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Abstract

Deep learning and Bayesian machine learning are currently two of the most 
active areas of machine learning research. Deep learning provides a powerful 
class of models and an easy framework for learning that now provides state-of-
the-art methods for applications ranging from image classification to speech 
recognition. Bayesian reasoning provides a powerful approach for information 
integration, inference and decision making that has established it as the key 
tool for data-efficient learning, uncertainty quantification and robust model 
composition that is widely used in applications ranging from information 
retrieval to large-scale ranking. Each of these research areas has shortcomings 
that can be effectively addressed by the other, pointing towards a needed 
convergence of these two areas of machine learning; the complementary 
aspects of these two research areas is the focus of this talk. Using the tools of 
auto-encoders and latent variable models, we shall discuss some of the ways in 
which our machine learning practice is enhanced by combining deep learning 
with Bayesian reasoning. This is an essential, and ongoing, convergence that 
will only continue to accelerate and provides some of the most exciting 
prospects, some of which we shall discuss, for contemporary machine learning 
research.
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Bayesian ReasoningDeep Learning

Better ML
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Deep Learning

+ Rich non-linear models for 
classification and sequence prediction. 

+ Scalable learning using stochastic 
approximations and conceptually simple. 

+ Easily composable with other gradient-
based methods

- Only point estimates 

- Hard to score models, do 
model selection and 
complexity penalisation.

A framework for constructing flexible models
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Bayesian Reasoning

+ Unified framework for model building, 
inference, prediction and decision making 

+ Explicit accounting for uncertainty and 
variability of outcomes 

+ Robust to overfitting; tools for model 
selection and composition.

- Mainly conjugate and linear 
models 

- Potentially intractable 
inference leading to 
expensive computation or 
long simulation times. 

A framework for inference and decision making
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Two Streams of Machine Learning

- Mainly conjugate and linear 
models 

- Potentially intractable inference, 
computationally expensive or long 
simulation time. 

+ Unified framework for model 
building, inference, prediction and 
decision making 

+ Explicit accounting for uncertainty 
and variability of outcomes 

+ Robust to overfitting; tools for 
model selection and composition.

Bayesian Reasoning

+ Rich non-linear models for 
classification and sequence 
prediction. 

+ Scalable learning using stochastic 
approximation and conceptually 
simple. 

+ Easily composable with other 
gradient-based methods 

- Only point estimates 

- Hard to score models, do selection 
and complexity penalisation.

Deep Learning
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Outline

Complementary strengths that we should 
expect to be successfully combined.

Why is this a good idea? 
✤ Review of deep learning 
✤ Limitations of maximum likelihood and MAP estimation

1

2

3 What else can we do? 
✤ Semi-supervised learning, classification, better inference 

and more.

+Bayesian Reasoning Deep Learning

How can we achieve this convergence? 
✤ Case study using auto-encoders and latent variable models 
✤ Approximate Bayesian inference
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Generalised Linear Regression 

8

A (Statistical) Review of Deep Learning

⌘ = w

>
x+ b

p(y|x) = p(y|g(⌘); ✓)

Maximum likelihood estimation  
Optimise the negative log-likelihood 

L = � log p(y|g(⌘); ✓)

✦ g(.) is an inverse link function that we’ll 
refer to as an activation function. 

Table 1: Correspondence between link and activations functions in
generalised regression.

Target Regression Link Inv link Activation
Real Linear Identity Identity
Binary Logistic Logit log µ

1-µ

Sigmoid
1

1+exp(-⌘)

Sigmoid

Binary Probit Inv Gauss
CDF �-1(µ)

Gauss CDF
�(⌘)

Probit

Binary Gumbel Compl.
log-log
log(-log(µ))

Gumbel CDF
e-e

-x

Binary Logistic Hyperbolic
Tangent
tanh(⌘)

Tanh

Categorical Multinomial Multin. Logit
⌘

iP
j

⌘

j

Softmax

Counts Poisson log(µ) exp(⌫)
Counts Poisson

p
(µ) ⌫2

Non-neg. Gamma Reciprocal 1

µ

1

⌫

Sparse Tobit max max(0;⌫) ReLU
Ordered Ordinal Cum. Logit

�(�
k

- ⌘)

the Bernoulli distribution.

There are many link functions that allow us to make other distribu-
tional assumptions for the target (response) y. In deep learning, the
link function is referred to as the activation function and I list in the
table below the names for these functions used in the two fields. From
this table we can see that many of the popular approaches for speci-
fying neural networks that have counterparts in statistics and related
literatures under (sometimes) very different names, such multinomial
regression in statistics and softmax classification in deep learning, or
rectifier in deep learning and tobit models is statistics.

