
Lecture 2: Learning with neural networks
Deep Learning @ UvA
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o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network

o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module

Lecture Overview
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The Machine 
Learning Paradigm
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations
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Model

ℎ(𝑥𝑖; 𝜗)

Objective/Loss/Cost/Energy

ℒ(𝜗;  𝑦𝑖 , ℎ)

Score/Prediction/Output

 𝑦𝑖 ∝ ℎ(𝑥𝑖; 𝜗)

𝑋Input:
𝑌Targets:

Data

𝜗

(𝑦𝑖 −  𝑦𝑖)
2



Backward computations
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o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/Energy

𝜕ℒ(𝜗;  𝑦𝑖)

𝜕  𝑦𝑖

Score/Prediction/Output

𝜕  𝑦𝑖
𝜕ℎ

𝑋Input:
𝑌Targets:

Data
𝜕ℎ(𝑥𝑖)

𝜕𝜃

= 1
𝜗

ℒ( )

(𝑦𝑖 −  𝑦𝑖)
2



o As with many model, we optimize our neural network with Gradient Descent
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

o The most important component in this formulation is the gradient

o The backward computations return the gradients

o How are the backward computations done in a neural network?

Optimization through Gradient Descent
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Backpropagation
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o A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent 
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃  

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

What is a neural network again?
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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ℎ(𝑥𝑖; 𝜗)

𝜗
ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

ℎ1(𝑥𝑖; 𝜗)

ℎ2(𝑥𝑖; 𝜗)

ℎ3(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ5(𝑥𝑖; 𝜗)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

Forward connections
(Feedforward architecture)

Interweaved connections
(Directed Acyclic Graph
architecture- DAGNN)

Loopy connections
(Recurrent architecture, special care needed)

Functions

Functions are 
implemented 
as Modules



o A module is a building block for our network

o Each module is an object/function 𝑎 = ℎ(𝑥; 𝜃) that
◦ Contains trainable parameters (𝜃)

◦ Receives as an argument an input 𝑥

◦ And returns an output 𝑎 based on the activation function ℎ …

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation, the
output of a module should be stored

What is a module?
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ℎ1(𝑥1; 𝜃1)

ℎ2(𝑥2; 𝜃2)

ℎ3(𝑥3; 𝜃3)

ℎ4(𝑥4; 𝜃4)

ℎ5(𝑥5; 𝜃5)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥2; 𝜃2)

ℎ5(𝑥5; 𝜃5)



o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

Anything goes or do special constraints exist?
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o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝜗 , where 𝑎𝑙 = 𝑥𝑙+1(or 𝑥𝑙 = 𝑎𝑙−1)

o We need to know the precise function behind
each module ℎ𝑙(… )

o We start from the data input, e.g. a few images

o Then, we need to compute its module’s input
◦ It could be that the input is defined from other modules in 

quite different parts of the network

o So, we compute modules activations with the right order
◦ Make sure that all the inputs are computed at the right time
◦ Then everything goes smoothly

Forward computations for neural networks
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𝐿𝑜𝑠𝑠

𝑰𝒏𝒑𝒖𝒕Data:

ℎ1(𝑥1; 𝜃1)

ℎ2(𝑥2; 𝜃2)

ℎ3(𝑥3; 𝜃3)

ℎ4(𝑥4; 𝜃4)

ℎ5(𝑥5; 𝜃5)

ℎ2(𝑥2; 𝜃2)

ℎ5(𝑥5; 𝜃5)



o Simply compute the gradients of each module for our data
◦ We need to know the gradient formulation of each module
𝜕ℎ𝑙(𝑥𝑙; 𝜃𝑙) w.r.t. their inputs 𝑥𝑙 and parameters 𝜃𝑙

o We need the forward computations first
◦ Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

Backward computations for neural networks
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𝒅𝑳𝒐𝒔𝒔(𝑰𝒏𝒑𝒖𝒕)Data:

𝑑ℎ1(𝑥1; 𝜃1)

𝑑ℎ2(𝑥2; 𝜃2)

