
UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 1

Lecture 3: Deeper into Deep Learning and Optimizations
Deep Learning @ UvA

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 2

o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network

o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module

Previous lecture

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 3

o How to defining our model and optimize it in practice

o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices

Lecture overview

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 4

Deeper into
Neural Networks &
Deep Neural Nets

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 5

A Neural/Deep Network in a nutshell

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 6

SGD vs GD

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 7

Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

∙
𝜕ℒ

𝜕𝑎𝑙+1
and

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙ (

𝜕𝑎𝑙

𝜕𝜃𝑙
)𝑇

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train your

network

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 8

Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

∙
𝜕ℒ

𝜕𝑎𝑙+1
and

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙ (

𝜕𝑎𝑙

𝜕𝜃𝑙
)𝑇

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train your

network

Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions [𝑑𝑙+1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙× 1]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 9

Backpropagation again

o Step 1. Compute forward propagations for all layers, starting from the
first layer until the last loss layer

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. Start
from the last layer and for each new layer compute the gradients

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

∙
𝜕ℒ

𝜕𝑎𝑙+1
and

𝜕ℒ

𝜕𝜃𝑙
=

𝜕ℒ

𝜕𝑎𝑙
∙ (

𝜕𝑎𝑙

𝜕𝜃𝑙
)𝑇

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train your

network

Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions [𝑑𝑙+1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙× 𝑑𝑙−1]

Vector with dimensions [𝑑𝑙× 1]

Vector with dimensions [1 × 𝑑𝑙−1]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 10

o Layer 𝑙 − 1 has 15 neurons (𝑑𝑙−1 = 15), 𝑙 has 10 neurons (𝑑𝑙 = 10) and
𝑙 + 1 has 5 neurons (𝑑𝑙+1 = 5)

o My activation functions are 𝑎𝑙 = 𝑤𝑙𝑥𝑙 and 𝑎𝑙+1 = 𝑤𝑙+1𝑥𝑙+1

o The dimensionalities are (remember 𝑥𝑙 = 𝑎𝑙−1)
◦ 𝑎𝑙−1 → 15 × 1 , 𝑎𝑙 → 10 × 1 , 𝑎𝑙+1 → [5 × 1]

◦ 𝑥𝑙 → 15 × 1 , 𝑥𝑙+1 → 10 × 1

◦ 𝜃𝑙 → 10 × 15 ,𝑤𝑙+1 → 5 × 10

o The gradients are
◦
𝜕ℒ

𝜕𝑎𝑙
→ 10 × 5 ∙ 5 × 1 = 10 × 1

◦
𝜕ℒ

𝜕𝜃𝑙
→ 10 × 1 ∙ 1 × 15 = 10 × 15

Practical example and dimensionality analysis

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 11

o Layer 𝑙 − 1 has 15 neurons (𝑑𝑙−1 = 15), 𝑙 has 10 neurons (𝑑𝑙 = 10) and
𝑙 + 1 has 5 neurons (𝑑𝑙+1 = 5)

o My activation functions are 𝑎𝑙 = 𝑤𝑙𝑥𝑙 and 𝑎𝑙+1 = 𝑤𝑙+1𝑥𝑙+1

o The dimensionalities are (remember 𝑥𝑙 = 𝑎𝑙−1)
◦ 𝑎𝑙−1 → 15 × 1 , 𝑎𝑙 → 10 × 1 , 𝑎𝑙+1 → [5 × 1]

◦ 𝑥𝑙 → 15 × 1 , 𝑥𝑙+1 → 10 × 1

◦ 𝜃𝑙 → 10 × 15 ,𝑤𝑙+1 → 5 × 10

o The gradients are
◦
𝜕ℒ

𝜕𝑎𝑙
→ 10 × 5 ∙ 5 × 1 = 10 × 1

◦
𝜕ℒ

𝜕𝜃𝑙
→ 10 × 1 ∙ 1 × 15 = 10 × 15

Practical example and dimensionality analysis

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 12

o Layer 𝑙 − 1 has 15 neurons (𝑑𝑙−1 = 15), 𝑙 has 10 neurons (𝑑𝑙 = 10) and
𝑙 + 1 has 5 neurons (𝑑𝑙+1 = 5)

o My activation functions are 𝑎𝑙 = 𝑤𝑙𝑥𝑙 and 𝑎𝑙+1 = 𝑤𝑙+1𝑥𝑙+1

o The dimensionalities are (remember 𝑥𝑙 = 𝑎𝑙−1)
◦ 𝑎𝑙−1 → 15 × 1 , 𝑎𝑙 → 10 × 1 , 𝑎𝑙+1 → [5 × 1]