1.2 recursive generalised linear models

Constructing a recursive GLM or deep deep feed-forward neural net-
work using the linear predictor as the basic building block. GLMS
have a simple form: they use a linear combination of the input using
weights �, and pass this result through a simple non-linear function.
In deep learning, this basic building block is called a layer. It is easy
to see that such a building block can be easily repeated to form more
complex, hierarchical and non-linear regression functions. This recur-
sive application of the basic regression building block is why models
in deep learning are described as having multiple layers and are de-
scribed as deep.

4

✦ The basic function can be any linear 
function, e.g., affine, convolution.
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A general framework for building non-linear, parametric models

9

A (Statistical) Review of Deep Learning

Recursive Generalised Linear Regression 

Problem: Overfitting of MLE leading to limited generalisation. 

✦ Recursively compose the basic linear functions. 
✦ Gives a deep neural network.

E[y] = hL � . . . � hl � h0(x)
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A (Statistical) Review of Deep Learning

‣Large data sets 
‣ Input noise/jittering and data augmentation/expansion. 
‣L2 /L1 regularisation (Weight decay, Gaussian prior) 
‣Binary or Gaussian Dropout 
‣Batch normalisation

✦ Regularisation is essential to overcome the limitations of maximum 
likelihood estimation. 

✦ Regularisation, penalised regression, shrinkage. 
✦ A wide range of available regularisation techniques:

Regularisation Strategies for Deep Networks

More robust loss function using MAP estimation instead.
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More Robust Learning
MAP estimators and limitations 
✦ Power of MAP estimators is that they provide 

some robustness to overfitting. 
✦ Creates sensitivities to parameterisation.

1. Sensitivities affect gradients and can make learning hard 

2. Still no way to measure confidence of our model.

Can generate frequentist confidence intervals  
and bootstrap estimates.

Invariant MAP estimators and exploiting natural 
gradients, trust region methods and other 

improved optimisation.
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Towards Bayesian Reasoning

Given this powerful model class and invaluable tools for 
regularisation and optimisation, let us develop a 

Issues arise as a consequence of: 
‣Reasoning only about the most likely solution and  
‣Not maintaining knowledge of the underlying variability (and 

averaging over this).

Pragmatic Bayesian Approach for 
Probabilistic Reasoning in Deep Networks.

Proposed solutions have not fully dealt with the underlying issues. 

Bayesian reasoning over some, but not all parts of our models (yet).
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Outline

Complementary strengths that we should 
expect to be successfully combined.

1 Why is this a good idea? 
✤ Review of deep learning 
✤ Limitations of maximum likelihood and MAP estimation

2 How can we achieve this convergence? 
✤ Case study using auto-encoders and latent variable models 
✤ Approximate Bayesian inference

3 What else can we do? 
✤ Semi-supervised learning, classification, better inference 

and more.

+Bayesian Reasoning Deep Learning
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Unsupervised learning and auto-encoders 
‣A generic tool for dimensionality 

reduction and feature extraction. 
‣Minimise reconstruction error using an 

encoder and a decoder.

Data y

Encoder
f(.)

z  = f(y)

Decoder
g(.)

y* = g(z)

z

+ Non-linear dimensionality reduction 
using deep networks for encoder and 
decoder. 

+ Easy to implement as a single 
computational graph and train using 
SGD

- No natural handling of missing data 

- No representation of variability of the 
representation space. L = ky � g(f(y))k22

L = � log p(y|g(z))

Dimensionality Reduction and Auto-encoders
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Dimensionality Reduction and Auto-encoders

Some questions about auto-encoders: 
‣What is the model we are interested in? 
‣Why use an encoder? 
‣How do we regularise?

Data y

Encoder
f(.)

z  = f(y)

Decoder
g(.)

y* = g(z)

z

Best to be explicit about the: 
• Probabilistic model of interest and  
• Mechanism we use for inference.
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Latent variable models: 
‣  Generic and flexible model class for density estimation. 
‣  Specifies a generative process that gives rise to the data.

z

y

W

n = 1, …, N

μ Σ

Use our knowledge of deep learning to design even richer models.

BX
PC

A

z ⇠ N (z|µ,⌃)

Latent Variable

y ⇠ Expon(y|⌘)

Observation Model

⌘ = Wz+ b

Exponential fam natural parameters η. 

Density Estimation and Latent Variable Models

Latent Gaussian Models:  
‣Probabilistic PCA, Factor analysis (FA), Bayesian Exponential 

Family PCA (BXPCA).
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Deep Generative Models
Rich extension of previous model using deep neural networks. 

