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Lecture 6: Convnets for object detection and segmentation
Deep Learning @ UvA
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o What do convolutions look like?

o Build on the visual intuition behind Convnets

o Deep Learning Feature maps

o Transfer Learning

Previous Lecture
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o What is object detection, segmentation and structured output

o How to use a convnet to localize objects?

o What is the relation convnets and Conditional Random Fields (CRF) 

Lecture Overview
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Object localization
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o The task of discovering the location of one or more object in an image

o Images
◦ Detect spatial object location

o Videos
◦ Detect spatial object location

◦ Optionally, detect object temporal location

o Generic
◦ Define the same model for all types of categories

o Specific
◦ Define specialized models for particular categories (“face”, “pedestrian”)

Object localization
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o Robotics

o Self-driving cars

o Better classification
◦ Isolates the object signal from the 

background signal

o Huge pictures
◦ E.g. in astronomy pictures have ultra-

high resolution

◦ Detecting a new star or galaxy goes 
beyond image classification

Why is localization important?
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o Box level, aka object detection
◦ Predict a bounding box surrounding the objects

o Pixel level, aka semantic segmentation
◦ Predict the category label for each pixel

o Pixel and instance level
◦ Predict a free-form delineation around object instances and predict their category

◦ Separate between instances of the same category (much more difficult!)

Localization granularity

Image classification Object detection Pixel classification Pixel and instance 
classification
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o Supervised (category specific)
◦ Examples for “bicycle”, “dog”, “person”, “face”

o Unsupervised (category agnostic)
◦ aka bounding box/segment proposal algorithm

◦ Method typically returns hundreds possible object locations

Localization supervision

Supervised (category specific)Supervised (category specific)
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o Training
◦ Crop objects from the images

◦ Train a classifier (SVM) for each of the categories

o Inference
◦ Detect possible, category agnostic object locations

◦ Crop all of them from the image

◦ Assign a per category score for each of them

◦ Keep the ones with score more than a threshold

◦ Success: > 50% overlap with ground truth

Agnostic to category specific detection
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o Training
◦ Crop objects from the images

◦ Train a classifier for each of the categories

o Inference
◦ Parse image at several locations and scales

◦ For each location compute category score

◦ Keep boxes with high enough score

◦ More thorough search

◦ Potentially more expensive (or maybe not)

Sliding window and direct classification
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o Training
◦ Crop objects from the images

◦ Train a classifier for each of the categories

o Inference
◦ Regress bounding box coordinates

◦ Cheap

◦ Not accurate enough

Sliding window and direct classification
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Convnets and 
object localization
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o Simple pipeline!

o Use the convnet as a feature extractor

o Given a bounding box, compute a “deep” feature

o Run an SVM (one per category) on the deep features

R-CNN [Girshick2013]
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o Simple pipeline!

o Use the convnet as a feature extractor

o Given a bounding box, compute a “deep” feature

o Run an SVM (one per category) on the deep features

o Warp cropped images to make them “square”

o Add some background context

o Very accurate!!!

o Unfortunately slow
◦ More than 60 seconds per image

R-CNN [Girshick2013]
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R-CNN results

R. Girshick, J. Donahue, T. Darrell, J. Malik,  Rich feature hierarchies for accurate object detection and semantic segmentation, arXiv 2013

+25%!!!!!
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R-CNN examples
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R-CNN examples
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o Observation: A Convnet is convolutional!!!

o Convolutions are location specific
◦ The same filter is applied on different locations

o R-CNN assumes that the image locations 
for different bounding boxes are different

o However, because of the convolutions the 
convolved image locations are shared 
between box proposals

o Can we reused the convolutional feature 
maps

Fast R-CNN
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o Do not compute forward propagate from scratch for each box

o Compute feature maps once

o Reuse the convolutions for different boxes

Fast-RCNN
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o Do not compute forward propagate from scratch for each box

o Compute feature maps once

o Reuse the convolutions for different boxes

o Region-of-Interest pooling
◦ Don’t define the stride absolutely (e.g. sample every 4 pixels)