◦ 𝑥𝑙 → 15 × 1 , 𝑥𝑙+1 → 10 × 1

◦ 𝜃𝑙 → 10 × 15 ,𝑤𝑙+1 → 5 × 10

o The gradients are
◦
𝜕ℒ

𝜕𝑎𝑙
→ 10 × 5 ∙ 5 × 1 = 10 × 1

◦
𝜕ℒ

𝜕𝜃𝑙
→ 10 × 1 ∙ 1 × 15 = 10 × 15

Practical example and dimensionality analysis

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 14

o Often loss surfaces are
◦ non-quadratic

◦ highly non-convex

◦ very high-dimensional

o No real guarantee that
◦ the final solution will be good

◦ we converge fast to final solution

◦ or that there will be convergence

o How can we protect ourselves better?

Still, backpropagation can be slow

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 15

o Stochastically sample “mini-batches” from dataset 𝐷
◦ The size of 𝐵𝑗 can contain even just 1 sample

o Much faster than Gradient Descend

o Results are often better

o Can be used for dynamically changed datasets

Stochastic Gradient Descend (SGD)

𝜃(𝑡+1) = 𝜃(𝑡) −
𝜂𝑡
|𝐵𝑗|

𝑖 ∈ 𝐵𝑗

𝛻𝜃ℒ𝑖

𝐵𝑗 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝐷)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 16

SGD is often better

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 17

SGD is often better

Current solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 18

SGD is often better

Current solution

Full GD gradient

New GD solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 19

SGD is often better

Current solution

Full GD gradient

New GD solution

Best GD solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 20

SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 21

SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 22

SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Best SGD solution

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 23

SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Best SGD solution

• No guarantee that this is what
is going to always happen.

• But the noisy SGC gradients
can help some times escaping
local optima

Loss surface

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 24

SGD is often better

o The gradient is more “noisy”

o A noisy gradient acts as regularization

o Model does not assume that the training samples are the “absolute
representative” of the input distribution
◦ Traditional optimization problems: “find optimal route”

o Instead, the model assumes that the sampled training data is roughly
representative

o So, model does not overfit to the particular training samples

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 25

SGD is faster

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 26

SGD is faster

Gradient

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 27

SGD is faster

Gradient

10x

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 28

SGD is faster

Gradient

10x

What is our
gradient now?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 29

SGD is faster

10x

What is our
gradient now?

Gradient

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 30

o Of course in real situations data do not replicate

o However, after a sizeable amount of data there are clusters of data that
are similar

o Hence, the gradient is approximately alright

o Approximate alright is great, is even better in many cases actually

SGD is faster

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 31

o Often datasets are not “rigid”

o Imagine Instagram
◦ Let’s assume 1 million of new images uploaded per week and

we want to build a “cool picture” classifier
◦ Should “cool pictures” from the previous year have the same as

much influence?
◦ No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
◦ Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
◦ [LeCun2002]

SGD for dynamically changed datasets

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 32

o Often datasets are not “rigid”

o Imagine Instagram
◦ Let’s assume 1 million of new images uploaded per week and

we want to build a “cool picture” classifier
◦ Should “cool pictures” from the previous year have the same as

much influence?
◦ No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
◦ Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
◦ [LeCun2002]

SGD for dynamically changed datasets

Cool this week

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 33

o Often datasets are not “rigid”

o Imagine Instagram
◦ Let’s assume 1 million of new images uploaded per week and

we want to build a “cool picture” classifier
◦ Should “cool pictures” from the previous year have the same as

much influence?
◦ No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
◦ Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
◦ [LeCun2002]

SGD for dynamically changed datasets

Cool this week

Cool in 2014

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 34

o Often datasets are not “rigid”

o Imagine Instagram
◦ Let’s assume 1 million of new images uploaded per week and

we want to build a “cool picture” classifier
◦ Should “cool pictures” from the previous year have the same as

much influence?
◦ No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
◦ Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
◦ [LeCun2002]

