


Previous lecture

o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network
o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module
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Lecture overview

o How to defining our model and optimize it in practice
o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices
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Deeper into
Neural Networks &
Deep Neural Nets
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.



A Neural/Deep Network in a nutshell

1. The Neural Network
aj, (x; 01..L ) =hy (hy—1(...h1(x,01),0,-1),0;,)

2. Learning by minimizing empirical ervor

0" < argming z L(y, aL(X; 01,1 ))
(xY)S(XY)

3. Optimizing with Gradient Descend based wmethods
O+ = 9) — .V, L
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1. The Neural Network
a, (xi 91,...,L ) = hy (hL—1(--- hq (x, 91); 9L—1); eL)

SGD vs GD 2. Learning by minimizing empirical ervor

0" < argming Z L(y, ClL(x; 01,..L ))
(x,y)E(X)Y)

3. Optimizing with Gradient Descend based wmethods
O+ =9 — .V, L
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Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

T

0L da 0L oL oL ,da
e l+1 . and — . ( l)T
aal 6xl+1 6al+1 691 6al 691

o Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients %é? with Stochastic Gradient Descend to train your
l

network
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Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

T

0L da 0L oL oL ,da
e l+1 . and — . ( l)T
aal 6xl+1 6al+1 691 6al 691

o Cache computations whep possible to avoid redundant operations

o Step 3. Use/the gradients %é? with Stochastic Gradient Descend to train your
l

network
vector with dimensions [dyX 1]

vector with dimensions [dyyqX 1]

acoblan watrix with dimensions [d;4qX d;]
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Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

T
0L da 0L 0L 0L da
e l+1 . and — . ( l)T
da; X141 d0aj+q d0; da; ~00,”
o Cache computations whenp possible to avoid redundant operations

o Step 3. Use/the gradients %é? with Stochastiq Gradient Descexd to train your
l

network Veetor with dimensions [1 X d;_4]
vector with dimensions [dyX 1]

Vector with dimensions [d;X 1]

vector with dimensions [dyyqX 1]

Matrix with dimenstons [d;X d;_4]

acoblan watrix with dimensions [d;4qX d;]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 9



Practical example and dimensionality analysis

o Layer | — 1 has 15 neurons (d;_1y = 15), [ has 10 neurons (d; = 10) and
[ + 1 has 5 neurons (d;41 = 5)

o My activation functions are a; = wyx; and a;.1 = Wy41X141

o The dimensionalities are (remember x; = a;_4)
ca;_, — [15%x 1], a; - [10x 1], a;4; — [5 X 1]
ox; - [15%x1], x;4; —[10x 1]

9, —-|10x15],w;;; — [5 % 10]

o The gradients are
22 L10%x5]-[5% 1] = [10 x 1]

da;
- [10 x 1]-[1 x 15] = [10 x 15]

oL
90,

o
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Practical example and dimensionality analysis

o Layer | — 1 has 15 neurons (d;_1y = 15), [ has 10 neurons (d; = 10) and
[ + 1 has 5 neurons (d;41 = 5)

o My activation functions are a; = wyx; and a;.1 = Wy41X141

cqp_1 ~ [15 % 1], q
cx; > [15 X 1], x744
© Hl — [10 X 15]!Wl+1 — [5 X O]

o The gradients are
. 9L —>[10><5]-[5><1]
aal
g‘;l 510 x 1] - [1 x 15] = [10 x 15]

o
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Practical example and dimensionality analysis

o Layer | — 1 has 15 neurons (d;_1y = 15), [ has 10 neurons (d; = 10) and
[ + 1 has 5 neurons (d;41 = 5)

o My activation functions are a; = wyx; and a;.1 = Wy41X141

caj—q 7
(o) xl —_
o Ql RN
o The gradients are
oL
° e - [10 X 5] - |
oL

o

3%, - [10 x 1] - [1 X 15]
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Still, backpropagation can be slow

o Often loss surfaces are
° non-quadratic
° highly non-convex
° very high-dimensional

o No real guarantee that
° the final solution will be good
o we converge fast to final solution
o or that there will be convergence

o How can we protect ourselves better?
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Stochastic Gradient Descend (SGD)

o Stochastically sample “mini-batches” from dataset D
° The size of B; can contain even just 1 sample
B; = sample(D)
gt+1) — g& _ Tt VoL,
|B]| iEBj
o Much faster than Gradient Descend

o Results are often better

o Can be used for dynamically changed datasets
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SGD is often better

