
Lecture 2: Learning with neural networks
Deep Learning @ UvA

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING LEARNING WITH NEURAL NETWORKS - PAGE 1

o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network

o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module

Lecture Overview

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGINTRODUCTION ON DEEP LEARNING AND NEURAL NETWORKS - PAGE 2

The Machine
Learning Paradigm

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 3

o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 4

Model

ℎ(𝑥𝑖; 𝜗)

Objective/Loss/Cost/Energy

ℒ(𝜗; 𝑦𝑖 , ℎ)

Score/Prediction/Output

 𝑦𝑖 ∝ ℎ(𝑥𝑖; 𝜗)

𝑋Input:
𝑌Targets:

Data

𝜗

(𝑦𝑖 − 𝑦𝑖)
2

Backward computations

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 5

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/Energy

𝜕ℒ(𝜗; 𝑦𝑖)

𝜕 𝑦𝑖

Score/Prediction/Output

𝜕 𝑦𝑖
𝜕ℎ

𝑋Input:
𝑌Targets:

Data
𝜕ℎ(𝑥𝑖)

𝜕𝜃

= 1
𝜗

ℒ()

(𝑦𝑖 − 𝑦𝑖)
2

o As with many model, we optimize our neural network with Gradient Descent
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

o The most important component in this formulation is the gradient

o The backward computations return the gradients

o How are the backward computations done in a neural network?

Optimization through Gradient Descent

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 6

Backpropagation

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 8

o A family of parametric, non-linear and hierarchical representation learning
functions, which are massively optimized with stochastic gradient descent
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

What is a neural network again?

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGINTRODUCTION ON NEURAL NETWORKS AND DEEP LEARNING - PAGE 9

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 11

ℎ(𝑥𝑖; 𝜗)

𝜗
ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

ℎ1(𝑥𝑖; 𝜗)

ℎ2(𝑥𝑖; 𝜗)

ℎ3(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ5(𝑥𝑖; 𝜗)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

Forward connections
(Feedforward architecture)

Interweaved connections
(Directed Acyclic Graph
architecture- DAGNN)

Loopy connections
(Recurrent architecture, special care needed)

Functions

Functions are
implemented
as Modules

o A module is a building block for our network

o Each module is an object/function 𝑎 = ℎ(𝑥; 𝜃) that
◦ Contains trainable parameters (𝜃)

◦ Receives as an argument an input 𝑥

◦ And returns an output 𝑎 based on the activation function ℎ …

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation, the
output of a module should be stored

What is a module?

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 12

ℎ1(𝑥1; 𝜃1)

ℎ2(𝑥2; 𝜃2)

ℎ3(𝑥3; 𝜃3)

ℎ4(𝑥4; 𝜃4)

ℎ5(𝑥5; 𝜃5)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥2; 𝜃2)

ℎ5(𝑥5; 𝜃5)

o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

Anything goes or do special constraints exist?

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 13

o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝜗 , where 𝑎𝑙 = 𝑥𝑙+1(or 𝑥𝑙 = 𝑎𝑙−1)

o We need to know the precise function behind
each module ℎ𝑙(…)

o We start from the data input, e.g. a few images

o Then, we need to compute its module’s input
◦ It could be that the input is defined from other modules in

quite different parts of the network

o So, we compute modules activations with the right order
◦ Make sure that all the inputs are computed at the right time
◦ Then everything goes smoothly

Forward computations for neural networks

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 14

𝐿𝑜𝑠𝑠

𝑰𝒏𝒑𝒖𝒕Data:

ℎ1(𝑥1; 𝜃1)

ℎ2(𝑥2; 𝜃2)

ℎ3(𝑥3; 𝜃3)

ℎ4(𝑥4; 𝜃4)

ℎ5(𝑥5; 𝜃5)

ℎ2(𝑥2; 𝜃2)