SGD for dynamically changed datasets

Cool this week

Cool in 2014

Cool in 2010

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 35

o Applicable only with SGD

o Choose samples with maximum information content

o Shuffle samples so that in a mini-batches the training
examples are from different classes
◦ As different as possible

o Prefer samples that are more likely to generate larger errors
◦ Otherwise gradients will be small and learning will be slow
◦ Check the errors from previous rounds and prefer “hard examples”
◦ Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
◦ Each mini-batch is as class-divergent and rich as possible
◦ At each new epoch create new batches with new, randomly shuffled

examples

Shuffling examples
Dataset

Shuffling
at epoch t

Shuffling
at epoch t+1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 36

o Conditions of convergence well understood
◦ The “good noise” prevents from finding the absolutely best (for our given training

dataset) solution

o Acceleration techniques can be applied
◦ Second order (Hessian based) optimizations are possible

◦ Measuring not only gradients, but also curvatures of the loss surface

o Simpler theoretical analysis on weight dynamics and convergence rates

Advantages of Gradient Descend batch learning

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 37

o SGD is preferred to Gradient Descend

o Training is orders faster
◦ In real datasets Gradient Descend is not even realistic

o Solutions are better and with better generalization
◦ Important not only for efficiency, but also for dataset size scale-up

◦ Much larger datasets, much better generalization

o How many samples per mini-batch?
◦ Hyper-parameter, trial & error

◦ Usually between 32-256 samples for image datasets

In practice

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 38

Data preprocessing &
normalization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 39

o The average of every input variable should be roughly 0
◦ Convergence usually faster
◦ Otherwise there is bias on the gradient direction, which slows down learning

o Scale input variables so that they have similar diagonal covariances

𝐶𝑖 =

𝑗

(𝑥𝑖
(𝑗)

)2

◦ Similar covariances help to balance out better the rate at which the weights learn
◦ Rescaling to 1 is a good choice, unless some dimensions are less important

o Input variables should be as uncorrelated as possible
◦ Input variables are “more independent”, hence one can optimize them better in isolation (not

jointly)
◦ Caution: extreme correlation (linear dependency) might cause problems

Data pre-processing

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 40

o Input variables follow a Gaussian distribution
(roughly)

o In practice:
◦ from training set compute mean and standard deviation

◦ Then subtract the mean from training samples

◦ Then divide the result by the standard deviation

Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

𝑥

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 41

o Input variables follow a Gaussian distribution
(roughly)

o In practice:
◦ from training set compute mean and standard deviation

◦ Then subtract the mean from training samples

◦ Then divide the result by the standard deviation

Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

𝑥

𝑥 − 𝜇

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 42

o Input variables follow a Gaussian distribution
(roughly)

o In practice:
◦ from training set compute mean and standard deviation

◦ Then subtract the mean from training samples

◦ Then divide the result by the standard deviation

Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

𝑥

𝑥 − 𝜇

𝑥 − 𝜇

𝜎

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 43

o This normalization can be done for all input variables simultaneously
◦ If they take more or less similar values, like pixels in natural images

◦ Compute one 𝜇, 𝜎2 instead of as many as the input variables

o E.g. for images you can compute the general pixel average/variance
◦ Or the per color channel pixel average/variance

𝜇𝑟𝑒𝑑 , 𝜎𝑟𝑒𝑑
2 , 𝜇𝑔𝑟𝑒𝑒𝑛, 𝜎𝑔𝑟𝑒𝑒𝑛

2 , 𝜇𝑏𝑙𝑢𝑒, 𝜎𝑏𝑙𝑢𝑒
2

o Or for every variable dimension, e.g. for every pixel R, G, B varible

Normalization: 𝑁 𝜇, 𝜎2 = 𝑁 0, 1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 44

o If 𝑋 = [𝑥1, … , 𝑥𝑁] and 𝐶 the covariance matrix is your dataset,
εigenvalues and eigenvectors are computed with SVD

𝑈, Σ, 𝑉𝑇 = 𝑠𝑣𝑑(𝐶)

o Then, the decorrelated (PCA-ed) version of the dataset is
obtained by

𝑋𝑟𝑜𝑡 = 𝑈𝑇𝑋
◦ Few eigenvectors 𝑈′ = [𝑢1, … , 𝑢𝑞] return rotated and reduced (in

dimensions) version of the data

o Scaling by the square root of eigenvalues gives the whitened
data

𝑋𝑤ℎ𝑡 = 𝑋𝑟𝑜𝑡/ Σ

o With Convolutional Neural Nets this normalization is not used
that much

◦ The zero mean normalization is more important

PCA Whitening

𝑋𝑟𝑜𝑡 = 𝑈𝑇𝑋

𝑋𝑤ℎ𝑡 = 𝑋𝑟𝑜𝑡/ Σ

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 45

Example

Images taken from A. Karpathy course website: http://cs231n.github.io/neural-networks-2/

