

Lecture Overview

o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network
o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module

INTRODUCTION ON DEEP LEARNING AND NEURAL NETWORKS - PAGE 2 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

The Machine
Learning Paradigm

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 3

Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions ., Score/Prediction/ Output Objective/Loss/Cost/Energy
0 ® qQ qQ
Sl .
e
. &
ge v/
A

AN
i ___yi_)_

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 4 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

O Eva|uate redictions Modlel Scove/Prediction/Output
() [
L\
: <
Arge // }
.%\,

Objective/Loss/Cost/Bunergy

(i

1 lay
T Vi)

2

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 5

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Optimization through Gradient Descent

o As with many model, we optimize our neural petwork with Gradient Descent
g(t+l) — g(t) — ,75

o The most important component in this formulation is the gradient

o The backward computations return the gradients

o How are the backward computations done in a neural network?

e
LEARNING WITH NEURAL NETWORKS - PAGE 6 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 8

What is a neural network again?

o A family of parametric, non-linear and hierarchical
, Which are massively optimized with stochastic gradient descent
to encode domain knowledge, i.e. domain invariances, stationarity.

O aL(xi 31,...,L) = hy (hy-1(...h1(x,01),0,_1), 01)

o x:input, 0;: parameters for layer |, a; = h;(x, 8;): (non-)linear function

o Given training corpus {X, Y} find optimal parameters

0" < argming Z {(y, ClL(X; 01,..L))
(x,y)S(X,Y)

INTRODUCTION ON NEURAL NETWORKS AND DEEP LEARNING - PAGE 9 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex Forwardl connections
(Feedforward architecture)

‘.
.
.
.
.
.
.
.
IS
IS
.
‘e
.

Functions are ==
o (Blreeted. igelice i Lm'PLemev\,ted ﬂ

.

as Modules e

.
os®
.®
.®
R
v
«®

LoopY conmnectlons
Input (Recurvent architecture, spectal cave needed)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 11 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

What is a module?

o A module is a building block for our network

o Each module is an object/function a = h(x;) that
o Contains trainable parameters (0)
o Receives as an argument an input x
> And returns an output a based on the activation function h(...)

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation, the
output of a module should be stored

Input

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 12 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Anything goes or do special constraints exist?

o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 13 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Forward computations for neural networks

o Simply compute the activation of each module in the network

a; = hy(x;;9), where a; = xy44(0r x; = a;_1)

o We need to know the precise function behind
each module hy(...)

o We start from the data input, e.g. a few images

o Then, we need to compute its module’s input

° |t could be that the input is defined from other modules in
quite different parts of the network

o So, we compute modules activations with the right order
> Make sure that all the inputs are computed at the right time
> Then everything goes smoothly

bata: Input

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 14 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backward computations for neural networks

Data:
o Simply compute the gradients of each module for our data

> We need to know the gradient formulation of each module
dh;(x;; 0;) w.r.t. their inputs x; and parameters 6;

o We need the forward computations first
° Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 15 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Again, what is a neural network again?

O aL(xi 91,...,L) =hy, (hp—1(...h1(x,01),8,_1), 61)

o x:input, 8;: parameters for layer |, a; = h;(x, 0;): (non-)linear function

o Given training corpus {X, Y} find optimal parameters

0* « arg ming 2 2(y,a,(x; 01,1))
(xy)S(X)Y)

o To use any gradient descent based optimization (9(+1) = g(t+1) —), azl(;t))
need the gradients N

oL JA=1,..,L

00,’

o How to compute the gradients for such a complicated function enclosing other
functions, like a; (...)?

we

INTRODUCTION ON NEURAL NETWORKS AND DEEP LEARNING - PAGE 16

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation < Chain rule!!!

o The function L(y, a;) depends on a;, which depends on a;_4, which
depends on a; _,, ..., which depends on ay, ..., which depends on a,

o Chain rule for parameters of layer |

aL(yr aL)
00,
o In shorter, we can rewrite this as Gradient w.rt. the module parameters
091 ﬁal Hl

a, (x; 01..L) =hy (hy—1(..hy(x,01),0,_1), L)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 17 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Chain rule in practice

af _ dsin(o. 5x2) df(g(x)

0 = = — = , where 0.5x?
of _ 0fdg _ 2
O 3% "agax % cos(0.5x7)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING LEARNING WITH NEURAL NETWORKS - PAGE 18

Backpropagation < Chain rule!!!