ℎ5(𝑥5; 𝜃5)

o Simply compute the gradients of each module for our data
◦ We need to know the gradient formulation of each module
𝜕ℎ𝑙(𝑥𝑙; 𝜃𝑙) w.r.t. their inputs 𝑥𝑙 and parameters 𝜃𝑙

o We need the forward computations first
◦ Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

Backward computations for neural networks

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 15

𝒅𝑳𝒐𝒔𝒔(𝑰𝒏𝒑𝒖𝒕)Data:

𝑑ℎ1(𝑥1; 𝜃1)

𝑑ℎ2(𝑥2; 𝜃2)

𝑑ℎ3(𝑥3; 𝜃3)

𝑑ℎ4(𝑥4; 𝜃4)

𝑑ℎ5(𝑥5; 𝜃5)

𝑑ℎ2(𝑥2; 𝜃2)

𝑑ℎ5(𝑥5; 𝜃5)

o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

o To use any gradient descent based optimization (𝜃(𝑡+1) = 𝜃(𝑡+1) − 𝜂𝑡
𝜕ℒ

𝜕𝜃(𝑡)
) we

need the gradients
𝜕ℒ

𝜕𝜃𝑙
, 𝑙 = 1, … , 𝐿

o How to compute the gradients for such a complicated function enclosing other
functions, like 𝑎𝐿(…)?

Again, what is a neural network again?

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGINTRODUCTION ON NEURAL NETWORKS AND DEEP LEARNING - PAGE 16

o The function ℒ(𝑦, 𝑎𝐿) depends on 𝑎𝐿, which depends on 𝑎𝐿−1, which
depends on 𝑎𝐿−2, …, which depends on 𝑎𝑙, …, which depends on 𝑎2

o Chain rule for parameters of layer l

𝜕ℒ(𝑦, 𝑎𝐿)

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿
𝜕𝑎𝐿−1

∙
𝜕𝑎𝐿−1
𝜕𝑎𝐿−2

∙ … ∙
𝜕𝑎𝑙
𝜕𝜃𝑙

o In shorter, we can rewrite this as
𝜕ℒ(𝑦, 𝑎𝐿)

𝜕𝜃𝑙
=
𝜕ℒ

𝜕𝑎𝑙
∙ (
𝜕𝑎𝑙
𝜕𝜃𝑙

)𝑇

Backpropagation ⟺ Chain rule!!!

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 17

Gradient w.r.t. the module parameters

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

o
𝜕𝑓

𝜕𝑥
=

𝜕 sin(0.5𝑥2)

𝜕𝑥
=

𝜕 f(𝑔(𝑥))

𝜕𝑥
=, where 0.5𝑥2

o
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥
= 𝑥 ∙ cos(0.5𝑥2)

Chain rule in practice

LEARNING WITH NEURAL NETWORKS - PAGE 18UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING

o In
𝜕ℒ(𝑦,𝑎𝐿)

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙
𝜕𝑎𝑙

𝜕𝜃𝑙
, we need to also easily compute

𝜕ℒ

𝜕𝑎𝑙
. How?

o Chain rule again

𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿
𝜕𝑎𝐿−1

∙
𝜕𝑎𝐿−1
𝜕𝑎𝐿−2

∙ … ∙
𝜕𝑎𝑙+1
𝜕𝑎𝑙

o Remember, the output of a module is the input for the next one: 𝑎𝑙=𝑥𝑙+1

o In shorter, we can rewrite this as
𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝑙+1
∙
𝜕𝑎𝑙+1
𝜕𝑎𝑙

= (
𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

Backpropagation ⟺ Chain rule!!!