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 47

o Weights change  the distribution of the layer inputs changes per round
◦ Covariance shift

o Normalize the layer inputs with batch normalization
◦ Roughly speaking, normalize 𝑥𝑙 to 𝑁(0, 1) and rescale

o Benefits
◦ Neurons get activated in a near optimal “regime”

◦ Gradients can be stronger, learning rates can be higher

◦ Training becomes faster

Batch normalization

𝑥𝑙

ℒ

𝑥𝑙
Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥𝑙 𝑥𝑙

Batch Normalization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 48

Data augmentation

Original

Flip Random crop

Contrast Tint

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 49

Regularization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 50

o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L) + 𝜆Ω(𝜃)

o Possible regularization methods
◦ ℓ2-regularization
◦ ℓ1-regularization
◦ Dropout

Regularization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 51

o ℓ2-regularization is one of the most important techniques

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L) +
𝜆

2

𝑙
𝜃𝑙

2

o The ℓ2-regularization can pass inside the gradient descend update rule
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝜃𝑙 ⟹

𝜃 𝑡+1 = 1 − 𝜆𝜂𝑡 𝜃 𝑡 − 𝜂𝑡𝛻𝜃ℒ

o 𝜆 is usually about 10−1, 10−2

o Good practice: divide by the number of samples in your (mini-) batch
1 − 𝜆𝜂𝑡 𝜃 𝑡

if your loss is also averaged by the number of samples

ℓ2-regularization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 52

o ℓ2-regularization is one of the most important techniques

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L) +
𝜆

2

𝑙
𝜃𝑙

2

o The ℓ2-regularization can pass inside the gradient descend update rule
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝜃𝑙 ⟹

𝜃 𝑡+1 = 1 − 𝜆𝜂𝑡 𝜃 𝑡 − 𝜂𝑡𝛻𝜃ℒ

o 𝜆 is usually about 10−1, 10−2

o Good practice: divide by the number of samples in your (mini-) batch
1 − 𝜆𝜂𝑡 𝜃 𝑡

if your loss is also averaged by the number of samples

ℓ2-regularization

“Weight decay”, because
weights get smaller

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 53

o ℓ1-regularization is one of the most important techniques

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L) +
𝜆

2

𝑙
𝜃𝑙

o The ℓ1-regularization can pass inside the gradient descend update rule
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝛻𝜃 𝜃𝑙 ⟹

𝜃 𝑡+1 = 𝜃 𝑡 − 𝜆𝜂𝑡
𝜃 𝑡

|𝜃 𝑡 |
− 𝜂𝑡𝛻𝜃ℒ

o ℓ1-regularization induces model sparsity
◦ Weights are more likely to become 0 with larger λ

ℓ1-regularization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 54

o ℓ1-regularization is one of the most important techniques

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L) +
𝜆

2

𝑙
𝜃𝑙

o The ℓ1-regularization can pass inside the gradient descend update rule
𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝛻𝜃 𝜃𝑙 ⟹

𝜃 𝑡+1 = 𝜃 𝑡 − 𝜆𝜂𝑡
𝜃 𝑡

|𝜃 𝑡 |
− 𝜂𝑡𝛻𝜃ℒ

o ℓ1-regularization induces model sparsity
◦ Weights are more likely to become 0 with larger λ

ℓ1-regularization

Sign function

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 55

o To tackle overfitting another popular technique is early stopping

o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
◦ This quite likely means the network starts to overfit

Early stopping

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 56

o During training setting activations randomly to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 = 0.5

o Effectively, a different architecture at every training epoch
◦ Reduced network, as some nodes do not contribute to final score

o Benefits
◦ Reduces complex co-adaptations or co-dependencies between neurons
◦ No “free-rider” neurons that rely on others
◦ Every neuron becomes more robust
◦ Overall, decreases significantly overfitting
◦ Also, improves significantly training speed

o At test time all neurons are used
◦ Neuron activations reweighted by 𝑝

o Particularly popular in computer vision, speech recognition

Dropout

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 57

Architectural details

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 58

o Straightforward sigmoids are not a very good idea

o Symmetric sigmoids, like tanh, converge faster

o A recommended sigmoid is 𝑎 = ℎ 𝑥 =

1.7159 tanh(
2

3
𝑥)