0L(y,ar) da; : 0L
N we heed to also easily compute —. How?
. 691 681’ y P aa

o Chain rule again

0L dL Jda; aaL 1 da;4q
daq, 6aL ‘da,_, da,_, iaali

N

o Remember, the output of a module is the input for the next one: a;=x;41

o In shorter, we can rewrite_this as J—
0a;+1” \0Xi14+1/e

Recursive rule (good for us)!! vaodlent wor.t. the module lnput

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 19 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation for multivariate functions f (x)

o Plenty of functions are computed element-wise
> g(x),tanh(x), exp(x)

> Each output dimension depends only ~ () = exp(x) = exP(
on the respective input dimension

x@| | = [expx®) | = [ax®)

me expe®)] [aGr®)
x 3 exp (x(3))_ _a(x(3))_

o Some functions, however, depend on multiple input variables
o Softmax! q0) =

e x)

ex(l) 4+ ex(z) 4+ ex(3)
o Each output dimension depends on multiple input dimensions

da da . .
o For these cases for the a_xl (or a_el) we compute the Jacobian matrix
l l

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 20 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

he Jacobian

o When a(x) is 2 — d and depends on 3 variables, x(1), x(2), x(3)

0aV 9aV 9gqV

oxD 9x(2) 9x(3)
J(a(0) = 0a'? 9a? 0a®

dx(L 9x(@ 9gx3)

e
LEARNING WITH NEURAL NETWORKS - PAGE 21 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation for multivariate functions f (x)

o Plenty of functions are computed element-wise
> g(x),tanh(x), exp(x)

> Each output dimension depends only ~ () = exp(x) = exP(
on the respective input dimension

x@| | = [expx®) | = [ax®)

me expe®)] [aGr®)
x 3 exp (x(3))_ _a(x(3))_

o Some functions, however, depend on multiple input variables
o Softmax! q0) =

e x)

ex(l) 4+ ex(z) 4+ ex(3)
o Each output dimension depends on multiple input dimensions

da da . .
o For these cases for the a_xl (or a_el) we compute the Jacobian matrix
l l
oL oL da
o Then,— = (T,

‘da, 0aj+q 0X1+1

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 22 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Dimension analysis

o To make sure everything is done correctly = “Dimension analysis”

o The dimensions of the gradient w.r.t. 8; must be equal to the dimensions
of the respective weight 6,

oL oL .
dim (aal) dim(a;) and dim (69) = dim(6;)
0L T, aal+1
o E.g. for—aal (6a1+1) Sxres if dim(a;) = d;, then it should be
[dix 1] = [1 X dyyq] - [di41X di]
0L aL aal T
o E.g. for — = () if dim(6;) = d; X d;_q, then it should be
691 aal

[dlx di—1] = [dix 1] - [1 X dj_4]

e
LEARNING WITH NEURAL NETWORKS - PAGE 23 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation again

o Step 1. Compute forward propagations for all layers recursively
o Each input x; should be a row vector, each output aq; should be a column vector

a; = hy(x;) and (x4)" = q

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

ar (oL \' day,
da; d0aj+1
ions wh possib

0L 0L Oda
and | =—=—-
faxlﬂ ?91 Pal 691 X
to avoid redundant operations

°c Cache compu

o Step 3. Use the gradients o

Y ith Stochasiic Gradient Descexnd to train your
l

Vector with dimensions [djqX 1] Matrix with dimenstons/[diX di-a] |00 00 it dimensions [1%xd_4]

vector with dimensions [dyx 1] vector with dimensions [d;X 1]

_Jacobian matrix with dimensions [dj41X d;]

Practical example and dimensionality analysis

o Layer | — 1 has 15 neurons (d;_1y = 15), [has 10 neurons (d; = 10) and
[+ 1 has 5 neurons (d;41 = 5)

o My activation functions are a; = wyx; and a;.1 = Wy41X141

oaL

da
oL

a9,

Backpropagation visualization

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 26 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Forward propaaat’wws

Compute anol stove ay= hq(xq)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 27 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Forward pmpaaatiows

Compute anol store dy= hy(x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 28 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Forward pmpaaatiom

EMWLPM
a; = o0(61xy1)
a, = o(6;,x;)

(a5)= lly = x3I?

