net and
short-term memory. Basically, the neural net acts as a "reasoning" engine that stores
and retrieves data to be operated on from a separate memory.”

o https://www.facebook.com/FBAIResearch/posts/362517620591864 (Nov 3 2014)
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Attributes:
umbrella

; . green
T N G s ~__ mountain

Internal Textual Representation:

A group of people enjoying a sunny day at the beach with

umbrellas in the sand.

External Knowledge:

An umbrella is a canopy designed to protect against rain or

sunlight. Larger umbrellas are often used as points of shade on a

sunny beach. A beach is a landform along the coast of an ocean.

It usually consists of loose particles, such as sand....

Question Answering:

Q: Why do they have umbrellas? A : Shade.

Memory Networks

= o PCUSENE Y R <

Figure 1. A real case of question answering based on an inter-
UVA DEEP LEARNING COURSE na.ll textual representation aI.ld external knowledge. All of the at-
EFSTRATIOS GAVVES tributes, textual representation, knowledge and answer are pro-
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Papers in the literature

o Neural Turing Machines, A. Graves, G. Wayne, |. Danihelka, arXiv 2014
o http://arxiv.org/abs/1410.5401

o Memory Networks, J. Weston, S. Chopra, A. Bordes, arXiv 2014
o http://arxiv.org/abs/1410.3916

o End-to-end Memory Networks, S. Sukhbaatar, A. Szlam, J. Weston, R.
Fergus, arXiv 2015
o http://arxiv.org/abs/1503.08895

o Ask Me Anything: Free-form Visual Question Answering Based on
Knowledge from External Sources, Q. Wu, P. Wang, C. Shen, A. van den
Hengel, A. Dick, arXiv 2015

o http://arxiv.org/abs/1511.06973
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End-to-end Memory Networks
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o https://github.com/facebook/MemNN/tree/master/MemN2N-lang-model
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End-to-end Memory Network unit

o Input memory representation
> Embeds incoming data to internal representation

o Generalization
° Given a new input, this unit updates the network memories

o QOutput

> Given the memories and given the input, this unit returns a new state variable in the
internal representation space of the network

O Response
o Given the output this unit returns a response recognizable by humans
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End-to-end Memory Networks: Step (1)

o Input memory representation

o Two embeddings A, B
> A embeds stories into memory slots on an internal representation space = m;
> B embeds the question on the same internal representation space 2 u
> To compare memories with questions = p; = softmax(u’m;)
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End-to-end Memory Networks: Step (2)

o Output memory representation
° 0 = ),; PiCi, Where ¢; = Cx;

o The function that connects the output to the input is smooth
o Easy to compute gradients for backpropagation

:
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d
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End-to-end Memory Networks: Step (3)

o Final prediction
> Given the question embedding u and the generated output o

o @ = softmax(W (o + u))
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End-to-end Memory Networks: Step (4)

o Adding multiple memory layers
> The input question for a layer is the output plus the question of the previous layer

k+1 — ok 4 ok

°Uu
o Each layer has its own embeddings, although they can be tied together
o] ;Ci)_’
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Additional tricks

o Use multiple hops/steps/layers of memories
° Increases the memory depth of the network

o Use word embeddings and Bag-of-Words representations as inputs
o Use an RNN as response unit
o Add a forget mechanism for when memory is full

o Maybe go to lower level of tokenization
o> Words, letters, chunks
o Put chunks into memory slots
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Successes/failures

Story (15: basic deduction) Support| Hop 1 Hni 2 | Hop 3 Story (16: basic induction) Support| Hop1 | Hop2 | Hop3
Cats are afraid of wolves. yes 0.00 0.62 Lily is a swan. 0.00 0.00 0.00
Sheep are afraid of wolves. 0.00 0.00 0.31 Brian is a frog. yes 0.00
Winona is a sheep. 0.00 0.00 0.00 Lily is gray. 0.07
Emily is a sheep. 0.00 0.00 0.00 Brian is yellow. yes 0.07
Gertrude is a cat. yes [L0897 000 | 0.00 Julius is a swan. 0.00
Wolves are afraid of mice. 0.00 0.00 0.00 Bernhard is yellow. 0.04
Mice are afraid of wolves. 0.00 0.00 0.07 Julius is green. 0.06
Jessica is a mouse. 0.00 0.00 0.00 Greg is a frog. yes 0.76
What is gertrude afraid of? Answer: wolf Prediction: wolf What color is Greg? Answer: yellow Prediction: yellow
Story (17: positional reasoning) Support| Hop1 | Hop 2 | Hop 3 Story (18: size reasoning) Support| Hop 1
The red square is below the red sphere. yes 0.37 0.58 The suitcase is bigger than the chest. yes 0.00
The red sphere is below the triangle. yes 063 | 005 | 043 The box is bigger than the chocolate. 0.04
The chest is bigger than the chocolate. yes 0.17
The chest fits inside the container. 0.00
The chest fits inside the box. 0.00
Is the triangle above the red square? Answer: yes Prediction: no Does the suitcase fit in the chocolate? Answer: no Prediction: no
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What can’t be done, what comes next?