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 19

Recursive rule (good for us)!!! Gradient w.r.t. the module input

𝑎𝑙 = ℎ𝑙(𝑥𝑙; 𝜃𝑙)

𝑎𝑙+1 = ℎ𝑙+1(𝑥𝑙+1; 𝜃𝑙+1)

𝑥𝑙+1 = 𝑎𝑙

o Plenty of functions are computed element-wise
◦ 𝜎 𝑥 , tanh 𝑥 , exp(𝑥)

◦ Each output dimension depends only
on the respective input dimension

o Some functions, however, depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases for the
𝜕𝑎𝑙

𝜕𝑥𝑙
(or

𝜕𝑎𝑙

𝜕𝜃𝑙
) we compute the Jacobian matrix

Backpropagation for multivariate functions 𝑓(𝒙)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 20

𝑎 𝑥 = exp 𝒙 = exp
𝑥(1)

𝑥(2)

𝑥(3)
=

exp(𝑥(1))

exp(𝑥(2))

exp(𝑥(3))

=

𝑎(𝑥 1)

𝑎(𝑥(2))

𝑎(𝑥(3))

𝑎(𝑗) =
𝑒𝑥

(𝑗)

𝑒𝑥
(1)

+ 𝑒𝑥
(2)

+ 𝑒𝑥
(3)

The Jacobian

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 21

𝐽 𝑎 𝑥 =

𝜕𝑎 1

𝜕𝑥 1

𝜕𝑎 1

𝜕𝑥 2

𝜕𝑎 1

𝜕𝑥 3

𝜕𝑎 2

𝜕𝑥 1

𝜕𝑎 2

𝜕𝑥 2

𝜕𝑎 2

𝜕𝑥 3

o When 𝑎(𝑥) is 2 − d and depends on 3 variables, 𝑥(1), 𝑥(2), 𝑥(3)

o Plenty of functions are computed element-wise
◦ 𝜎 𝑥 , tanh 𝑥 , exp(𝑥)

◦ Each output dimension depends only
on the respective input dimension

o Some functions, however, depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases for the
𝜕𝑎𝑙

𝜕𝑥𝑙
(or

𝜕𝑎𝑙

𝜕𝜃𝑙
) we compute the Jacobian matrix

o Then,
𝜕ℒ

𝜕𝑎𝑙
= (

𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

Backpropagation for multivariate functions 𝑓(𝒙)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 22

𝑎 𝑥 = exp 𝒙 = exp
𝑥(1)

𝑥(2)

𝑥(3)
=

exp(𝑥(1))

exp(𝑥(2))

exp(𝑥(3))

=

𝑎(𝑥 1)

𝑎(𝑥(2))

𝑎(𝑥(3))

𝑎(𝑗) =
𝑒𝑥

(𝑗)

𝑒𝑥
(1)

+ 𝑒𝑥
(2)

+ 𝑒𝑥
(3)

o To make sure everything is done correctly “Dimension analysis”

o The dimensions of the gradient w.r.t. 𝜃𝑙 must be equal to the dimensions
of the respective weight 𝜃𝑙

dim
𝜕ℒ

𝜕𝑎𝑙
= dim 𝑎𝑙 and dim

𝜕ℒ

𝜕𝜃𝑙
= dim 𝜃𝑙

o E.g. for
𝜕ℒ

𝜕𝑎𝑙
= (

𝜕ℒ

𝜕𝑎𝑙+1
)𝑇∙

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1
, if dim 𝑎𝑙 = 𝑑𝑙, then it should be

[𝑑𝑙× 1] = [1 × 𝑑𝑙+1] ∙ [𝑑𝑙+1× 𝑑𝑙]

o E.g. for
𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝛼𝑙
∙ (

𝜕𝛼𝑙

𝜕𝜃𝑙
)Τ, if dim 𝜃𝑙 = 𝑑𝑙 × 𝑑𝑙−1, then it should be

[𝑑𝑙× 𝑑𝑙−1] = [𝑑𝑙× 1] ∙ [1 × 𝑑𝑙−1]

Dimension analysis

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 23

Backpropagation again

o Step 1. Compute forward propagations for all layers recursively
◦ Each input 𝑥𝑙 should be a row vector, each output 𝑎𝑙 should be a column vector