𝑑ℎ3(𝑥3; 𝜃3)

𝑑ℎ4(𝑥4; 𝜃4)

𝑑ℎ5(𝑥5; 𝜃5)

𝑑ℎ2(𝑥2; 𝜃2)

𝑑ℎ5(𝑥5; 𝜃5)



o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃  

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

o To use any gradient descent based optimization (𝜃(𝑡+1) = 𝜃(𝑡+1) − 𝜂𝑡
𝜕ℒ

𝜕𝜃(𝑡)
) we 

need the gradients
𝜕ℒ

𝜕𝜃𝑙
, 𝑙 = 1, … , 𝐿

o How to compute the gradients for such a complicated function enclosing other 
functions, like 𝑎𝐿(… )?

Again, what is a neural network again?
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o The function ℒ(𝑦, 𝑎𝐿) depends on 𝑎𝐿, which depends on 𝑎𝐿−1, which 
depends on 𝑎𝐿−2, …, which depends on 𝑎𝑙, …, which depends on 𝑎2

o Chain rule for parameters of layer l

𝜕ℒ(𝑦, 𝑎𝐿)

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿
𝜕𝑎𝐿−1

∙
𝜕𝑎𝐿−1
𝜕𝑎𝐿−2

∙ … ∙
𝜕𝑎𝑙
𝜕𝜃𝑙

o In shorter, we can rewrite this as
𝜕ℒ(𝑦, 𝑎𝐿)

𝜕𝜃𝑙
=
𝜕ℒ

𝜕𝑎𝑙
∙ (
𝜕𝑎𝑙
𝜕𝜃𝑙

)𝑇

Backpropagation ⟺ Chain rule!!!
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Gradient w.r.t. the module parameters

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)



o
𝜕𝑓

𝜕𝑥
=

𝜕 sin(0.5𝑥2)

𝜕𝑥
=

𝜕 f(𝑔(𝑥))

𝜕𝑥
=, where 0.5𝑥2

o
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥
= 𝑥 ∙ cos(0.5𝑥2)

Chain rule in practice
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o In 
𝜕ℒ(𝑦,𝑎𝐿)

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙
𝜕𝑎𝑙

𝜕𝜃𝑙
, we need to also easily compute 

𝜕ℒ

𝜕𝑎𝑙
. How?

o Chain rule again

𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿
𝜕𝑎𝐿−1

∙
𝜕𝑎𝐿−1
𝜕𝑎𝐿−2

∙ … ∙
𝜕𝑎𝑙+1
𝜕𝑎𝑙

o Remember, the output of a module is the input for the next one: 𝑎𝑙=𝑥𝑙+1

o In shorter, we can rewrite this as
𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝑙+1
∙
𝜕𝑎𝑙+1
𝜕𝑎𝑙

= (
𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

Backpropagation ⟺ Chain rule!!!
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Recursive rule (good for us)!!! Gradient w.r.t. the module input

𝑎𝑙 = ℎ𝑙(𝑥𝑙; 𝜃𝑙)

𝑎𝑙+1 = ℎ𝑙+1(𝑥𝑙+1; 𝜃𝑙+1)

𝑥𝑙+1 = 𝑎𝑙



o Plenty of functions are computed element-wise
◦ 𝜎 𝑥 , tanh 𝑥 , exp(𝑥)

◦ Each output dimension depends only
on the respective input dimension

o Some functions, however, depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases for the 
𝜕𝑎𝑙

𝜕𝑥𝑙
(or 

𝜕𝑎𝑙

𝜕𝜃𝑙
)  we compute the Jacobian matrix

Backpropagation for multivariate functions 𝑓(𝒙)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 20

𝑎 𝑥 = exp 𝒙 = exp
𝑥(1)

𝑥(2)

𝑥(3)
=

exp(𝑥(1))

exp(𝑥(2))

exp(𝑥(3))

=

𝑎(𝑥 1 )

𝑎(𝑥(2))

𝑎(𝑥(3))

𝑎(𝑗) =
𝑒𝑥

(𝑗)