Loss surface
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SGD is often better

Loss surface

Currenmt solutlon

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 17



SGD is often better

Loss surface

Currenmt solutlon

Full 4D gradient

New &P solution
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SGD is often better

Loss surface

Currenmt solutlon

Full 4D gradient

New &P solution

Best D solution
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SGD is often better

Loss surface

Currenmt solutlon
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\\Noagxd SGD gradient
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UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 20



SGD is often better

Loss surface

Currenmt solutlon

~
\\Noagxd SGD gradient

Full 4D gradient N

~

New &P solution

Best D solution

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 21



SGD is often better

Loss surface

Currenmt solutlon
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\\Noagxd SGD gradient
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SGD is often better

Loss surface

Currenmt solutlon

~

\\\\Noisg SGD gradient
~

Full 4D gradient .
* No guarantee that this s what

Ls going to always happen.

* Butthe notsy SGC gradients
can help some tlmes escaping
Local optima

New &P solution

Best D solution

Best S solution
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SGD is often better

o The gradient is more “noisy”
o A noisy gradient acts as regularization

o Model does not assume that the training samples are the “absolute
representative” of the input distribution
° Traditional optimization problems: “find optimal route”

o Instead, the model assumes that the sampled training data is roughly
representative

o So, model does not overfit to the particular training samples
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SGD is faster
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SGD is faster

Gradient
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SGD is faster

) 10X .

Gradient
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SGD is faster
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SGD is faster
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SGD is faster

o Of course in real situations data do not replicate

o However, after a sizeable amount of data there are clusters of data that
are similar

o Hence, the gradient is approximately alright

o Approximate alright is great, is even better in many cases actually
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SGD for dynamically changed datasets

o Often datasets are not “rigid”

o Imagine Instagram

° Let’s assume 1 million of new images uploaded per week and
we want to build a “cool picture” classifier

> Should “cool pictures” from the previous year have the same as
much influence?

> No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
o Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
o [LeCun2002]
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SGD for dynamically changed datasets

o Often datasets are not “rigid”

o Imagine Instagram

> Let’s assume 1 million of new images uploaded per week and el TR
we want to build a “cool picture” classitier Cool this wee

> Should “cool pictures” from the previous year have the same as
much influence?

> No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
o Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
o [LeCun2002]
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SGD for dynamically changed datasets

o Often datasets are not “rigid”

o Imagine Instagram

° Let’s assume 1 million of new images uploaded per week and
we want to build a “cool picture” classifier

> Should “cool pictures” from the previous year have the same as
much influence?

> No, the learning machine should track these changes

o With GD these changes go undetected, as results are

averaged by the many more “past” samples L L
> Past “over-dominates” Cool in 2014
o A properly implemented SGD can track changes much

better and give better models

o [LeCun2002]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 33



SGD for dynamically changed datasets

o Often datasets are not “rigid”

o Imagine Instagram
° Let’s assume 1 million of new images uploaded per week and il ORI
we want to build a “cool picture” classitier Cool this weer
> Should “cool pictures” from the previous year have the same as W e
much influence? g
> No, the learning machine should track these changes

o With GD these changes go undetected, as results are

averaged by the many more “past” samples Rl
> Past “over-dominates” Cowx, 24 |

o A properly implemented SGD can track changes much
better and give better models
o [LeCun2002]

AP P

Cool Lln 2010
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Shuffling examples

Dataset
o Applicable only with SGD
o Choose samples with maximum information content
o Shuffle samples so that in a mini-batches the training
examples are from different classes Shetflin
> As different as possible at epoch te)

o Prefer samples that are more likely to generate larger errors
o Otherwise gradients will be small and learning will be slow