◦ Define stride relatively (box width divided by predefined number of “poolings” T)

◦ Fixed length vector

Fast-RCNN

T=5
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o Do not compute forward propagate from scratch for each box

o Compute feature maps once

o Reuse the convolutions for different boxes

o Region-of-Interest pooling
◦ Don’t define the stride absolutely (e.g. sample every 4 pixels)

◦ Define stride relatively (box width divided by predefined number of “poolings” T)

◦ Fixed length vector

o End-to-end training!

o More accurate

o Much faster
◦ Less than a second per image

o Still, external box proposals needed

Fast-RCNN

T=5
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Fast-RCNN results

R. Girshick, Fast R-CNN, CVPR, 20152013
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Fast-RCNN results

R. Girshick, Fast R-CNN, CVPR, 20152013

+4%!!!!!
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Fast-RCNN results

R. Girshick, Fast R-CNN, CVPR, 20152013

+4%!!!!!
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o Not single number output (“car” vs. “not car”)
◦ Pixel-wise output (as many outputs, as inputs)

Fully Convolutional Networks [LongCVPR2014]
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o Not single number output (“car” vs. “not car”)
◦ Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a 
convolution
◦ The size of the convolution filter equals the size of the 

whole layer

Fully Convolutional Networks [LongCVPR2014]

⋅

, ,

≡
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“Slices” of 1-of-1000 
Classification layer 
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o Not single number output (“car” vs. “not car”)
◦ Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a 
convolution

◦ The size of the convolution filter equals the size of the whole 
layer

o Upsampling
◦ Deconvolution filters learnt with

backpropagation

◦ Deconvolution filter return feature maps
larger than input

◦ Outputs progressively bigger till they
reach input size

Fully Convolutional Networks [LongCVPR2014]

“Slices” of 1-of-1000 
Classification layer 
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Fully Convolutional Networks architecture

o Connect intermediate layers to output
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Fully Convolutional Networks results
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o Identity verification
◦ Find whether two pictures belong to the same person

o Essentially similar to metric learning
◦ Find a projection matrix (metric), with which distances between different person faces 

are smaller than distances from different persons

o Triplet “Euclidean” loss

𝐸 𝑊′ =  

𝑎,𝑝,𝑛 ∈𝑇

max 0, 𝑎 − 𝑥𝑎 − 𝑥𝑛 2
2 + 𝑥𝑎 − 𝑥𝑝 2

2
, 𝑥𝑖 = 𝑊′

𝜑(ℓ𝑖)

𝜙 ℓ𝑖 2

o Start from very deep architecture

o More similar to classification, but face detection already very accurate

Deep Face Recognition
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Deep Face Recognition results



Image Segmentation using Conditional 
Random Fields

Deep Learning @ UvA 
Patrick Putzky

[Shotton et al., 2009]



Outlook

[Krähenbühl & Koltun, 2011]



Conditional Random Fields
p(y|x) = 1

Z(x)

exp(�E(y|x))

E(y|x) =
X

c2CG

 c(y|x)

y

x

General form

E(y|x) =
X

i

 u(yi|x)

Unary form

E(y|x) =
X

i

 u(yi|x)

+
X

i<j

 p(yi, yj |x)

Pairwise CRF



Unary models
E(y|x) =

X

i

 u(yi|x)

- Per pixel predictions 
- No interactions between neighbouring class predictions

Example: Fully Convolutional Networks 

[Long et al., 2015]

x y



Unary models

- Per pixel predictions 
- No interactions between neighbouring class predictions 
- No object coherency 

Fully Convolutional Networks: Fail Case

[Zheng et al., 2015]



Adjacency CRFs
E(y|x) =

X

i

 u(yi|x)| {z }
unary potential

+
X

j2N (i)

 p(yi, yj |x)| {z }
pairwise potential

- define a neighbourhood graph 
- arises naturally in images 
- efficient inference 
- only local interactions
- graph is not trainable