Store!ll

Compute anol store az= h3z(x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 29 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Eaal@pmpaaatiow Example
oL az; = L(y,x3) = h3(x3) = 0.5 ||y — x3||2

Py € Dlrect computation aL
_odaz P A
_ 9%, (y — x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 30 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Backpropagation
0L 0L OJdas
da, 0das Oa,
0L 0L Oda,
06, 0da, 06,

Example
L(y,x3) = 0.5 |ly — x3]|?

X3 = Az
a, = a(6,x3)

0L 0L

da, Oxs —(y — x3)

do(x) = o(x)(1 - oa(x))
da,
=5 = %20(02x2)(1 — 0(02x3))

20,

9
90, —(y — x3)

0L

602 aaz

Xp0,(1 —ay)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 31

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t)

Egamp_Le

Backpropagation L(y,a3) = 0.5 ||y — as]|?
oL 9L oda, 2 2(92’@

= . 2 — 1
aal aaz aal a, = O-(Hlxl)
oL 0L Jday da, 2

—) = =60,a,(1—a
091 aal 691 gal axz 2 2(2)

aq
0_91 =x10:(1—a,)

Computed from the exact previous
backpropagation step (Rewember, vecursive rule)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 32 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Forward propaaat’wws

Compute anol stove ay= hq(xq)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 33 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Forward pmpaaatiows

Compute anol store dy= hy(x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 34 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Forward pmpaaatiom

EMWLPM
a; = o0(61xy1)
a, = o(6;,x;)

(a5)= lly = x3I?

Store!ll

Compute anol store az= h3z(x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 35 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Eaal@pmpaaatiow Example
oL az; = L(y,x3) = h3(x3) = 0.5 ||y — x3||2

Py < Dlyrect computation oL
| & 9% (y — x3)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 36 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Backpropagation
0L 0L OJdas
da, 0das Oa,
0L 0L Oda,
06, 0da, 06,

Example
L(y,x3) = 0.5 ly — x5]|?

X3 = Qay
a; = 0(02x2)

0L 0L

da, Oxs —(y — x3)

do(x) = o(x)(1 - oa(x))
da,
90- = Xx0(0,x2)(1 — 0(02x3))
2

aaz
0L

()

—(y —x3)

20,

da, Xp0,(1 —ay)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 37

UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Backpropagation visualization at epoch (t + 1)

Example
Backpropagation L(y,a3) =05y — a3||2
oL _ 3L da, g‘ézgfezx”
da; 0da, dag a, = o(0,x1)
oL _ oL . da, da, _ 94z _ 0,a,(1 — a,)
96, 0da, 06, ggi 0x;

— =x;0:(1—a,)

Computed from the exact previous
backpropagation step (Rewember, vecursive rule)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 38 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Some practical tricks of the trade

o For classification use cross-entropy loss
o Use Stochastic Gradient Descent on mini-batches
o Shuffle training examples at each new epoch

o Normalize input variables to (u, %) = (0,1)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 39 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Everything is a
module

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 40

Neural network models

o A neural network model is a series of hierarchically connected functions

!

o This hierarchies can be very, very complex Forwardl connections
(Feedforward architecture)

‘.
.
.
.
.
.
.
.
IS
IS
.
‘e
.

Functions are ==

metemewteol
as Moolules

.

.
os®
.®
.®
R
v
«®

Loopy conmections
Input (Recurvent architecture, spectal cave needed)

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 41 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Linear module

o Activation function a = Ox

o Gradient with respect to the mput — =0

dx
da
o Gradient with respect to the parameters — g = X
3 . - T - ——
— a=#éx
21 — dajdr |-
ok
S|
=3 5 —4 =2 0 2 4 6

PAGE 42 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE -

10

Sigmoid module — =

1S — dafdr

06
o Activation function a = g(x) = 1_x
; 1+e o
o Gradient wrt the input i =od(x)(1—0(x))

do(0x) far \

——=0- a(0x)(1 — a(gx)) .
209 — - 0(Ox)(1 = 0 (B))
Output can be interpreted as probability

®
®
o Always bounds the outputs between 0 and 1, so the network cannot overshoot
®

o Gradient wrt the input

Gradient wrt the parameters

Gradients can be small in deep networks because we always multiply with <1

o The gradients at the tails are flat to 0, hence no serious updates
o Qverconfident, but not necessarily “correct”, neurons get stuck