> Check the errors from previous rounds and prefer “hard examples”
> Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches ft““ﬁf;ﬁi
o Each mini-batch is as class-divergent and rich as possible i

o At each new epoch create new batches with new, randomly shuffled
examples
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Advantages of Gradient Descend batch learning

o Conditions of convergence well understood

> The “good noise” prevents from finding the absolutely best (for our given training
dataset) solution

o Acceleration technigues can be applied
> Second order (Hessian based) optimizations are possible
> Measuring not only gradients, but also curvatures of the loss surface

o Simpler theoretical analysis on weight dynamics and convergence rates
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In practice

o SGD is preferred to Gradient Descend

o Training is orders faster
° |n real datasets Gradient Descend is not even realistic

o Solutions are better and with better generalization
° Important not only for efficiency, but also for dataset size scale-up
> Much larger datasets, much better generalization

o How many samples per mini-batch?
o Hyper-parameter, trial & error
o Usually between 32-256 samples for image datasets
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0,)

Data preprocessing &
normalization

2. Learning by minimizing emptirical error

0" « arg ming z L(y, ClL(X; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
Ot = 9) — .V, L
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Data pre-processing

o The average of every input variable should be roughly O
o Convergence usually faster
o Otherwise there is bias on the gradient direction, which slows down learning

o Scale input variables so that they have similar diagonal covariances

Ci — Z(xl(]))z
J

> Similar covariances help to balance out better the rate at which the weights learn
o Rescaling to 1 is a good choice, unless some dimensions are less important

o Input variables should be as uncorrelated as possible

° Input variables are “more independent”, hence one can optimize them better in isolation (not
jointly)

o Caution: extreme correlation (linear dependency) might cause problems
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=

Normalization: N(u,a%) = N(0, 1)

o Input variables follow a Gaussian distribution
(roughly)

—20

o In practice:
o from training set compute mean and standard deviation

° Then subtract the mean from training samples
> Then divide the result by the standard deviation
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Normalization: N(u,a%) = N(0, 1) :

o Input variables follow a Gaussian distribution
(roughly) s
o In practice: i |
° from training set compute mean and standard deviation )
° Then subtract the mean from training samples -
> Then divide the result by the standard deviation ‘o
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Normalization: N(u,a%) = N(0, 1) :

o Input variables follow a Gaussian distribution
(roughly) X
o In practice: i |
o from training set compute mean and standard deviation )
° Then subtract the mean from training samples -

> Then divide the result by the standard deviation
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Normalization: N(u,a%) = N(0, 1)

o This normalization can be done for all input variables simultaneously
° |f they take more or less similar values, like pixels in natural images
> Compute one (u, %) instead of as many as the input variables

o E.g. for images you can compute the general pixel average/variance
> Or the per color channel pixel average/variance

(.Ured: Jﬁed)r (.ugreenr O-gzreen): (.ublue» O-Iglue)

o Or for every variable dimension, e.g. for every pixel R, G, B varible
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PCA Whitening

o If X =[xq, ... dN | and C the covariance matrix is your dataset,
el

eigenvalues and eigenvectors are computed with SVD of o
U VT =svd(C)
o Then, the decorrelated (PCA-ed) version of the dataset is oy _yTy
obtained by e -
XT'Ot — UTX =15 =10 -5 o 5 10 15 20

> Few eigenvectors U’ = [uy, ...,uq] return rotated and reduced (in

dimensions) version of the data
® gcallng by the square root of eigenvalues gives the whitened |
ata
XWht — )('I"Ot/\/E -10f
o With Convolutional Neural Nets this normalization is not used | Xwat = Xrot/VE
that mUCh S Ca—Ty r ) 5 10 15 0