𝑒𝑥
(1)

+ 𝑒𝑥
(2)

+ 𝑒𝑥
(3)



The Jacobian
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𝐽 𝑎 𝑥 =

𝜕𝑎 1

𝜕𝑥 1

𝜕𝑎 1

𝜕𝑥 2

𝜕𝑎 1

𝜕𝑥 3

𝜕𝑎 2

𝜕𝑥 1

𝜕𝑎 2

𝜕𝑥 2

𝜕𝑎 2

𝜕𝑥 3

o When 𝑎(𝑥) is 2 − d and depends on 3 variables, 𝑥(1), 𝑥(2), 𝑥(3)



o Plenty of functions are computed element-wise
◦ 𝜎 𝑥 , tanh 𝑥 , exp(𝑥)

◦ Each output dimension depends only
on the respective input dimension

o Some functions, however, depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases for the 
𝜕𝑎𝑙

𝜕𝑥𝑙
(or 

𝜕𝑎𝑙

𝜕𝜃𝑙
)  we compute the Jacobian matrix

o Then,
𝜕ℒ

𝜕𝑎𝑙
= (

𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

Backpropagation for multivariate functions 𝑓(𝒙)
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𝑎 𝑥 = exp 𝒙 = exp
𝑥(1)

𝑥(2)

𝑥(3)
=

exp(𝑥(1))

exp(𝑥(2))

exp(𝑥(3))

=

𝑎(𝑥 1 )

𝑎(𝑥(2))

𝑎(𝑥(3))

𝑎(𝑗) =
𝑒𝑥

(𝑗)

𝑒𝑥
(1)

+ 𝑒𝑥
(2)

+ 𝑒𝑥
(3)



o To make sure everything is done correctly  “Dimension analysis”

o The dimensions of the gradient w.r.t. 𝜃𝑙 must be equal to the dimensions 
of the respective weight 𝜃𝑙

dim
𝜕ℒ

𝜕𝑎𝑙
= dim 𝑎𝑙 and dim

𝜕ℒ

𝜕𝜃𝑙
= dim 𝜃𝑙

o E.g. for 
𝜕ℒ

𝜕𝑎𝑙
= (

𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1
, if dim 𝑎𝑙 = 𝑑𝑙, then it should be

[𝑑𝑙× 1] = [1 × 𝑑𝑙+1] ∙ [𝑑𝑙+1× 𝑑𝑙]

o E.g. for 
𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝛼𝑙
∙ (

𝜕𝛼𝑙

𝜕𝜃𝑙
)Τ, if dim 𝜃𝑙 = 𝑑𝑙 × 𝑑𝑙−1, then it should be

[𝑑𝑙× 𝑑𝑙−1] = [𝑑𝑙× 1] ∙ [1 × 𝑑𝑙−1]

Dimension analysis
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Backpropagation again

o Step 1. Compute forward propagations for all layers recursively
◦ Each input 𝑥𝑙 should be a row vector, each output 𝑎𝑙 should be a column vector

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1
𝑇 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. Start 
from the last layer and for each new layer compute the gradients

𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝑙+1

𝑇

∙
𝜕𝑎𝑙+1

𝜕𝑥𝑙+1
and

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙
𝜕𝑎𝑙

𝜕𝜃𝑙
◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train your 

network
Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions [𝑑𝑙+1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙× 𝑑𝑙−1]

Vector with dimensions [𝑑𝑙× 1]

Vector with dimensions [1 × 𝑑𝑙−1]



o Layer 𝑙 − 1 has 15 neurons (𝑑𝑙−1 = 15), 𝑙 has 10 neurons (𝑑𝑙 = 10) and 
𝑙 + 1 has 5 neurons (𝑑𝑙+1 = 5)

o My activation functions are 𝑎𝑙 = 𝑤𝑙𝑥𝑙 and 𝑎𝑙+1 = 𝑤𝑙+1𝑥𝑙+1

o The dimensionalities are (remember 𝑥𝑙 = 𝑎𝑙−1)
◦ 𝑎𝑙−1 → 15 × 1 , 𝑎𝑙 → 10 × 1 , 𝑎𝑙+1 → [5 × 1]