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1
𝑇 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

𝜕ℒ

𝜕𝑎𝑙
=

𝜕ℒ

𝜕𝑎𝑙+1

𝑇

∙
𝜕𝑎𝑙+1

𝜕𝑥𝑙+1
and

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙
𝜕𝑎𝑙

𝜕𝜃𝑙
◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train your

network
Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions [𝑑𝑙+1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙× 𝑑𝑙−1]

Vector with dimensions [𝑑𝑙× 1]

Vector with dimensions [1 × 𝑑𝑙−1]

o Layer 𝑙 − 1 has 15 neurons (𝑑𝑙−1 = 15), 𝑙 has 10 neurons (𝑑𝑙 = 10) and
𝑙 + 1 has 5 neurons (𝑑𝑙+1 = 5)

o My activation functions are 𝑎𝑙 = 𝑤𝑙𝑥𝑙 and 𝑎𝑙+1 = 𝑤𝑙+1𝑥𝑙+1

o The dimensionalities are (remember 𝑥𝑙 = 𝑎𝑙−1)
◦ 𝑎𝑙−1 → 15 × 1 , 𝑎𝑙 → 10 × 1 , 𝑎𝑙+1 → [5 × 1]

◦ 𝑥𝑙 → 15 × 1 , 𝑥𝑙+1 → 10 × 1

◦ 𝜃𝑙 → 10 × 15 ,𝑤𝑙+1 → 5 × 10

o The gradients are
◦
𝜕ℒ

𝜕𝑎𝑙
→ 1 × 5 ∙ 5 × 10 = 1 × 10

◦
𝜕ℒ

𝜕𝜃𝑙
→ 10 × 1 ∙ 1 × 15 = 10 × 15

Practical example and dimensionality analysis

Backpropagation visualization

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 26

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 27

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!!

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 28

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!!

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 29

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!!

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 30

𝑥1 𝑥2 𝑥3 𝑥4

ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 31

𝑥1 𝑥2 𝑥3 𝑥4

ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Backpropagation visualization at epoch (𝑡)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 32

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous
backpropagation step (Remember, recursive rule)

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 33

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example

𝑎1 = 𝜎(𝜃1𝑥1)

Store!!!

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 34

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝜃2𝑥2)
𝑎1 = 𝜎(𝜃1𝑥1)

Store!!!

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 35

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝐿 = 3, 𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

𝑎3 = 𝑦 − 𝑥3
2

𝑎1 = 𝜎(𝜃1𝑥1)

𝑎2 = 𝜎(𝜃2𝑥2)

Store!!!

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 36

𝑥1 𝑥2 𝑥3 𝑥4

ℒ
Backpropagation

𝑎3= ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝜃3

𝑎3 = ℒ 𝑦, 𝑥3 = ℎ3(𝑥3) = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 37

𝑥1 𝑥2 𝑥3 𝑥4

ℒ

Stored during forward computations

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝜃2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3
𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝑥3 = 𝑎2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)

𝜕𝑎2
𝜕𝜃2

= 𝑥2𝜎(𝜃2𝑥2)(1 − 𝜎(𝜃2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Backpropagation visualization at epoch (𝑡 + 1)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 38

𝑥1 𝑥2 𝑥3 𝑥4

ℒ𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝜃1

𝜃2

𝜃3 = ∅

Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3
2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝜃2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝜃2𝑥2)
𝑥2 = 𝑎1

𝜕𝑎2
𝜕𝑎1

=
𝜕𝑎2
𝜕𝑥2

= 𝜃2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
𝑥1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝜃1𝑥1)

𝜕𝑎1
𝜕𝜃1

= 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous
backpropagation step (Remember, recursive rule)

o For classification use cross-entropy loss

o Use Stochastic Gradient Descent on mini-batches

o Shuffle training examples at each new epoch

o Normalize input variables to 𝜇, 𝜎2 = (0,1)