° The zero mean normalization is more important
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Example

pnginglimages,  lop J4talgenvesiors _recucsdimages whiiened images

.‘ 13 b A

tmages taken from A. Karpathy course website: http://cs231n.github.lo/newral-networks-2/
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Batch normalization

o Weights change = the distribution of the layer inputs changes per round
o Covariance shift

o Normalize the layer inputs with batch normalization
> Roughly speaking, normalize x; to N(0, 1) and rescale

o Benefits
° Neurons get activated in a near optimal “regime”
o Gradients can be stronger, learning rates can be higher
° Training becomes faster

A BaohPY@ﬂgatLoM Batch Normauzatww ‘A
Xy Xy X1

Layer L input distribution at () Layer L input distribution at (t+0.5) Layer L input distribution at (t+1)

|((
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Data augmentation

Random crop

original

Cowntrast
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0;)

Regularization

2. Learning by minimizing emptirical error

0" « argming Z t(y, aL(X} 01,..L ))
(xy)S(XY)

3. Optimizing with Gradient Descend based methods
H(t'l'l) = H(t) — TltVQL
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Regularization

o Neural networks typically have thousands, if not millions of parameters
o Usually, the dataset size smaller than the number of parameters

o Qverfitting is a grave danger
o Proper weight regularization is crucial to avoid overfitting

0" « arg ming Z £(y, aL(x; 0.1 )) + AQ(0)
(x,y)S(X.Y)
o Possible regularization methods
o £,-regularization
o £1-regularization
° Dropout
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£,-regularization

o ¥,-regularization is one of the most important techniques

0 cargming ¥ LOa(xi0,.0) 5 Y 11
(£ )EXY) l
o The ¥,-regularization can pass inside the gradient descend update rule
0+ = 6 —n (VoL + 16) =
6+ = (1 — An)6W — VoL

o Ais usually about 1071,1072

o Good practice: divide by the number of samples in your (mini-) batch
(1 - An)ot®

if your loss is also averaged by the number of samples
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£,-regularization

o ¥,-regularization is one of the most important techniques

. . A 2
0" argming > L,a(x:6,..))+5 ) ol
(£ )EXY) l
o The ¥,-regularization can pass inside the gradient descend update rule

O+ =9 —p (7, L + 16,) =
“welght decay”, because

- -1 10-2
o Ais usually about 107,10 weights et swaller

o Good practice: divide by the number of samples in your (mini-) batch
(1 - An)ot®

if your loss is also averaged by the number of samples
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£-regularization

o ¥4-regularization is one of the most important techniques

2
0" « argming Z L(y, aL(x; 61 1L )) -+ Ez 16|
(X EKY) l

o The £4-regularization can pass inside the gradient descend update rule

g(t+1) — (@) _ N (VoL -|(—)/1\79||91||) =
0 t

0

o ¥q-regularization induces model sparsity
> Weights are more likely to become 0 with larger A

gt+1) = g(t) _ Jpp,

—N:VoL
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£-regularization

o ¥4-regularization is one of the most important techniques

2
0" « argming Z L(y, aL(x; 61 1L )) -+ Ez 16|
(X EKY) l

o The £4-regularization can pass inside the gradient descend update rule
00+ =01 —n (VoL £ 2VplI6,]1) =

g(t+1) = (&) _ 2y

o ¥q-regularization induces model sparsity

> Weights are more likely to become 0 with larger A Stgn funetion
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Early stopping

o To tackle overfitting another popular technique is early stopping
o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
° This quite likely means the network starts to overfit

Error

Training cycles

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 55



Dropout

o During training setting activations randomly to O
> Neurons sampled at random from a Bernoulli distribution with p = 0.5

o Effectively, a different architecture at every training epoch
o Reduced network, as some nodes do not contribute to final score

o Benefits
> Reduces complex co-adaptations or co-dependencies between neurons
> No “free-rider” neurons that rely on others
o Every neuron becomes more robust
o Qverall, decreases significantly overfitting
o Also, improves significantly training speed

o At test time all neurons are used
> Neuron activations reweighted by p

o Particularly popular in computer vision, speech recognition
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0,)