◦ 𝑥𝑙 → 15 × 1 , 𝑥𝑙+1 → 10 × 1

◦ 𝜃𝑙 → 10 × 15 ,𝑤𝑙+1 → 5 × 10

o The gradients are
◦
𝜕ℒ

𝜕𝑎𝑙
→ 1 × 5 ∙ 5 × 10 = 1 × 10

◦
𝜕ℒ

𝜕𝜃𝑙
→ 10 × 1 ∙ 1 × 15 = 10 × 15

Practical example and dimensionality analysis



Backpropagation visualization
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅



Backpropagation visualization at epoch (𝑡)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 



Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 28

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 



Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 29

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!! 



Backpropagation visualization at epoch (𝑡)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)



Backpropagation visualization at epoch (𝑡)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3 )

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))



Backpropagation visualization at epoch (𝑡)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!! 



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!! 



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3 )

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))



Backpropagation visualization at epoch (𝑡 + 1)
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𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)



o For classification use cross-entropy loss

o Use Stochastic Gradient Descent on mini-batches

o Shuffle training examples at each new epoch

o Normalize input variables to 𝜇, 𝜎2 = (0,1)

Some practical tricks of the trade
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Everything is a
module

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES  & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY 
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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ℎ(𝑥𝑖; 𝜗)

𝜗
ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

ℎ1(𝑥𝑖; 𝜗)

ℎ2(𝑥𝑖; 𝜗)

ℎ3(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ5(𝑥𝑖; 𝜗)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

Forward connections
(Feedforward architecture)

Interweaved connections
(Directed Acyclic Graph
architecture- DAGNN)

Loopy connections
(Recurrent architecture, special care needed)

Functions

Functions are 
implemented 
as Modules



o Activation function 𝑎 = 𝜃𝑥

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 𝜃

o Gradient with respect to the parameters 
𝜕𝑎

𝜕𝜃
= 𝑥

Linear module
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o Activation function 𝑎 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Gradient wrt the input 
𝜕𝑎

𝜕𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥))

o Gradient wrt the input 
𝜕𝜎 𝜃𝑥

𝜕𝑥
= 𝜃 ∙ 𝜎 𝜃𝑥 1 − 𝜎 𝜃𝑥

o Gradient wrt the parameters 
𝜕𝜎 𝜃𝑥

𝜕𝜃
= 𝑥 ∙ 𝜎(𝜃𝑥)(1 − 𝜎(𝜃𝑥))

o Output can be interpreted as probability

o Always bounds the outputs between 0 and 1, so the network cannot overshoot

o Gradients can be small in deep networks because we always multiply with <1

o The gradients at the tails are flat to 0, hence no serious updates
◦ Overconfident, but not necessarily “correct”, neurons get stuck

Sigmoid module
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o We often want to apply a non-linearity 𝜎(… ) on top of an activation 𝜃𝑥
𝑎 = 𝜎(𝜃𝑥)

o This way we end up with quite complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

o We now have to perform two backpropagation steps instead of one

o But now our gradients are simpler
◦ The complications happen when non-linear functions are parametric
◦ We avoid taking the extra gradients w.r.t. parameters inside a non-linearity
◦ This is usually how networks are implemented in Torch

Simplifying backpropagation equations
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𝑎1 = 𝜃𝑥 𝑎2 = 𝜎(𝑎1)



o Activation function 𝑎 = 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥)

o Similar to sigmoid, but with different output range
◦ [−1,+1] instead of 0,+1

◦ Stronger gradients, because data is centered
around 0 (not 0.5)

◦ Less bias to hidden layer neurons as now outputs
can be both positive and negative (more likely
to have zero mean in the end)

Tanh module
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o Activation function 𝑎(𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥(𝑘)) =
𝑒𝑥

(𝑘)

 𝑗 𝑒
𝑥(𝑗)