E.g., non-linear factor analysis, non-linear Gaussian belief 
networks, deep latent Gaussian models (DLGM).

z1

y

W

n = 1, …, N

μ Σ

h1

h2

z2

h3

h4

W1

D
LG

M Latent Variables (Stochastic layers)

zl ⇠ N (zl|fl(zl+1),⌃l)

fl(z) = �(Wh(z) + b)

Deterministic layers

hi(x) = �(Ax+ c)

y ⇠ Expon(y|⌘)
⌘ = Wh1 + b

Observation Model

Can also use non-exponential family.
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Deep Latent Gaussian Models

z1

y

W

n = 1, …, N

h1

h2

μ Σ

p(z|y,W) / p(y|z,W)p(z)
1. Explain this data

p(y⇤|y) =
Z

p(y⇤|z,W)p(z|y,W)dz

2. Make predictions:

p(y|W) =

Z
p(y|z,W)p(z)dz

3. Choose the best model

Our inferential tasks are:
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Variational Inference

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Use tools from approximate inference to handle intractable integrals.

q�(z)

KL[q(z|y)kp(z|y)] Approximation class

True posterior

• Reconstruction cost: 
Expected log-likelihood 
measures how well 
samples from q(z) are able 
to explain the data y.

• Penalty:  Explanation of 
the data q(z) doesn’t deviate 
too far from your beliefs 
p(z) - Okham’s razor.

Penalty is derived from your model and does not need to be designed.
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Amortised Variational Inference

Approximate posterior distribution q(z):  Best match 
to true posterior p(z|y),  one of the unknown 
inferential quantities of interest to us. 

Data y

Inference/
Encoder

q(z |y)

z ~ q(z | y)

Inference network: q is an encoder or inverse model. 
Parameters of q are now a set of global parameters 
used for inference of all data points - test and train. 
Amortise (spread) the cost of inference over all data.

Encoders provide an efficient mechanism for  
amortised posterior inference 

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Approx. Posterior
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Auto-encoders and Inference in DGMs

• Model (Decoder): likelihood p(y|z). 

• Inference (Encoder): variational distribution q(z|y) 

Stochastic encoder-decoder systems  
implement variational inference.

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Approx. Posterior

Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z

Specific combination of variational inference in latent 
variable models using inference networks 

Variational Auto-encoder 

But don’t forget what your model is, and what inference you use.
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What Have we Gained

Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

+ Transformed an auto-encoders into more 
interesting deep generative models. 

+ Rich new class of density estimators built 
with non-linear models. 

+ Used a principled approach for deriving 
loss functions that automatically include 
appropriate penalty functions.  

+ Explained how an encoder enters into 
our models and why this is a good idea. 

+ Able to answer all our desired inferential 
questions. 

+ Knowledge of the uncertainty associated 
with our latent variables.
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What Have we Gained

Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)] + Able to score our models and do model 
selection using the free energy. 

+ Can impute missing data under any 
missingness assumption 

+ Can still combine with natural gradient 
and improved optimisation tools. 

+ Easy implementation - have a single 
computational graph and simple Monte 
Carlo gradient estimators. 

+ Computational complexity the same as 
any large-scale deep learning system.

A true marriage of Bayesian Reasoning and Deep Learning 
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MNIST Handwritten digits

24

Data Visualisation

. . .
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Visualising MNIST in 3D
D

LG
M
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Data Simulation
D

LG
M

Data Samples
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Missing Data Imputation

10%  
observed

50%  
observed

unobserved pixelsOriginal Data Inferred Image

D
LG

M
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Outline

Complementary strengths that we should 
expect to be successfully combined.

1 Why is this a good idea? 
✤ Review of deep learning 
✤ Limitations of maximum likelihood and MAP estimation

2 How can we achieve this convergence? 
✤ Auto-encoders and latent variable models 
✤ Approximate and variational inference

3 What else can we do? 
✤ Semi-supervised learning, recurrent networks, classification, 

better inference and more.

+Bayesian Reasoning Deep Learning
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Semi-supervised Learning

z

x

W

n = 1, …, N

μ Σ

y

π

Can extend the marriage of Bayesian reasoning and deep learning to the 
problem of semi-supervised classification.

Se
m

i-s
up

er
vi

se
d 

D
LG

M
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Analogical Reasoning
Se

m
i-s

up
er

vi
se

d 
D

LG
M
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Generative Models with Attention

We can also combine other tools from deep learning to design 
even more powerful generative models: recurrent networks 
and attention.

D
RA

W
   

 

DRAW: A Recurrent Neural Network For Image Generation

ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-
quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence
of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each time-step “where to read” and “where to write” as well

read

x

zt zt+1

P (x|z1:T )write

encoder
RNN

sample

decoder
RNN

read

x

write

encoder
RNN

sample

decoder
RNN

c

t�1

c

t

c

T

�

h

enc

t�1

h

dec

t�1

Q(zt|x, z1:t�1) Q(z

t+1

|x, z

1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T ). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

as “what to write”. The architecture is sketched in Fig. 2,
alongside a feedforward variational auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time
t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due
to its proven track record for handling long-range depen-
dencies in real sequential data (Graves, 2013; Sutskever
et al., 2014). Throughout the paper, we use the notation
b = W (a) to denote a linear weight matrix with bias from
the vector a to the vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our

DRAW: A Recurrent Neural Network For Image Generation

Figure 7. MNIST generation sequences for DRAW without at-
tention. Notice how the network first generates a very blurry im-
age that is subsequently refined.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains
4,701 images.