Architectural details

2. Learning by minimizing emptirical error

0" « arg ming z L(y, ClL(X; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
Ot = 9) — .V, L
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Sigmoid-like activation functions

o Straightforward sigmoids are not a very good idea

o Symmetric sigmoids, like tanh, converge fasterm

— alz)
— 1.?159-tunh[?:.."3}

o A recommended sigmoidisa = h(x) = 15|
1.7159 tanh(%x) ul

° A tanh can be computationally expensive, maybe 00
approximate by ratio of polynomials 05|

[V

o You can add a linear term to avoid flat areas .| |
a = h(x) = tanh(x) + Bx 20l
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RBFs vs “Sigmoids”

2

o RBF:a = h(x) = X;u;exp (—,Bj(x — Wj) )
1

1+e™*

o Sigmoids can cover the full feature space

o Sigmoid: a = h(x) = o(x) =

o RBF’s are much more local in the feature space
o Can be faster to train but with a more limited range
o Can give better set of basis functions
o Preferred in lower dimensional spaces

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 59



Rectified Linear Unit (ReLU) module (Alexnet)

o Activation function a = h(x) = max(0, x)

0, l_fx =0 - ISuﬂpIus
1,lfx>0 *- — Rectifier

Monlinearitbes
| | | | | |

, : 0
o Gradient wrt the mputﬁ = {

o Very popular in computer vision and speech recognition

o Much faster computations, gradients I )
o No vanishing or exploding problems, only comparison, addition, multiplication

o People claim biological plausibility S, -

O Sparse activations

o No saturation 1- -

o Non-symmetric

o Non-differentiable at 0 T T T ! '1 ! ! !

O

A large gradient during training can cause a neuron to “die”. Higher learning rates hitigate the problem
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RelLU convergence rate

0.75
= Tanh

@ 0.5 4
E AN
S .
) ~
< ~ -~
= - -
T 025 . ~ 0~
I_

U | | | | | | |

0 5 10 15 20 25 30 35 40

Epochs
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Other Rel.Us

o Soft approximation (softplus): a = h(x) = In(1 + e*)
o Gradient is the sigmoid Z—Z =d(y)
o Noisy ReLU: a = h(x) = max (0,x + €),e~N (0, 6(x))

x,if x>0
0.01x otherwise

x,if x>0
fx otherwise

o Leaky RelU: a = h(x) = {

o Parametric ReLu: a = h(x) = {

o parameter [ is trainable
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Architectural hyper-parameters

o Number of hidden layers
o Number of neuron in each hidden layer
o Type of activation functions

o Type and amount of regularization
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Number of hidden units, number of hidden layers

o Getting these hyper-parameters is dataset dependent
o Start small and gradually increase complexity

o With no regularization the plot of number of hidden units vs.
generalization performance graph will be U-shaped

o E.g. start with a few hidden layers, 2 or 3

o And a few dozen hidden units per layer and see if performance is
reasonable
o Start increasing the number of layers and see if performance improves
o Start increasing the number of hidden units and see if performance improves
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Use ¥,-regularization!

o In general though €,-regularization is more important!!
o It’s alright if you have a deep or wide network

o If there is the £,-regularization is strong enough, your network will
generally not overfit
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0;)

Learning rate

2. Learning by minimizing emptirical error

0" « arg ming z L(y, ClL(X; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
Ot = 9) — . VL
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Learning rate

o The right learning rate is important for fast convergence
o Too strong, the gradients overshoot and bounce
> Too weak, the gradients are too small to influence the parameters =2 slow training

o Sometimes learning rate per weight is advantageous
> Some weights are near convergence, others not

o If weights are shared, a good idea is the learning rate to be proportional
to the square root of the number of connections sharing the weight

o Adaptive learning rates are also possible, based on the errors observed
o [Sompolinsky1995]
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
o Decrease (e.g. ny/2 orn:/10) every T number of epochs

Mo
1+t

o Inverse decay n; =

o Exponential decay n, = nge ¢t

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease n;
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
o Decrease (e.g. ny/2 orn:/10) every T number of epochs
10