o Current networks answer rather simple questions. Make questions harder

> “Q: Who is teaching the Deep Learning Course?” > “A. Efstratios Gavves and Patrick
Putzky”

o Use multiple supporting memories
o More extensive knowledge databases
o More realistic questions and answers

o Perhaps perform actions instead of answers
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Papers in the literature

o Neural Turing Machines, A. Graves, G. Wayne, |. Danihelka, arXiv 2014
o http://arxiv.org/abs/1410.5401

o Memory Networks, J. Weston, S. Chopra, A. Bordes, arXiv 2014
o http://arxiv.org/abs/1410.3916

o End-to-end Memory Networks, S. Sukhbaatar, A. Szlam, J. Weston, R.
Fergus, arXiv 2015
o http://arxiv.org/abs/1503.08895

o Ask Me Anything: Free-form Visual Question Answering Based on
Knowledge from External Sources, Q. Wu, P. Wang, C. Shen, A. van den
Hengel, A. Dick, arXiv 2015

o http://arxiv.org/abs/1511.06973
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External databases for visual questions
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Method

o Classifying objects, attributes inside an image
o Use a very deep, VGG-16 network fine-tuned on the MSCOCO image attributes

o Caption-based image representations
> Use an LSTM
o Start with an image
o (Generate a caption
> Use the hidden state ht of the final step as a representation

o Relate to external database
> DBpedia
o SQL-like queries using SPARQL
o Represent returned text with Doc2Vec

o Combine everything and end-to-end learning
o X = [WegXqee (1), M/ecxcap(l)rwekxknow(l):]
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Results

- L

Why is she wearing a crown?

B

Why is the zebra on the ground?  Why do they have umbrellas?

Ours: birthday happy resting shade
Vgg+LSTM: to eat unknown eat raining
Ground Truth: birthday happy resting shade

Why is a man sitting under an umbrella? Why are there animals pinned to the wall? Why do they have umbrellas?

Why is he swinging backhand?
Ours: shade decoration raining to hit ball
Vgg+LSTM: safety teddy yes tennis ball
Ground Truth: shade decoration raining to hit ball
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More results

Why do these sheep have paint on them?

Why is his arm outflung?

L= 9 L RS AN el e

Why are the animals laying here?

Why are all the giraffes gathered together?
Ours: identification balance resting eating
Vgg+LSTM: to eat to play no to play
Ground Truth: identification balance resting eating

Why are they wearing such bright colors?

Why are the men wearing orange? Why is the man jumping? Why is this room warm?
Ours: safety team skateboarding fireplace
Vgg+LSTM: yes to unknown to sleep
Ground Truth: safety team skateboarding fireplace
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o Memory networks
o Difficulties with modelling memory

Summary o Memory networks for image-language reasoning
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o Student presentations of Deep Learning papers

Next lecture
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Goal: model semantics of linguistic utterances
Lexical distributional semantics: successful
What about composition?

How to deal with variable (sentence) length?

Sequence Models: recurrent connections as memory. All
the work is done by a single cell.

The Recursive
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The Recursive
Neural Network

Veldhoen

Observation: language is structured

Compositionality: meaning of a complex expression is a
function of its parts and the way they are (syntactically)
combined

Symbolic implementation: Montague Grammar

Distributional implementation: Recursive Neural
Network (RNN) Socher et al. (2012)
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The Model

Recursive Neural Network:
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The Model - Variations

Matrix-Vector (Socher et al. , 2012)

pumv = F(W,[Cicy; Cacy])
Puv = Wy [Cy; C2]

The Recursive
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The Model - Variations

Tensor (Bowman & Potts, 2015)

p="f(W-][co;c1] +b)
pmv = p + f(c] TE"lcy)
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Tree-LSTM (Le & Zuidema, 2015) Varations