The house number images generated by the network are

Figure 8. Generated MNIST images with two digits.

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
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Uncertainty on Model Parameters

We can also combine other tools from deep learning to design even more 
powerful generative models: recurrent networks and attention.
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W3
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h1

h2 W2

W1
Weight Uncertainty in Neural Networks

H1 H2 H3 1

X 1

Y

0.5 0.1 0.7 1.3

1.40.3

1.2

0.10.1 0.2

H1 H2 H3 1

X 1

Y

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

is related to recent methods in deep, generative modelling
(Kingma and Welling, 2014; Rezende et al., 2014; Gregor
et al., 2014), where variational inference has been applied
to stochastic hidden units of an autoencoder. Whilst the
number of stochastic hidden units might be in the order of
thousands, the number of weights in a neural network is
easily two orders of magnitude larger, making the optimisa-
tion problem much larger scale. Uncertainty in the hidden
units allows the expression of uncertainty about a particular
observation, uncertainty in the weights is complementary
in that it captures uncertainty about which neural network
is appropriate, leading to regularisation of the weights and
model averaging.

This uncertainty can be used to drive exploration in contex-
tual bandit problems using Thompson sampling (Thomp-
son, 1933; Chapelle and Li, 2011; Agrawal and Goyal,
2012; May et al., 2012). Weights with greater uncertainty
introduce more variability into the decisions made by the
network, leading naturally to exploration. As more data are
observed, the uncertainty can decrease, allowing the deci-
sions made by the network to become more deterministic
as the environment is better understood.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces notation and standard learning in neural
networks, Section 3 describes variational Bayesian learn-
ing for neural networks and our contributions, Section 4
describes the application to contextual bandit problems,
whilst Section 5 contains empirical results on a classifica-
tion, a regression and a bandit problem. We conclude with
a brief discussion in Section 6.

2. Point Estimates of Neural Networks

We view a neural network as a probabilistic model
P (y|x,w): given an input x 2 Rp a neural network as-
signs a probability to each possible output y 2 Y , using
the set of parameters or weights w. For classification, Y is
a set of classes and P (y|x,w) is a categorical distribution –
this corresponds to the cross-entropy or softmax loss, when

the parameters of the categorical distribution are passed
through the exponential function then re-normalised. For
regression Y is R and P (y|x,w) is a Gaussian distribution
– this corresponds to a squared loss.

Inputs x are mapped onto the parameters of a distribu-
tion on Y by several successive layers of linear transforma-
tion (given by w) interleaved with element-wise non-linear
transforms.

The weights can be learnt by maximum likelihood estima-
tion (MLE): given a set of training examples D = (x

i

,y

i

)

i

,
the MLE weights wMLE are given by:

w

MLE
= argmax

w
logP (D|w)

= argmax

w

X

i

logP (y

i

|x
i

,w).

This is typically achieved by gradient descent (e.g., back-
propagation), where we assume that logP (D|w) is differ-
entiable in w.

Regularisation can be introduced by placing a prior upon
the weights w and finding the maximum a posteriori
(MAP) weights wMAP:

w

MAP
= argmax

w
logP (w|D)

= argmax

w
logP (D|w) + logP (w).

If w are given a Gaussian prior, this yields L2 regularisa-
tion (or weight decay). If w are given a Laplace prior, then
L1 regularisation is recovered.

3. Being Bayesian by Backpropagation

Bayesian inference for neural networks calculates the pos-
terior distribution of the weights given the training data,
P (w|D). This distribution answers predictive queries
about unseen data by taking expectations: the predictive
distribution of an unknown label ˆ

y of a test data item ˆ

x,
is given by P (

ˆ

y|ˆx) = E
P (w|D)[P (

ˆ

y|ˆx,w)]. Each pos-
sible configuration of the weights, weighted according to
the posterior distribution, makes a prediction about the un-
known label given the test data item ˆ

x. Thus taking an
expectation under the posterior distribution on weights is
equivalent to using an ensemble of an uncountably infi-
nite number of neural networks. Unfortunately, this is in-
tractable for neural networks of any practical size.