◦ A tanh can be computationally expensive, maybe
approximate by ratio of polynomials

o You can add a linear term to avoid flat areas
𝑎 = ℎ 𝑥 = tanh 𝑥 + 𝛽𝑥

Sigmoid-like activation functions

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 59

o RBF: 𝑎 = ℎ 𝑥 = 𝑗 𝑢𝑗 exp −𝛽𝑗 𝑥 − 𝑤𝑗
2

o Sigmoid: 𝑎 = ℎ 𝑥 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Sigmoids can cover the full feature space

o RBF’s are much more local in the feature space
◦ Can be faster to train but with a more limited range

◦ Can give better set of basis functions

◦ Preferred in lower dimensional spaces

RBFs vs “Sigmoids”

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 60

o Activation function 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient wrt the input
𝜕𝑎

𝜕𝑥
=

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

o Very popular in computer vision and speech recognition

o Much faster computations, gradients
◦ No vanishing or exploding problems, only comparison, addition, multiplication

o People claim biological plausibility

o Sparse activations

o No saturation

o Non-symmetric

o Non-differentiable at 0

o A large gradient during training can cause a neuron to “die”. Higher learning rates mitigate the problem

Rectified Linear Unit (ReLU) module (Alexnet)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 61

ReLU convergence rate

ReLU

Tanh

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 62

o Soft approximation (softplus): 𝑎 = ℎ(𝑥) = ln 1 + 𝑒𝑥

◦ Gradient is the sigmoid
𝜕𝑎

𝜕𝑥
= 𝜎(𝜒)

o Noisy ReLU: 𝑎 = ℎ 𝑥 = max 0, x + ε , ε~𝛮(0, σ(x))

o Leaky ReLU: 𝑎 = ℎ 𝑥 =
𝑥, 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o Parametric ReLu: 𝑎 = ℎ 𝑥 =
𝑥, 𝑖𝑓 𝑥 > 0

𝛽𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
◦ parameter 𝛽 is trainable

Other ReLUs

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 63

o Number of hidden layers

o Number of neuron in each hidden layer

o Type of activation functions

o Type and amount of regularization

Architectural hyper-parameters

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 64

o Getting these hyper-parameters is dataset dependent

o Start small and gradually increase complexity

o With no regularization the plot of number of hidden units vs.
generalization performance graph will be U-shaped

o E.g. start with a few hidden layers, 2 or 3

o And a few dozen hidden units per layer and see if performance is
reasonable
◦ Start increasing the number of layers and see if performance improves

◦ Start increasing the number of hidden units and see if performance improves

Number of hidden units, number of hidden layers

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 65

o In general though ℓ2-regularization is more important!!

o It’s alright if you have a deep or wide network

o If there is the ℓ2-regularization is strong enough, your network will
generally not overfit

Use ℓ2-regularization!

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 66

Learning rate

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 67

o The right learning rate is important for fast convergence
◦ Too strong, the gradients overshoot and bounce

◦ Too weak, the gradients are too small to influence the parameters  slow training

o Sometimes learning rate per weight is advantageous
◦ Some weights are near convergence, others not

o If weights are shared, a good idea is the learning rate to be proportional
to the square root of the number of connections sharing the weight

o Adaptive learning rates are also possible, based on the errors observed
◦ [Sompolinsky1995]

Learning rate

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 68

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/2 or 𝜂𝑡/10) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease 𝜂𝑡

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 69

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/2 or 𝜂𝑡/10) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease 𝜂𝑡

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 70

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/2 or 𝜂𝑡/10) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease 𝜂𝑡

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 71

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/2 or 𝜂𝑡/10) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease 𝜂𝑡

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 72

o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease (e.g. 𝜂𝑡/2 or 𝜂𝑡/10) every T number of epochs

o Inverse decay 𝜂𝑡 =
𝜂0

1+𝜀𝑡

o Exponential decay 𝜂𝑡 = 𝜂0𝑒
−𝜀𝑡

o Generally step decay is simple, intuitive, it works well and does not
require tuning extra hyper-parameters, other than when to decrease 𝜂𝑡

Learning rate schedules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 73

o Try several log-spaced values 10−1, 10−2, 10−3, … on a smaller set
◦ Then, you can narrow it down from there around where you get the lowest error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs
◦ Although this highly depends on your data