1+¢&t >
—&t

o Inverse decay n; =

o Exponential decay n; = nqge

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease n;
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
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1+t

o Inverse decay n; =
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
o Decrease (e.g. ny/2 orn:/10) every T number of epochs
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1+t

o Inverse decay n; =
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require tuning extra hyper-parameters, other than when to decrease n;

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 71



Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
o Decrease (e.g. ny/2 orn:/10) every T number of epochs
10

1+¢&t >
—&t

o Inverse decay n; =

o Exponential decay n; = nqge

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease n;
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Learning rate in practice

o Try several log-spaced values 1071, 107%,1073, ... on a smaller set
° Then, you can narrow it down from there around where you get the lowest error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs
o Although this highly depends on your data
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,61),0,-1),0,)

Weight initialization

2. Learning by minimizing emptirical error

0" « argming z {(y, ClL(X; 01,..L ))
(xY)S(XY)

3. Optimizing with Gradient Descend based methods
Ot = 9) — .V, L
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Weight initialization

o There are few contradictory requirements

o Weights need to be small enough

—

o e.g. around the origin (0) for symmetric functions (tanh, sigmoid)

° the activation functions operate near their linear regime = large gradients = faster
training

o Weights need to be large enough
> The generated gradients are also large enough - faster training
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Weight initialization

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations, especially for deep
learning

o All neurons operate in their full capacity

o Good practice: initialize weights to be asymmetric, e.g. no same values for
different weights (like all 0)

> Otherwise all neurons generate the same gradient, no real change

o Alternatively, initialize to 0 but break some node to node connections to create
asymmetries

o Generally, Initialization must be coordinated with the choice of non-linear
activation functions and data normalization
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Weight initialization for sigmoid-like neurons

6
o For tanh initialize weights from [ \/dz id,’ \/d1_1+dz]

o d;_q is the number of input variables to the tanh layer and d; is the number of the
output variables

oForasigmoid[—éL-\/ ° ,4-\/ ° ]
di—1+d; dj—1+d; ol

oo

Large gradients

—  a=tanh(zx)

—  da/dr

Linear regime
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Weight initialization for ReLUs

o For RelLU’s you also want to initialize the weights so the neurons have
similar variances

o Currently the suggested practice is to fill in the weights with random

samples draw from
w~N(0,,/2/d)
where d is the number of neurons in the input [HelCCV2015]
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0;)

Loss functions

2. Learning by minimizing emptirical error

0" « arg ming z L(y, aL(X; 01,..L ))
(xY)S(XY)

3. Optimizing with Gradient Descend based methods
H(t'l'l) = H(t) — TltVQL
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Multi-class classification

o Our samples contains only one class
o There is only one correct answer per sample

o Negative log-likelihood (cross entropy) + Softmax
L(O;x,y) ==X ,y.logal forallclassesc =1,...,C

o Hierarchical softmax when Cis very large ls b a cat? Is it @ horse? ...

o Hinge loss (aCka SVM loss)

L(O;x,y) = z max(0,af — a; + 1)
c=1

c£y
o Squared hinge loss
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Multi-class, multi-label classification

o Each sample can have many correct answers

o Hinge loss and the likes
> Also sigmoids would also work

o Each output neuron is independent
o “Does this contain a car, yes or no?“
> “Does this contain a person, yes or no?"
> “Does this contain a motorbike, yes or no?"“
> “Does this contain a horse, yes or no?“

o Instead of “Is this a car, motorbike or person?”
> p(car|x) = 0.55,p(m/bike|x) = 0.25,p(person|x) = 0.15, p(horse|x) = 0.05
> p(car|x) + p(m/bike|x) + p(person|x) + p(horse|x) = 1.0
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Regression

o The good old sum of squared errors
1
L(O;x,y) = > ly — a5
o Orthe £ distance

L@:xy) = ) ly; - afl
J
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1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0;)

Even better
optimizations

2. Learning by minimizing emptirical error

0" « arg ming z L(y, ClL(X; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
Ot = 9) — .V, L
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Momentum