◦ This activation function is mostly used for making decisions in a form of a probability

◦  𝑘=1
𝐾 𝑎(𝑘) = 1 for 𝐾 classes

o Exploiting the fact that 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏, we usually compute

𝑎(𝑘) =
𝑒𝑥

(𝑘)−𝜇

 𝑗 𝑒
𝑥(𝑗)−𝜇

, 𝜇 = max𝑘 𝑥
(𝑘) as 

𝑒𝑥
(𝑘)−𝜇

 𝑗 𝑒
𝑥(𝑗)−𝜇

=
𝑒𝜇𝑒𝑥

(𝑘)

𝑒𝜇  𝑗 𝑒
𝑥(𝑗)

=
𝑒𝑥

(𝑘)

 𝑗 𝑒
𝑥(𝑗)

◦ This provides better stability because avoids exponentianting large numbers

Softmax module
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o Activation function 𝑎(𝑥) = 0.5 𝑦 − 𝑥 2

◦ Mostly used to measure the loss in regression tasks

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥
= 𝑥 − 𝑦

Euclidean loss module
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o Activation function 𝑎 𝑥 = − 𝑘=1
𝐾 𝑦(𝑘) log 𝑥(𝑘), 𝑦(𝑘)= {0, 1}

o Gradient with respect to the input 
𝜕𝑎

𝜕𝑥(𝑘)
= −

1

𝑥(𝑘)

o The cross-entropy loss is the most popular classification losses for 
classifiers that output probabilities (not SVM)

o The cross-entropy loss couples well with certain input activations, such as 
the softmax module or the sigmoid module
◦ Often the gradients of the cross-entropy loss are computed in conjunction with the 

activation function from the previous layer

o Generalization of logistic regression for more than 2 outputs

Cross-entropy loss (log-loss or log-likelihood) module
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o There are many more modules that are quite often used in Deep Learning

o Convolutional filter modules

o Rectified Linear Unit (ReLU) module

o Parametric ReLU module

o Regularization modules
◦ Dropout

o Normalization modules
◦ ℓ2-normalization

o Loss modules
◦ Hinge loss

o and others, which we are going to discuss later in the course

More specific modules for later
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Make your own 
module

UVA DEEP LEARNING COURSE
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o Everything can be a module, given some ground rules

o How to make our own module?
◦ Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

𝜕𝑎(𝑥;𝜃)

𝜕𝑥
and 

𝜕𝑎(𝑥;𝜃)

𝜕𝜃

New modules
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o As everything can be a module, a module of modules could also be a 
module
◦ In fact, [Lin2014] proposed a Network-in-Network architecture

o We can therefore make new building blocks as we please, if we expect 
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

A module of modules
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o Assume we want to build an RBF module

𝑎 = 
𝑗
𝑢𝑗 exp(−𝛽𝑗(𝑥 − 𝑤𝑗)

2)

o To avoid computing the full derivations, we can decompose this module 
into a cascade of modules

𝑎1 = (𝑥 − 𝑤)2→ 𝑎2 = exp −𝛽𝑎1 → 𝑎3 = 𝑢𝑎2 → 𝑎4 =𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, … )

o An RBF module is good for regression problems, in which cases it is 
followed by a Euclidean loss module

o The Gaussian centers 𝑤𝑗 can be initialized externally, e.g. with k-means

Radial Basis Function (RBF) Network module
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An RBF visually
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𝑎1 = (𝑥 − 𝑤)2→ 𝑎2 = exp −𝛽𝑎1 → 𝑎3 = 𝑢𝑎2 → 𝑎4 =𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, … )

𝛼1
(3)

= (𝑥 − 𝑤1)
2

𝛼1
(2)

= (𝑥 − 𝑤1)
2𝛼1

(1)
= (𝑥 − 𝑤1)

2

𝛼2
(1)

= exp(−𝛽1𝛼1
(1)
) 𝛼2

(2)
= exp(−𝛽1𝛼1

(2)
) 𝛼2

(3)
= exp(−𝛽1𝛼1

(3)
)