Learning rate in practice

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 74

Weight initialization

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 75

o There are few contradictory requirements

o Weights need to be small enough
◦ e.g. around the origin (𝟎) for symmetric functions (tanh, sigmoid)

◦ the activation functions operate near their linear regime  large gradients  faster
training

o Weights need to be large enough
◦ The generated gradients are also large enough  faster training

Weight initialization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 76

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations, especially for deep
learning
◦ All neurons operate in their full capacity

o Good practice: initialize weights to be asymmetric, e.g. no same values for
different weights (like all 𝟎)
◦ Otherwise all neurons generate the same gradient, no real change

◦ Alternatively, initialize to 𝟎 but break some node to node connections to create
asymmetries

o Generally, Initialization must be coordinated with the choice of non-linear
activation functions and data normalization

Weight initialization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 77

o For tanh initialize weights from −
6

𝑑𝑙−1+𝑑𝑙
,

6

𝑑𝑙−1+𝑑𝑙

◦ 𝑑𝑙−1 is the number of input variables to the tanh layer and 𝑑𝑙 is the number of the
output variables

o For a sigmoid −4 ∙
6

𝑑𝑙−1+𝑑𝑙
, 4 ∙

6

𝑑𝑙−1+𝑑𝑙

Weight initialization for sigmoid-like neurons

Linear regime

Large gradients

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 78

o For ReLU’s you also want to initialize the weights so the neurons have
similar variances

o Currently the suggested practice is to fill in the weights with random
samples draw from

w~𝑁 0, 2/𝑑

where 𝑑 is the number of neurons in the input [HeICCV2015]

Weight initialization for ReLUs

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 79

Loss functions

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 80

o Our samples contains only one class
◦ There is only one correct answer per sample

o Negative log-likelihood (cross entropy) + Softmax

ℒ 𝜃; 𝑥, 𝑦 = − 𝑐=1
𝐶 𝑦𝑐 log 𝑎𝐿

𝑐 for all classes 𝑐 = 1,… , 𝐶

o Hierarchical softmax when C is very large

o Hinge loss (aka SVM loss)

ℒ 𝜃; 𝑥, 𝑦 =
𝑐=1
𝑐≠𝑦

𝐶

max(0, 𝑎𝐿
𝑐 − 𝑎𝐿

𝑦
+ 1)

o Squared hinge loss

Multi-class classification

Is it a cat? Is it a horse? …

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 81

o Each sample can have many correct answers

o Hinge loss and the likes
◦ Also sigmoids would also work

o Each output neuron is independent
◦ “Does this contain a car, yes or no?“
◦ “Does this contain a person, yes or no?“
◦ “Does this contain a motorbike, yes or no?“
◦ “Does this contain a horse, yes or no?“

o Instead of “Is this a car, motorbike or person?”
◦ 𝑝 𝑐𝑎𝑟 𝑥) = 0.55, 𝑝 𝑚/𝑏𝑖𝑘𝑒 𝑥) = 0.25, 𝑝 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥) = 0.15, 𝑝 ℎ𝑜𝑟𝑠𝑒 𝑥) = 0.05

◦ 𝑝 𝑐𝑎𝑟 𝑥) + 𝑝 𝑚/𝑏𝑖𝑘𝑒 𝑥) + 𝑝 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥) + 𝑝 ℎ𝑜𝑟𝑠𝑒 𝑥) = 1.0

Multi-class, multi-label classification

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 82

o The good old sum of squared errors

ℒ 𝜃; 𝑥, 𝑦 =
1

2
|𝑦 − 𝑎𝐿|2

2

o Or the ℓ1 distance

ℒ 𝜃; 𝑥, 𝑦 =

𝑗

|𝑦𝑗 − 𝑎𝐿
𝑗
|

Regression

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 83

Even better
optimizations

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 84

o Instead of switching gradients all the
time, maintain some “momentum”
from the previous parameters

o Gradients and learning are more
robust, faster convergence

o Nice “physics”-based interpretation
◦ Instead of updating the position of the

“ball”, we update the velocity, which will
update the position

Momentum

𝜃(𝑡+1) = 𝜃(𝑡) + 𝑢𝜃

𝑢𝜃 = 𝛾𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

Loss surface

Gradient

Gradient + momentum

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 85

o Use the future gradient instead of
the current gradient

o Better theoretical convergence

o Generally works better with
Convolutional Neural Networks

Nesterov Momentum

𝜃(𝑡+1) = 𝜃(𝑡) + 𝑢𝜃

𝑢𝜃 = 𝛾𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ
Gradient

Gradient + momentum

Momentum

Look-ahead gradient
from the next step

Momentum

Gradient + Nesterov
momentum

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 86

o Normally we update all weights with same “aggressiveness”
◦ Yet, some parameters could enjoy more “teaching”