Some practical tricks of the trade

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 39

Everything is a
module

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 40

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 41

ℎ(𝑥𝑖; 𝜗)

𝜗
ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

ℎ1(𝑥𝑖; 𝜗)

ℎ2(𝑥𝑖; 𝜗)

ℎ3(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ5(𝑥𝑖; 𝜗)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝜗)

ℎ4(𝑥𝑖; 𝜗)

ℎ
1 (𝑥

𝑖 ;𝜗
)

ℎ
2 (𝑥

𝑖 ;𝜗
)

ℎ
3 (𝑥

𝑖 ;𝜗
)

ℎ
4 (𝑥

𝑖 ;𝜗
)

ℎ
5 (𝑥

𝑖 ;𝜗
)

𝐿
𝑜
𝑠𝑠

𝐼𝑛
𝑝
𝑢
𝑡

Forward connections
(Feedforward architecture)

Interweaved connections
(Directed Acyclic Graph
architecture- DAGNN)

Loopy connections
(Recurrent architecture, special care needed)

Functions

Functions are
implemented
as Modules

o Activation function 𝑎 = 𝜃𝑥

o Gradient with respect to the input
𝜕𝑎

𝜕𝑥
= 𝜃

o Gradient with respect to the parameters
𝜕𝑎

𝜕𝜃
= 𝑥

Linear module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 42

o Activation function 𝑎 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Gradient wrt the input
𝜕𝑎

𝜕𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥))

o Gradient wrt the input
𝜕𝜎 𝜃𝑥

𝜕𝑥
= 𝜃 ∙ 𝜎 𝜃𝑥 1 − 𝜎 𝜃𝑥

o Gradient wrt the parameters
𝜕𝜎 𝜃𝑥

𝜕𝜃
= 𝑥 ∙ 𝜎(𝜃𝑥)(1 − 𝜎(𝜃𝑥))

o Output can be interpreted as probability

o Always bounds the outputs between 0 and 1, so the network cannot overshoot

o Gradients can be small in deep networks because we always multiply with <1

o The gradients at the tails are flat to 0, hence no serious updates
◦ Overconfident, but not necessarily “correct”, neurons get stuck

Sigmoid module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 43

o We often want to apply a non-linearity 𝜎(…) on top of an activation 𝜃𝑥
𝑎 = 𝜎(𝜃𝑥)

o This way we end up with quite complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

o We now have to perform two backpropagation steps instead of one

o But now our gradients are simpler
◦ The complications happen when non-linear functions are parametric
◦ We avoid taking the extra gradients w.r.t. parameters inside a non-linearity
◦ This is usually how networks are implemented in Torch

Simplifying backpropagation equations

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 44

𝑎1 = 𝜃𝑥 𝑎2 = 𝜎(𝑎1)

o Activation function 𝑎 = 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

o Gradient with respect to the input
𝜕𝑎

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥)

o Similar to sigmoid, but with different output range
◦ [−1,+1] instead of 0,+1

◦ Stronger gradients, because data is centered
around 0 (not 0.5)

◦ Less bias to hidden layer neurons as now outputs
can be both positive and negative (more likely
to have zero mean in the end)

Tanh module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 45

o Activation function 𝑎(𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥(𝑘)) =
𝑒𝑥

(𝑘)

 𝑗 𝑒
𝑥(𝑗)

◦ This activation function is mostly used for making decisions in a form of a probability

◦ 𝑘=1
𝐾 𝑎(𝑘) = 1 for 𝐾 classes

o Exploiting the fact that 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏, we usually compute

𝑎(𝑘) =
𝑒𝑥

(𝑘)−𝜇

 𝑗 𝑒
𝑥(𝑗)−𝜇

, 𝜇 = max𝑘 𝑥
(𝑘) as

𝑒𝑥
(𝑘)−𝜇

 𝑗 𝑒
𝑥(𝑗)−𝜇

=
𝑒𝜇𝑒𝑥

(𝑘)