Loss surface

o Instead of switching gradients all the \ Gradient + momentum
time, maintain some “momentum”
from the previous parameters

ug =y0® —n,VpL
9(t+1) = H(t) _|_ ue

o Gradients and learning are more
robust, faster convergence

o Nice “physics”-based interpretation

° |Instead of updating the position of the
“ball”, we update the velocity, which will
update the position
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Nesterov Momentum

Graoient + momentum
o Use the future gradient instead of
the current gradient Momentun

ug =y —n, VoL
g+l — g(©) 4 Ug Gradient
Ggradient + Nesterov
o Better theoretical convergence promentum
o Generally works better with Momentum

Convolutional Neural Networks
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Second order optimizations

o Normally we update all weights with same “aggressiveness”
> Yet, some parameters could enjoy more “teaching”
> While others are already about there

o Second-order methods adapt the learning according to the per parameter
behavior

gt+t1l) — (&) _ H VoL

o Hp is the Hessian matrix of L containing all second-order derivatives
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Second order optimization methods in practice

o Computing the inverse of the Hessian with thousands of parametesr is
usually very expensive

o Instead approximations are sough for, e.g. the L-BFGS algorithm
o Keeps memory of gradients to approximate the inverse Hessian

o However, L-BFGS works alright with Batch Gradient Descend
> What about SGD?

o In practice SGD with a good momentum works alright
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Per parameter adaptive optimization

o Adagrad [Duchi2011]
o RMSprop
o Adam [Kingma2014]
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Adagrad [Duchi2011]

o Schedule
VoLl
omy =Y (VeLy)? = 0D =00 —n, 2

o £is asmall number to avoid division with O

> Gradients become gradually smaller and smaller
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RMSprop

o Schedule
emy = a Y (Ve L) + A — )V L, = 0¢HD= Ny
g _, Vot ==
t\/m+8 35} . szl.-'z
o @ is a decay hyper-parameter j:
o Similar like Adagrad, but uses a moving average of .|
the squared gradients sl
o When gradients are too large (maybe too “noisy” 1o}
loss surface) o5
? Updates are tamed ﬂ-ﬂ'llﬂ 'I].IS ]_I{I ]_IS EI 2:5 E'..I{I 3:5 410

o When gradients are too small (maybe stuck in flat
loss surface ravine)

o Updates become more aggressive /
P &8 Square rooting boosts small values

while suppresses Large values
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Adam [Kingma2014]

o mj = % (VgL;)*
o0 05 =B 9t) + (1 — B)VyL
O U(t+0'5) — IBZU(t) 1+ (1 _ IBZ)m

g(t+0.5)

o Ut — g _ 771:\/

o Similar to RMSprop with momentum
o Recommended values: B; = 0.9, §, = 0.999,¢ = 1078
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Visual overview

SGD - — SGD
Momentum E - Momentum
NAG E —  NAG
Adagrad | — Adagrad
Adadelta - Adadelta
Rmsprop 4 — Rmsprop
E—— 2

0

-2

1.0

Pleture credit: Alec =aoford
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https://twitter.com/alecrad

Good practice
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o Preprocess the data to have O mean

o Either normalize to have standard deviation 1 or the
inputs to lie in the range [-1, 1]

o Initialize weights according to you activations
functions

o For RelU initialize from N (O, \/g), d is the number of

Input neurons
o Always use €,-regularization and dropout

o Use batch normalization
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Babysitting
Deep Nets

2. Learning by minimizing emptirical error
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Babysitting Deep Nets

o C
o C
o C

nec

nec

nec

K your gradients

k that in the first round you get a random loss

kK network with few samples

o Turn off regularization. You should predictably overfit and have a O loss

o Turn or regularization. The loss should increase

o Have a separate validation set
o Compare the curve between training and validation sets

> There should be a gap, but not too large
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o How to defining our model and optimize it in
practice

o Data preprocessing and normalization

Summary

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters
O Learning rate

o Weight initializations

o Good practices
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o What are the Convolutional Neural Networks?
o Why are they so important for Computer Vision?

Next lecture o How do they differ from standard Neural
Networks?

o How can we train a Convolutional Neural Network?
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