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 43 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Simplifying backpropagation equations

o We often want to apply a non-linearity a(...) on top of an activation 6x
a=o(fx)

o This way we end up with quite complicated backpropagation equations
o Since everything is a module, we can decompose this to 2 modules

a, = 0x —a, =ad(aq)
o We now have to perform two backpropagation steps instead of one

o But now our gradients are simpler
> The complications happen when non-linear functions are parametric
> We avoid taking the extra gradients w.r.t. parameters inside a non-linearity
° This is usually how networks are implemented in Torch

LEARNING WITH NEURAL NETWORKS - PAGE 44 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

anh module

L . eX—e™*
o Activation function a = tanh(x) = ex+e‘x
o Gradient with respect to the input a = 1 — tanh?(x)

o Similar to sigmoid, but with different output range
o [—1,+1] instead of [0, +1]

o Stronger gradients, because data is centered 0s |
around O (not 0.5)

° Less bias to hidden layer neurons as now outputsoof
can be both positive and negative (more likely
to have zero mean in the end) s |

— a=tan hlz.':}

— da/dz

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 45 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Softmax module

px (O

Y, ox()
° This activation function is mostly used for making decisions in a form of a probability
o YK _al®) =1 for K classes

o Activation function a®) = Softmax(x(k)) —

a+b b

, we usually compute
xR %0

o Exploiting the fact that e = e%e

))

e

ak) = , 1 = max;, x5 as

5 exD-u 5 exD-u ~ Lu 5 ex0) - 5 ex0)

> This provides better stability because avoids exponentianting large numbers

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 46 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Euclidean loss module

o Activation function a(x) = 0.5 ||y — x||?
> Mostly used to measure the loss in regression tasks

: : : 0
o Gradient with respect to the mputa—z =X—Y

25 T L] 1 1 1 i

— a=|lz— :.t!||2
20+
— da/dr

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 47 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Cross-entropy loss (log-loss or log-likelihood) module

o Activation function a(x) = = YX_, y®) Jogx), y) =10, 1}

da__ 1
ox®) — x®

o The cross-entropy loss is the most popular classification losses for
classifiers that output probabilities (not SVM)

o Gradient with respect to the input

o The cross-entropy loss couples well with certain input activations, such as
the softmax module or the sigmoid module

o Often the gradients of the cross-entropy loss are computed in conjunction with the
activation function from the previous layer

o Generalization of logistic regression for more than 2 outputs

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 48 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

More specific modules for later

o There are many more modules that are quite often used in Deep Learning
o Convolutional filter modules

o Rectified Linear Unit (ReLU) module

o Parametric ReLU module

®

Regularization modules
° Dropout

o Normalization modules
o £5-normalization

o Loss modules
> Hinge loss

o and others, which we are going to discuss later in the course

LEARNING WITH NEURAL NETWORKS - PAGE 49 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Make your own
module

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

OPTIMIZING NEURAL NETWORKS IN THEORY
AND IN PRACTICE - PAGE 50

New modules

o Everything can be a module, given some ground rules

o How to make our own module?
o Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

da(x;0) da(x;0)
0x and 00

LEARNING WITH NEURAL NETWORKS - PAGE 51 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

A module of modules

o As everything can be a module, a module of modules could also be a
module
° |n fact, [Lin2014] proposed a Network-in-Network architecture

o We can therefore make new building blocks as we please, if we expect
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

LEARNING WITH NEURAL NETWORKS - PAGE 52 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Radial Basis Function (RBF) Network module

o Assume we want to build an RBF module

a=) wexp(—f;(x—w)?)

J

o To avoid computing the full derivations, we can decompose this module

into a cascade of modules
a; = (x —w)?- a, = exp(—pay) = az; = ua, - a, =plus(...,a§j),)

o An RBF module is good for regression problems, in which cases it is
followed by a Euclidean loss module

o The Gaussian centers w; can be initialized externally, e.g. with k-means

e
LEARNING WITH NEURAL NETWORKS - PAGE 53 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

An RBF visually

as = |ly — a,ll”

RBF module ‘

a; = (x —w)?-> a, = exp(—fa;) > az =ua, - ay =plus(...,a§j),)

LEARNING WITH NEURAL NETWORKS - PAGE 54 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Gradient check

arx) _ s f(x+h)
P Y

odules Is to get your

Oviginal gradient definition:
o The most dangerous part when implementing ne
gradients right
°c The math might be wrong, the code might be wrong, ...

o Check your module with gradient checks.
> Compare your explicit gradient with computational gradient g(H(i)) ~