Previously Hinton and Van Camp (1993) and Graves
(2011) suggested finding a variational approximation to the
Bayesian posterior distribution on the weights. Variational
learning finds the parameters ✓ of a distribution on the
weights q(w|✓) that minimises the Kullback-Leibler (KL)
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In Review …

Bayesian reasoning as a general framework for  
inference that allows us to account for 

uncertainty and a principled approach for 
regularisation and model scoring.

Combined Bayesian reasoning with auto-encoders and 
showed just how much can be gained by a marriage of these 

two streams of machine learning research.
Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z

Deep learning as a framework for building highly 
flexible non-linear parametric models, but 

regularisation and accounting for uncertainty 
and lack of knowledge is still needed.
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Thanks to many people: 
Danilo Rezende, Ivo Danihelka, Karol Gregor, Charles Blundell, 
Theophane Weber, Andriy Mnih, Daan Wierstra (Google DeepMind), 
Durk Kingma, Max Welling (U. Amsterdam) 
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Thank You.
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Probabilistic Deep Learning 
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Variational Principle  
General family of methods for approximating  

complicated densities by a simpler class of densities.

36

What is a Variational Method?

Deterministic approximation procedures 
with bounds on probabilities of interest. 

Fit the variational parameters.

q�(z)

KL[q(z|y)kp(z|y)] Approximation class

True posterior
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From IS to Variational Inference

=

Z
q(z) log p(y|z)�

Z
q(z) log

q(z)

p(z)

= Eq(z)[log p(y|z)]�KL[q(z)kp(z)]Variational lower bound

Jensen’s inequality log p(y) �
Z

q(z) log

✓
p(y|z)p(z)

q(z)

◆
dz

log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

Integral problem
log p(y) = log

Z
p(y|z)p(z)dz

Importance Weight
log p(y) = log

Z
p(y|z)p(z)

q(z)
q(z)dz

Proposal
log p(y) = log

Z
p(y|z)p(z)q(z)

q(z)
dz
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Hypothesis codeData code-length

38

Minimum Description Length (MDL)

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

• Regularity in our data that can be explained with 
latent variables, implies that the data is compressible.  

• MDL: inference seen as a problem of compression — 
we must find the ideal shortest message of our data y: 
marginal likelihood. 

• Must introduce an approximation to the ideal 
message. 

• Encoder:  variational distribution q(z|y),  
• Decoder: likelihood p(y|z).

Stochastic encoder-decoder systems implement variational inference.

Stochastic encoder

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z
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PenaltyReconstruction

39

Denoising Auto-encoders (DAE)

• DAE: A mechanism for finding representations or 
features of data (i.e. latent variable explanations). 

• Encoder:  variational distribution q(z|y),  

• Decoder: likelihood p(y|z).

Stochastic encoder-decoder systems implement variational inference.

Stochastic encoder

F(y, q) = Eq(z)[log p(y|z)]� ⌦(z, y)

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z

The variational approach requires you to be explicit 
about your assumptions. Penalty is derived from your 

model and does not need to be designed.
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Amortising the Cost of Inference

Inference network: q is an encoder or inverse model. 
Parameters of q are now a set of global parameters 
used for inference of all data points - test and train. 
Share the cost of inference (amortise) over all data. 
Combines easily with mini-batches and Monte Carlo 
expectations. 
Can jointly optimise variational and model 
parameters: no need for alternating optimisation.

Repeat:
E-step

M-step

For i = 1, … N

✓ / 1

N

X

n

r✓ log p✓(yn|zn)

�n / r�Eq�(z)[log p✓(yn|zn)]�r�KL[q(zn)kp(zn)]
Instead of solving this optimisation 

for every data point n, we can 
instead use a model.

Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z
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Ideally want probabilistic programming 
using variational inference.

41

Implementing your Variational Algorithm
Avoid deriving pages of gradient updates for variational inference. 

Variational inference turns integration 
into optimisation:  

• Automated Tools: 
Differentiation: Theano, Torch7, Stan 
Message passing: infer.NET

Eq[(� log p(y|z) + log q(z)� log p(z)]

Inference
q(z |x)

H[q(z)]

Model
p(x |z)

Prior
p(z)

z

log p(z)

log p(x|z)

Inference
q(z |x)

Model
p(x |z)

Prior
p(z)

r✓

r�

r�Data x

Forward pass Backward pass

• Stochastic gradient descent and 
other preconditioned optimisation. 

• Same code can run on both GPUs 
or on distributed clusters. 

• Probabilistic models are modular, 
can easily be combined.

http://infer.NET
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A Monte Carlo method that works with continuous latent variables.