𝑒𝜇 𝑗 𝑒
𝑥(𝑗)

=
𝑒𝑥

(𝑘)

 𝑗 𝑒
𝑥(𝑗)

◦ This provides better stability because avoids exponentianting large numbers

Softmax module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 46

o Activation function 𝑎(𝑥) = 0.5 𝑦 − 𝑥 2

◦ Mostly used to measure the loss in regression tasks

o Gradient with respect to the input
𝜕𝑎

𝜕𝑥
= 𝑥 − 𝑦

Euclidean loss module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 47

o Activation function 𝑎 𝑥 = − 𝑘=1
𝐾 𝑦(𝑘) log 𝑥(𝑘), 𝑦(𝑘)= {0, 1}

o Gradient with respect to the input
𝜕𝑎

𝜕𝑥(𝑘)
= −

1

𝑥(𝑘)

o The cross-entropy loss is the most popular classification losses for
classifiers that output probabilities (not SVM)

o The cross-entropy loss couples well with certain input activations, such as
the softmax module or the sigmoid module
◦ Often the gradients of the cross-entropy loss are computed in conjunction with the

activation function from the previous layer

o Generalization of logistic regression for more than 2 outputs

Cross-entropy loss (log-loss or log-likelihood) module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGOPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 48

o There are many more modules that are quite often used in Deep Learning

o Convolutional filter modules

o Rectified Linear Unit (ReLU) module

o Parametric ReLU module

o Regularization modules
◦ Dropout

o Normalization modules
◦ ℓ2-normalization

o Loss modules
◦ Hinge loss

o and others, which we are going to discuss later in the course

More specific modules for later

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 49

Make your own
module

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 50

o Everything can be a module, given some ground rules

o How to make our own module?
◦ Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

𝜕𝑎(𝑥;𝜃)

𝜕𝑥
and

𝜕𝑎(𝑥;𝜃)

𝜕𝜃

New modules

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 51

o As everything can be a module, a module of modules could also be a
module
◦ In fact, [Lin2014] proposed a Network-in-Network architecture

o We can therefore make new building blocks as we please, if we expect
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

A module of modules

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 52

o Assume we want to build an RBF module

𝑎 =
𝑗
𝑢𝑗 exp(−𝛽𝑗(𝑥 − 𝑤𝑗)

2)

o To avoid computing the full derivations, we can decompose this module
into a cascade of modules

𝑎1 = (𝑥 − 𝑤)2→ 𝑎2 = exp −𝛽𝑎1 → 𝑎3 = 𝑢𝑎2 → 𝑎4 =𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, …)

o An RBF module is good for regression problems, in which cases it is
followed by a Euclidean loss module

o The Gaussian centers 𝑤𝑗 can be initialized externally, e.g. with k-means

Radial Basis Function (RBF) Network module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 53

An RBF visually

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 54

𝑎1 = (𝑥 − 𝑤)2→ 𝑎2 = exp −𝛽𝑎1 → 𝑎3 = 𝑢𝑎2 → 𝑎4 =𝑝𝑙𝑢𝑠(… , 𝑎3
𝑗
, …)

𝛼1
(3)

= (𝑥 − 𝑤1)
2

𝛼1
(2)

= (𝑥 − 𝑤1)
2𝛼1

(1)
= (𝑥 − 𝑤1)

2

𝛼2
(1)

= exp(−𝛽1𝛼1
(1)
) 𝛼2

(2)
= exp(−𝛽1𝛼1

(2)
) 𝛼2

(3)
= exp(−𝛽1𝛼1

(3)
)

𝛼3
(1)

= 𝑢1𝛼2
(1)

𝛼3
(2)

= 𝑢2𝛼2
(2) 𝛼3

(3)
= 𝑢3𝛼2

(3)

𝑎4 = 𝑝𝑙𝑢𝑠(𝑎3)