𝛼3
(1)

= 𝑢1𝛼2
(1)

𝛼3
(2)

= 𝑢2𝛼2
(2) 𝛼3

(3)
= 𝑢3𝛼2

(3)

𝑎4 = 𝑝𝑙𝑢𝑠(𝑎3)

𝑎5 = 𝑦 − 𝑎4
2

RBF module



o The most dangerous part when implementing new modules is to get your 
gradients right
◦ The math might be wrong, the code might be wrong, …

o Check your module with gradient checks. 
◦ Compare your explicit gradient with computational gradient 𝑔 𝜃(𝑖) ≈

𝑎 𝜃+𝜀 −𝑎 𝜃−𝜀

2𝜀

Δ 𝜃(𝑖) =
𝜕𝑎(𝑥; 𝜃(𝑖))

𝜕𝜃(𝑖)
− 𝑔 𝜃(𝑖)

2

◦ If result is smaller than 𝛿 ∈ (10−4, 10−7), then your gradients are good

o Perturb one parameter 𝜃(𝑖) at a time, 𝜃(𝑖) + 휀, then check its Δ 𝜃(𝑖)

◦ Do not perturb the whole parameter vector 𝜃 + 휀, it will give wrong results

o Good practice: check your network gradients too

Gradient check

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES  & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 55

Original gradient definition: 
𝑑𝑓(𝑥)

𝑑𝑥
= limℎ→0

𝑓(𝑥+ℎ)

Δℎ



Checking your gradients in practice (for a module)
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Import our module

Call the Jacobian module , which can check 

the Jacobian matrix

Generate an instance for our 

new module

Check the Jacobians for our 

new module



Checking your gradients in practice (for a network)
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To make it faster, few only 

training points

To make it faster, sample few only 
dimensions. Sample carefully 

though, when testing whole network



o What about trigonometric modules

o Or polynomial modules

o Or new loss modules

o In the Lab Assignment 2 you will have the chance to think of new modules

Come up with new modules
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Implementation of 
basic networks and 
modules in Torch
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o For a new module you must re-implement two functions in Torch
◦ One to compute the result of the forward propagation for the module
◦ And one computing the gradient of the loss w.r.t. the input

𝜕ℒ(𝑎𝐿 , 𝑦)

𝜕𝑥
=

𝜕ℒ

𝜕𝑎𝑎𝑏𝑜𝑣𝑒
∙
𝜕𝑎

𝜕𝑥
◦ Of course you can implement other helper functions too

o If, and only if, your module is parametric, namely has trainable parameters
◦ You must also implement a function for the gradient of the loss w.r.t. the parameters

𝜕ℒ(𝑎𝐿 , 𝑦)

𝜕𝜃
=
𝜕ℒ

𝜕𝑎
∙
𝜕𝑎

𝜕𝜃

o If your trainable parameters are boil down to a linear product 𝜃x, you can 
simply cascade this module and avoid taking an extra gradient

𝑎1 = 𝜃x → 𝑎2 = 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑎1)

Building a module
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mymodule.updateGradParameters(…)

mymodule.updateGradInput(…)

mymodule.updateOutput(…)



Make a module in Torch
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Probably you will need to define some 

class variables

The forward propagation function

The backward propagation function 

wrt the input of the module

The backward propagation function 

wrt the parameters of the module

If module is not parametric, you don’t 

need to implement this function



Summary
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o We introduced how does the machine learning 
paradigm for neural networks

o We described the backpropagation algorithm, 
which is the backbone for neural network 
training

o We explained the neural network in terms of 
modular architecture and described various 
possible architectures

o We described different neural network modules, 
as well as how to implement and how to check 
your own module



Next lecture
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o We are going to see how to use 
backpropagation to optimize our neural network

o We are going to review different methods and 
algorithms for optimizing our neural network, 
especially our deep networks, better

o We are going to revisit different learning 
paradigms, e.g. what loss functions should be 
used for different machine learning tasks

o And if we have time, some more advanced 
modules