42

Stochastic Backpropagation

• Can use any likelihood function, avoids the need for additional  lower bounds. 
• Low-variance, unbiased estimator of the gradient.  
• Can use just one sample from the base distribution. 
• Possible for many distributions with location-scale or other known 

transformations, such as the CDF.

r⇠Eq(z)[f(z)]Original problem

z ⇠ N (µ,�2)
z = µ+ �✏ ✏ ⇠ N (0, 1)Reparameterisation

r⇠EN (0,1)[f(µ+ �✏)]

EN (0,1)[r⇠={µ,�}f(µ+ �✏)]
Backpropagation 
with Monte Carlo



Bayesian Reasoning and Deep Learning  

More general Monte Carlo approach that can be used with both discrete 
or continuous latent variables.

43

Monte Carlo Control Variate Estimators 

r⇠ log q⇠(z|x) =
r⇠q⇠(z|x)
q⇠(z|x)

Property of the score function:

c is known as a control variate and is used 
to control the variance of the estimator.

Original problem r�Eq�(z)[log p✓(y|z)]

 Score ratio Eq�(z)[log p✓(y|z)r� log q(z|y)]

MCCV Estimate Eq�(z)[(log p✓(y|z)� c)r� log q(z|y)]
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Outline
Variational renormalisation
1D Ising spin model

Renormalisation group

In 1954, coupling parameter g in quantum electrodynamics
was found to satisfy

g(µ) = G−1
(( µ

M

)d
G (g(M))

)
for µ,M scales

Group equation

Describes interactions at different scales: coupling changes,
but system remains self-similar

Important tool in modern physics (quantum, particle, string),
and Nobel prizes have been awarded

Intuition: micro to macro, but math is abstract
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Outline
Variational renormalisation
1D Ising spin model

Variational renormalisation

Variational renormalisation group introduced in 1976 by
Kadanoff et alii for spin models

Block spin renormalisation

N spins {vi}i=1,...,N can take binary values ±1

For configuration v , system has energy (Hamiltonian)

H(v) = −

∑
i

Kivi +
∑
i ,j

Kijvivj +
∑
ijk

Ki ,j ,kvivjvk + ...


Probability of configuration v given by Boltzmann distribution

p(v) = e−H(v)

Z with partition function Z =
∑

ṽ e
−H(ṽ)

Free energy F v = − logZ

Goal: coarse-grained description with conservation of energy
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Variational renormalisation

For configuration v , system has Hamiltonian

H(v) = −

∑
i

Kivi +
∑
i ,j

Kijvivj +
∑
i ,j ,k

Kijkvivjvk + ...


Goal: coarse-grained description with conservation of energy

Introduce ‘hidden’ spins {hj}j=1,...,M with M < N

Describe system using hidden spins h and Hamiltonian

H̃(h) = −

∑
i

K̃ihi +
∑
i ,j

K̃ijhihj +
∑
i ,j ,k

K̃ijkhihjhk + ...


Find RG mapping {K} → {K̃}, in terms of λ, with F v = F h

λ
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Variational renormalisation

Find RG mapping {K} → {K̃}, in terms of λ, with F v = F h
λ

Mapping will depend on unknown parameters λ

Also on v , but: marginalise out (average over observations)

Energy conservation often not exact; optimise F h
λ − F v with λ

In that case, RG typically not invertible, so in fact a semigroup
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1D Ising spin model

Spins {vi} inline with spacing a; nearest neighbour coupling J0

Hamiltonian of system is H(v) = −J0
∑

i ,i+1 vivi+1

Coupling favours spins that agree

Skip over every other spin, so that spacing is 2a; solve for J1

Iterating RG turns out to satisfy tanh(Jn+1) = tanh2(Jn)

Higher order coupling iterations represent ‘effective’ behaviour

Exact solution, conserves energy, gives large-scale behaviour

Shortcoming: averaging discards half of the spins
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General framework for neural computation

Lossy compression
Binary, but extendible to multinomial and also real-valued

RBM visible layer: input; no intra-layer connections
RBM hidden layer: feature detectors; no intra-layer
connections
Layers are fully connected to each other
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Restricted Boltzmann machine

Unsupervised (e.g. contrastive divergence or reconstruction)

Model is stochastic: learns with what probability to turn a
hidden node to +1 or −1 given some input

Learns probability distribution over its nodes by storing biases
and weights related to the connections between nodes
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Restricted Boltzmann machine

Bias ai goes with visible node vi , bj with hj , and matrix entry
wij with the connection between vi and hj

Central: energy (Hopfield 1982)

E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)
Boltzmann probability of configuration/state/observation v

p(v) =
1

Z

∑
h

e−E(v ,h)

Partition function Z =
∑

v ,h e
−E(v ,h), sum over all possible

configurations— intractable (Long and Servedio, 2010)
No intra-layer connections: probability of hidden neuron given
visible layer is easy (independent of other hidden neurons)
Probability of visible neuron given hidden layer just as well
Model is stochastic, but p(v | h) and p(h | v) are easy
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Classification with an RBM

RBMs learn a distribution over the training set

Boltzmann probabilities are assigned by the machine and are
trained to fit the data

How to do classification?