The Model - Variations Tt Tt

Veldhoen

Variations

Deep composition (Socher et al. , 2010)
Add more layers between children and parent representation
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(Unfolding) Recursive Auto-Encoder (Socher et al. , 2011)

W,
W,

i

[oooIooo] [o




The Model - Unsupervised Newral Network
Veldhoen
(Unfolding) Recursive Auto-Encoder (Socher et al. , 2011)

_most hippos

p = f(Wc - [co; c1] + be) (5)
[coic1] = F(We - p+by) (6)




The Recursive

The MOdel - UnSUpGersed Neural Network

Inside-Outside RNN (Le & Zuidema, 2014)
_root

Veldhoen




The Model - Unsupervised Newral Network
Inside-Outside RNN (Le & Zuidema, 2014) Veldhoen

f (7)
cg = f(Wg - [Po; €] + by) (8)
c; = f(Wg - [Po; ci] + b3) (9)




The Model - Unsupervised

Inside-Outside RNN (Le & Zuidema, 2014) training:
wl

.. st.

()
c(w, x) = max{0,1 — s(w, 0y) + s(x,0w)}
s(x, 0w) = Wsf(Wy[ow; ix] + by)
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The Recursive

My ResearCh - LOglC Neural Network

Veldhoen

Bowman & Potts (2015) train RNN directly for NLI
» Train RNN through classifier

» Data: pairs of sentences with inference relation

( most hippo ) bark | ( no hippo ) bark

( most hippo ) bark 3 ( no hippo ) ( not bark )

( two hippo ) bark # ( some ( not hippo ) )
bark

(three hippo ) Parisian T  ( three hippo ) French
(all hippo ) Parisian = ( all hippo ) French
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The Recursive

My ResearCh - LOgIC Neural Network

Veldhoen

Replication of Bowman & Potts (2015) and extension

2014 Data 2015 Data
Composition Composition
Fixed Trained | Fixed Trained
459 99.7 | 29.7 97.3
84.8 99.6 | 582 92.9

Fixed Embs
Trained Embs

Table: The effect of fixing the word embeddings or the
composition function. Accuracy (%) on the test data.

Does the model actually capture logical semantics?




The Recursive

My ResearCh - Arlthmetlc Neural Network

Veldhoen

Simple task: arithmetic expression trees
Principled solution captures sense of numbers: numerosity

Arithmetic
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Set-up: comparison layer and soft-max classifier on top of
two trees

Arithmetic

Wcomp

AN

5+(2-3)  (4-8)-5




The Recursive

My ResearCh - Arlthmetlc Neural Network

Veldhoen

Dimensionality
Setting 1 2 10 Arithmetic
trained embs trained comp | 49.8 88.2* 97.0
fixed comp 50.3 516 63.2
fixed embs trained comp | 49.0 50.7 68.5
fixed comp 472 49.6 505

Table: Accuracy (%) on held-out data. *: the variance over
different runs was less than one percentage point in all cases but
one: the 2 dimensional setting had one run performing
considerably worse than the others; 63.1% accuracy vs. an average
of 96.5% for the rest.
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» The RNN can learn to do addition and subtraction, and
decide which of two expressions is greater.

» What has the model learned? Is it a principled solution?

Arithmetic

» 2-D case: can be plotted.

-1 1

glo
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Step-by-step analysis: Project-Sum-Squash

Analysis

» Break up the composition function:

p = f(W - [co; c1;¢2] + b)

p = f(Woco + Wici + Wacy + b)

» The intermediate results can be plotted
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Breaking up the composition function
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Breaking up the composition function
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Breaking up the composition function

f X
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Lexical embeddings and projections

ey ’ o
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Example: 9+1
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Example: 9+1
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Project

Example: 9+1
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Sum
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e -2 Example: 9+1
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Squash

Example: 9+1
L2r
71l
h »d0
—4 -3 -2 -1 1 2
-14
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Parent representations
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» Project-Sum-Squash provides information on how the
model fulfills a task
Interpretation: is it a principled solution?

> The same technique can be applied to the higher

dimensional case
One needs dimensionality reduction, e.g. PCA
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v

Can the RNN really learn logical reasoning?

v

Compare different composition functions Future Work

» Unsupervised training

v

Language generation from sentence representations

v

Reduce reliance on syntactic parse
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