Adjacency CRFs

- No distinction between classes

Popular: Potts model

 p(yi, yj |x) = 1[yi 6=yj ]

�
w1 exp

�
��kxi � xjk2

�
+ w2

�

- Shrinking bias
- Limited edge-awareness



Fully connected CRFs

- Edges between all pairs of nodes 
- Long-range interactions

E(y|x) =
X

i

 u(yi|x)| {z }
unary potential

+
X

j 6=i

 p(yi, yj |x)| {z }
pairwise potential



Fully connected CRFs

- Strength of edges define connectivity 
- No more shrinking bias 
- N2 edges -> computationally expensive

E(y|x) =
X

i

 u(yi|x)| {z }
unary potential

+
X

j 6=i

 p(yi, yj |x)| {z }
pairwise potential



Gaussian Edge Potentials

km (fi, fj) = exp

✓
�1

2

(fi � fj)
TQm (fi � fj)

◆

 p(yi, yj |x) = 1[yi 6=yj ]

�
w1 exp

�
��kxi � xjk2

�
+ w2

�
Potts model

 p(yi, yj |x) = µ(yi, yj)
MX

m=1

wmkm (fi, fj)

Generalisation

With Gaussian kernels

µ(yi, yj) = 1[yi 6=yj ]Potts
µ(yi, yj)Label compatibility models interactions between classes

trainable parameters



Gaussian Edge Potentials
km (fi, fj) = exp

✓
�1

2

(fi � fj)
TQm (fi � fj)

◆

x f

km



Gaussian Edge Potentials
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Edge potentials as 
convolutions

Ep(y|x) =
X

i

X
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Edge potentials as 
convolutions

- If km is a symmetric kernel the pairwise potential can be implemented as a convolution 
- Gaussian has most probability mass around  a close region about it’s mean 
- Approximate this using a truncated Gaussian

[Wikipedia]
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k̃m

Gaussian Edge Potentials
km (fi, fj) = exp
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- Convolution in a high dimensional space



Permutohedral Lattices for 
convolution in high dimensional space

fi-     can be high dimensional 
- as a result the feature space will be sparsely populated

Problem:

[Adams et al., 2010]
- Convolutions in               and            for separable filters 
- Naive convolution on a grid is O(2dn)

O(d2n) O(dn)



Efficient inference in dense 
CRFs

P (y|x) ⇡ Q(y|x) =
Y
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Q(yi|x)Mean-field approximation:
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Mean field updates:

[Krähenbühl & Koltun, 2011]

- Naively implemented an update over all Qi costs O(N2) 
- With the approximations from before it is O(N)

Hard to evaluate



Efficient inference in dense 
CRFs
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Mean field updates:

[Krähenbühl & Koltun, 2011]

10 Iterations own 0.2 seconds



Efficient inference in dense 
CRFs

[Krähenbühl & Koltun, 2011]



What are these features?
km (fi, fj) = exp
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fi =

✓
pi

xi

◆

pi position vector
xi vector of pixel values

- This is known as bilateral filtering 
- It is an edge-preserving approach to filtering

[Adams et al., 2010]



CRFs as RNNs

Demo: http://www.robots.ox.ac.uk/~szheng/crfasrnndemo

[Zheng et al., 2015]

- Mean field iterations as steps in an RNN 
- End-to-end training

http://www.robots.ox.ac.uk/~szheng/crfasrnndemo


Learning the filters

[Kiefel et al., 2015]



Summary
- We can improve performance of segmentation 

algorithms by adding pairwise interactions 
between pixel predictions 

- Approximate Inference in dense CRFs can be 
done efficiently 

- End-to-end learning can improve performance 
- Pairwise kernels can be learned and lead to 

potential improvements 
- These methods could have an impact in other 

problem domains
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