Different suggestions by Hinton (2012)

(a) Use hidden layer to train normal classifier (arguably most
important)

(b) Train an RBM for each class and use class-specific free energy
and (ML-approximation of) partition function in a softmax

(c) Include label in visible layer during training, so that RBM learns
the probability of a class, and then evaluate joint probabilities
for a test vector with each of the classes—comparison is easy
because partition function is the same
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Training an RBM

Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)

Training is maximising joint probability of training set

Joint probability is product of probabilities of observations

Tune bias vectors a and b and weight matrix w

Gradient ascent using individual probability for each
observation
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Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)

Probability of observation v is p(v) = 1
Z

∑
h e
−E(v ,h)

Partition function Z =
∑

v ,h e
−E(v ,h)

Maximise individual (log-)probability by gradient ascent with

δ log p(v)

δwij
=

δ

δwij
log
∑
h

e−E(v ,h) − δ

δwij
logZ

=

∑
h e
−E(v ,h)vihj∑
h e
−E(v ,h)

−
∑

ṽ ,h e
−E(ṽ ,h)ṽihj∑

ṽ ,h e
−E(ṽ ,h)

= E [vihj | v ]− E [vihj ]

Expectations under model distribution with current weights
Can gradient be computed?
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Training an RBM

Goal: find gradient δ log p(v)
δwij

= E [vihj | v ]− E [vihj ]

Model is stochastic

Conditional on v , the hidden activations are independent and
readily computed

Given v , hidden activation hj is 1 with probability

p(hj | vi ) = σ

(
bj +

∑
i

viwij

)
with σ(x) =

1

1 + e−x

This follows from the Boltzmann distribution

So an unbiased estimate of E [vihj | v ] is easy

But what about E [vihj ]?
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Training an RBM

Goal: find gradient δ log p(v)
δwij

= E [vihj | v ]− E [vihj ]

Computing unconditional E [vihj ] is much harder

Option: Gibbs sampling, since p(v | h) and p(h | v) are easy

Both are logistic sigmoids

Start with random v , sample h, sample v , sample h, repeat...

After a ‘while’, both v and h follow joint (unconditional)
distribution

This could take a while
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Training an RBM

Goal: find gradient δ log p(v)
δwij

= E [vihj | v ]− E [vihj ]

Conditional E [vihj | v ] is easy, unconditional E [vihj ] is harder

Gibbs sampling is expensive

Faster: start with training vector v , sample h, reconstruct v ′

Use v ′i hj to approximate E [vihj ]

Looks like Contrastive Divergence, but not quite

Works better if alternated a couple of times
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Training an RBM

To summarise RBM training, let ε be learning rate

Update weights with ∆wij = ε
(
Ê [vihj | v ]− Ê [vihj ]

)
Sample Ê [vihj | v ] from input v and one-time stochastic
activation h

Sample Ê [vihj ] from reconstruction v ′ of v via h

Obtain ∆wij = ε (vjhj − v ′i hj)

Biologically plausible (?)

Does not approximate gradient, but works well (Hinton 2012)

Bias vectors a and b are updated similarly
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Ê [vihj | v ]− Ê [vihj ]
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Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Stacking RBMs

Hidden layer of first level is visible layer of the next, and so on

Reducing dimensionality: lossy compression
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Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Renormalisation of stacked RBM

Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)

RBMs use hidden neurons h to model data in visible neurons v

Less hj than vi

RG yields transformation of energy in terms of h only: Ẽ (h)

Equivalent to the way the Hamiltonian is rewritten in physics

At the same time, Boltzmann probabilities of hidden layer may
be marginalised over the visible layer, yielding an energy
function defined by marginal probabilities p(h)

Mehta and Schwab show that both energies are the same

This means that stacked RBM feature extraction employs RG

Understanding how stacked RBMs synthesise features gives
insight in why and when they work

Lars Haringa Variational renormalisation for stacked Boltzmann machines



Renormalisation in physics
Boltzmann machines

Renormalisation for RBMs
Roundup

Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Renormalisation of stacked RBM

Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)
RBMs use hidden neurons h to model data in visible neurons v

Less hj than vi

RG yields transformation of energy in terms of h only: Ẽ (h)
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be marginalised over the visible layer, yielding an energy
function defined by marginal probabilities p(h)

Mehta and Schwab show that both energies are the same

This means that stacked RBM feature extraction employs RG

Understanding how stacked RBMs synthesise features gives
insight in why and when they work

Lars Haringa Variational renormalisation for stacked Boltzmann machines



Renormalisation in physics
Boltzmann machines

Renormalisation for RBMs
Roundup

Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Renormalisation of stacked RBM

Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)
RBMs use hidden neurons h to model data in visible neurons v