◦ While others are already about there

o Second-order methods adapt the learning according to the per parameter
behavior

𝜃(𝑡+1) = 𝜃(𝑡) − 𝐻ℒ
−1𝜂𝑡𝛻𝜃ℒ

o 𝐻ℒ is the Hessian matrix of ℒ containing all second-order derivatives

𝐻ℒ
𝑖𝑗
=

𝜕ℒ

𝜕𝜃𝑖𝜕𝜃𝑗

Second order optimizations

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 87

o Computing the inverse of the Hessian with thousands of parametesr is
usually very expensive

o Instead approximations are sough for, e.g. the L-BFGS algorithm
◦ Keeps memory of gradients to approximate the inverse Hessian

o However, L-BFGS works alright with Batch Gradient Descend
◦ What about SGD?

o In practice SGD with a good momentum works alright

Second order optimization methods in practice

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 88

o Adagrad [Duchi2011]

o RMSprop

o Adam [Kingma2014]

Per parameter adaptive optimization

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 89

o Schedule

◦𝑚𝑗 = 𝜏(𝛻𝜃ℒ𝑗)
2 ⟹ 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡

𝛻𝜃ℒ

𝑚+𝜀

◦ 𝜀 is a small number to avoid division with 0

◦ Gradients become gradually smaller and smaller

Adagrad [Duchi2011]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 90

o Schedule
◦ 𝑚𝑗 = 𝛼 𝜏=1

𝑡−1(𝛻𝜃ℒ𝑗)
2 + 1 − 𝛼 𝛻𝜃

(𝑡)
ℒ𝑗 ⟹ 𝜃(𝑡+1)=

𝜃(𝑡) − 𝜂𝑡
𝛻𝜃ℒ

𝑚+𝜀

o 𝛼 is a decay hyper-parameter

o Similar like Adagrad, but uses a moving average of
the squared gradients

o When gradients are too large (maybe too “noisy”
loss surface)
◦ Updates are tamed

o When gradients are too small (maybe stuck in flat
loss surface ravine)
◦ Updates become more aggressive

RMSprop

Square rooting boosts small values
while suppresses large values

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 91

o 𝑚𝑗 = 𝜏(𝛻𝜃ℒ𝑗)
2

o 𝜃(𝑡+0.5) = 𝛽1𝜃
(𝑡) + 1 − 𝛽1 𝛻𝜃ℒ

o 𝑣(𝑡+0.5) = 𝛽2𝑣
(𝑡) + 1 − 𝛽2 𝑚

o 𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡
𝜃(𝑡+0.5)

𝑣(𝑡+0.5)+𝜀

o Similar to RMSprop with momentum

o Recommended values: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8

Adam [Kingma2014]

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 92

Visual overview

Picture credit: Alec Radford

https://twitter.com/alecrad

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 93

Good practice

o Preprocess the data to have 0 mean
◦ Either normalize to have standard deviation 1 or the

inputs to lie in the range [-1, 1]

o Initialize weights according to you activations
functions

◦ For ReLU initialize from 𝑁(0,
2

𝑑
), d is the number of

input neurons

o Always use ℓ2-regularization and dropout

o Use batch normalization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 94

Babysitting
Deep Nets

𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)

θ∗ ← argmin𝜃

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂𝑡𝛻𝜃ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Gradient Descend based methods

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 95

o Check your gradients

o Check that in the first round you get a random loss

o Check network with few samples
◦ Turn off regularization. You should predictably overfit and have a 0 loss

◦ Turn or regularization. The loss should increase

o Have a separate validation set
◦ Compare the curve between training and validation sets

◦ There should be a gap, but not too large

Babysitting Deep Nets

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 96

Summary

o How to defining our model and optimize it in
practice

o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING

DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 97

Next lecture

o What are the Convolutional Neural Networks?

o Why are they so important for Computer Vision?

o How do they differ from standard Neural
Networks?

o How can we train a Convolutional Neural Network?