𝑎5 = 𝑦 − 𝑎4
2

RBF module

o The most dangerous part when implementing new modules is to get your
gradients right
◦ The math might be wrong, the code might be wrong, …

o Check your module with gradient checks.
◦ Compare your explicit gradient with computational gradient 𝑔 𝜃(𝑖) ≈

𝑎 𝜃+𝜀 −𝑎 𝜃−𝜀

2𝜀

Δ 𝜃(𝑖) =
𝜕𝑎(𝑥; 𝜃(𝑖))

𝜕𝜃(𝑖)
− 𝑔 𝜃(𝑖)

2

◦ If result is smaller than 𝛿 ∈ (10−4, 10−7), then your gradients are good

o Perturb one parameter 𝜃(𝑖) at a time, 𝜃(𝑖) + 휀, then check its Δ 𝜃(𝑖)

◦ Do not perturb the whole parameter vector 𝜃 + 휀, it will give wrong results

o Good practice: check your network gradients too

Gradient check

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 55

Original gradient definition:
𝑑𝑓(𝑥)

𝑑𝑥
= limℎ→0

𝑓(𝑥+ℎ)

Δℎ

Checking your gradients in practice (for a module)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 56

Import our module

Call the Jacobian module , which can check

the Jacobian matrix

Generate an instance for our

new module

Check the Jacobians for our

new module

Checking your gradients in practice (for a network)

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 57

To make it faster, few only

training points

To make it faster, sample few only
dimensions. Sample carefully

though, when testing whole network

o What about trigonometric modules

o Or polynomial modules

o Or new loss modules

o In the Lab Assignment 2 you will have the chance to think of new modules

Come up with new modules

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 58

Implementation of
basic networks and
modules in Torch

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 59

o For a new module you must re-implement two functions in Torch
◦ One to compute the result of the forward propagation for the module
◦ And one computing the gradient of the loss w.r.t. the input

𝜕ℒ(𝑎𝐿 , 𝑦)

𝜕𝑥
=

𝜕ℒ

𝜕𝑎𝑎𝑏𝑜𝑣𝑒
∙
𝜕𝑎

𝜕𝑥
◦ Of course you can implement other helper functions too

o If, and only if, your module is parametric, namely has trainable parameters
◦ You must also implement a function for the gradient of the loss w.r.t. the parameters

𝜕ℒ(𝑎𝐿 , 𝑦)

𝜕𝜃
=
𝜕ℒ

𝜕𝑎
∙
𝜕𝑎

𝜕𝜃

o If your trainable parameters are boil down to a linear product 𝜃x, you can
simply cascade this module and avoid taking an extra gradient

𝑎1 = 𝜃x → 𝑎2 = 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑎1)

Building a module

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 60

mymodule.updateGradParameters(…)

mymodule.updateGradInput(…)

mymodule.updateOutput(…)

Make a module in Torch

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLINGLEARNING WITH NEURAL NETWORKS - PAGE 61

Probably you will need to define some

class variables

The forward propagation function

The backward propagation function

wrt the input of the module

The backward propagation function

wrt the parameters of the module

If module is not parametric, you don’t

need to implement this function

Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

INTRODUCTION ON NEURAL NETWORKS AND
DEEP LEARNING - PAGE 62

o We introduced how does the machine learning
paradigm for neural networks

o We described the backpropagation algorithm,
which is the backbone for neural network
training

o We explained the neural network in terms of
modular architecture and described various
possible architectures

o We described different neural network modules,
as well as how to implement and how to check
your own module

Next lecture

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

INTRODUCTION ON NEURAL NETWORKS AND
DEEP LEARNING - PAGE 63

o We are going to see how to use
backpropagation to optimize our neural network

o We are going to review different methods and
algorithms for optimizing our neural network,
especially our deep networks, better

o We are going to revisit different learning
paradigms, e.g. what loss functions should be
used for different machine learning tasks

o And if we have time, some more advanced
modules