Less hj than vi

RG yields transformation of energy in terms of h only: Ẽ (h)
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Equivalent to the way the Hamiltonian is rewritten in physics

At the same time, Boltzmann probabilities of hidden layer may
be marginalised over the visible layer, yielding an energy
function defined by marginal probabilities p(h)

Mehta and Schwab show that both energies are the same

This means that stacked RBM feature extraction employs RG

Understanding how stacked RBMs synthesise features gives
insight in why and when they work

Lars Haringa Variational renormalisation for stacked Boltzmann machines



Renormalisation in physics
Boltzmann machines

Renormalisation for RBMs
Roundup

Stacking RBMs
Stacked RBMs implement variational RG
Numerical experiment

Renormalisation of stacked RBM

Recall energy E (v , h) = −
(∑

i aivi +
∑

j bjhj +
∑

i ,j wijvihj

)
RBMs use hidden neurons h to model data in visible neurons v

Less hj than vi

RG yields transformation of energy in terms of h only: Ẽ (h)
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To see this in action: 2D Ising model

Training set of spins with Hamiltonian H(v) = −J
∑
〈i ,j〉 vivj

Nearest neighbours only 〈i , j〉
Dimensionality 1600→ 400→ 100→ 25

Appears to learn Kadanoff block spin renormalisation by itself

Stacked RBM learns spatiality without imposing it
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Summary

RG is an abstract, powerful technique from statistical physics

Kadanoff’s block spin renormalisation works for binary
configurations

Stacked RBMs, which learn a distribution without supervision,
automatically implement this renormalisation

Theoretical insight may bring clarification about why deep
learning recognises features so well
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Conclusions and implications

Interesting perspective

Perhaps statistical physics will yield more insight into DL

Physics are typically very symmetric, while data is not

Relevant: critical temperature to operate near phase transition

No breakthrough follow-up yet
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Introduction

I Method focused on computational optimization and
implementation details

I Based on well-known MLPs and ConvNets

I Reduces memory usage

I Reduces number of instructions



How? Binarization

I Weights and activations are constrained to have values either
−1 or +1

I Binarization function xb = Sign(x)

I Multiplications replaced with 1-bit XNOR operations



Gradients and noise

Although the weights are binary, the gradient is real-valued.

I SGD makes small and noisy steps to explore the space of
parameters

I noise is averaged out by the stochastic gradient contributions

I noise to weights and activations when computing the gradient
can can act as regularization

I Binarization, being a form of quantization, adds noise



Propagating Gradients Trough Discretization

Problem
The derivative of q = Sign(r) is always 0

Solution: Straight-Trough Gradient Estimator (Hinton)

I estimator gq = ∂C
∂q is assumed to be obtained

I straight-trough estimator gr = ∂C
∂r = gq1|r |≤1

the derivative 1|r |≤1 can be seen as propagating the gradient
trough hard tanh, that is:

Htanh(x) = Clip(x ,−1,+1) = max(−1,min(1, x)) (1)



A few helpful ingredients

I Reduction of the impact of the weights’ scale achieved by:

1. Batch normalization (that also accelerates the training)
2. ADAM learning rule

Observations

I Augmenting the number of hidden units can compensate for
the discretization noise

I BinaryNet is faster to train than BinaryConnect but leads to
worse results.

I Maybe it’s overfitting and might benefit from additional noise



Experiments: MLP on MNIST

I 3 hidden layers with 4096 binary units

I L2-SVM output layer

I Model regularization with Dropout

I ADAM

I Exponentially decaying global learning rate



Experiments: ConvNet

On CIFAR-10

I No preprocessing

I Square hinge loss

I ADAM

I Exponentially decaying learning rate

I Batch normalization (minibatch size: 50)

I Validation set: last 5000 samples

I Amount of epochs: 500

On SVHN

I Configuration like on CIFAR-10

I Amount of epochs: 200





Performance improvement via XNOR-accumulate

By using GPU:

I SIMD: Single Instruction, Multiple Data
I SWAR: SIMD In A Register:

I Concatenates groups of 32 binary variable in a 32-bit register
I This way, 32 connections evaluated with only 4 instructions:

a1+ =popcount(not(xor(a32b0 ,w1)))



GPU Execution Times



Related works

Binary Connect

I binary weights

I Some activations quantizations

I slower to train

I worse on MNIST

I better on CIFAR-10

I good with fully connected networks, not good with ConvNets

Hwang & Sung, 2014; Kim, 2014

I Network is trained with high precision

I Afterwards, the weights are ternarized −H, 0,+H

I re-training with ternary weights and 3-bit activations

I good for fully connected networks, not good with ConvNets



Future works

I Binarization of the gradients

I Benchmark results to other models (e.g. RNN) and datasets