. da(x; 6M) .
A(Q(l)) — 0 g(g(l))
> If result is smaller than § € (107%,10~7), then your gradients are good

o Perturb one parameter 0 at atime, 8 + ¢, then check its A(H(i))
> Do not perturb the whole parameter vector 8 + ¢, it will give wrong results

a(0+e)—a(f—¢)
2&

o Good practice: check your network gradients too

LEARNING WITH NEURAL NETWORKS - PAGE 55 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Checking your gradients in practice (for a module)

require 'torch’
require 'nn’
require 'MyModules/MySin'

—

precision le-5
jac nn.Jacobian

input torch.Tensor():ones(2, 1}
module nn.MySin(3, 2)

err jac.testJacobian(module, input)
print('==> Error: ' err)
err<precision
print('==> The module is OK'")

print('==> The error too large, incorrect implementation')

LEARNING WITH NEURAL NETWORKS - PAGE 56 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Checking your gradients in practice (for a networ

mymodel reguire 'mymodel’
torch.manualSeed(1)
torch. setdefaulttensortype(' torch.DoubleTensor')
precision :
data = generate fake data(l)
model, criterion = define model2{4, 5, 3)
checkgrad|f, g. x, eps) parameLer >, ~2radParameters = model:getParameters()
T (x)
grad = gix)
eps = Eeps le--
grad est = torch/DoubleTensor{grati:size()) c (%]
i =1, grad:size(l) ;
¥orig ¥x[1i]
grad est[i] err, grad, grad est checkgrad(f, g, parameters)
L e ')

rint{'=== Error per dimension:

E
E
diff print{torch.cat{grad, grad est, 2})
diff, grad. nrad est TG =222z 22=C '
print{'=== Total error: ' err)
L "
generate fake data(n)
data = {} err=precision
data.inpuis-=-torchoraman(. . .) print{'== The model is 0K')
data.targets = torch.rand{n):mul{3):add{1):floor()
data print{'=== The error too large, something is wrong...')

LEARNING WITH NEURAL NETWORKS - PAGE 57 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Come up with new modules

o What about trigonometric modules
o Or polynomial modules
o Or new loss modules

o In the Lab Assignment 2 you will have the chance to think of new modules

LEARNING WITH NEURAL NETWORKS - PAGE 58 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Building a module

o For a new module you must re-implement two functions in Torch
> One to compute the result of the forward propagation for the module mymodule.updateOutput(..)
> And one computing the gradient of the loss w.r.t. the input

dL(a;,y) 0L da

dx 0a,pope 0X
> Of course you can implement other helper functions too

mymodule.updateGradInput(...)

o If, and only if, your module is parametric, namely has trainable parameters
> You must also implement a function for the gradient of the loss w.r.t. the parameters

dL(a,,y) 0L Oa
09 da 00

o If your trainable parameters are boil down to a linear product 8x, you can
simply cascade this module and avoid taking an extra gradient

a, = 0x - a, = nonlinear(a,)

LEARNING WITH NEURAL NETWORKS - PAGE 60 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

mymodule.updateGradParameters(...)

Make a module in Torch

MySin, Parent = torch.class('nn.MySin', 'nn.Module')

ySin: init(
Parent. init(self}
self.clasvarl
self.output
self.gradInput
self.gradweight

- ==

P -
3 Ipdatel

Self.uu{&;t.

self.output

ySir :updateGradInput(
self.gradInput
self.gradInput

MySin:accGradParameters(
self.gradweiqht

LEARNING WITH NEURAL NETWORKS - PAGE 61 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING

Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

INTRODUCTION ON NEURAL NETWORKS AND
DEEP LEARNING - PAGE 62

o We introduced how does the machine learning
paradigm for neural networks

o We described the backpropagation algorithm,
which is the backbone for neural network
training

o We explained the neural network in terms of
modular architecture and described various
possible architectures

o We described different neural network modules,
as well as how to implement and how to check
your own module

Next lecture

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

INTRODUCTION ON NEURAL NETWORKS AND
DEEP LEARNING - PAGE 63

o We are going to see how to use
backpropagation to optimize our neural network

o We are going to review different methods and
algorithms for optimizing our neural network,
especially our deep networks, better

o We are going to revisit different learning
paradigms, e.g. what loss functions should be
used for different machine learning tasks

o And if we have time, some more advanced
modules

