


Previous Lecture

o What do convolutions look like?
o Build on the visual intuition behind Convnets
o Deep Learning Feature maps

o Transfer Learning
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Lecture Overview

o What is object detection, segmentation and structured output
o How to use a convnet to localize objects?

o What is the relation convnets and Conditional Random Fields (CRF)
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Object localization
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Object localization

o The task of discovering the location of one or more object in an image

o lmages
o Detect spatial object location

o Videos
o Detect spatial object location
o Optionally, detect object temporal location

o Generic
> Define the same model for all types of categories

o Specific
> Define specialized models for particular categories (“face”, “pedestrian”)
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Why is localization important?

o Robotics
o Self-driving cars

o Better classification

° |solates the object signal from the
background signal

o Huge pictures

o E.g. in astronomy pictures have ultra-
high resolution

o Detecting a new star or galaxy goes
beyond image classification
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Localization granularity

o Box level, aka object detection
° Predict a bounding box surrounding the objects

o Pixel level, aka semantic segmentation
> Predict the category label for each pixel

o Pixel and instance level
o Predict a free-form delineation around object instances and predict their category
° Separate between mstancesofthe same category (much more d|f|cult| -

lmage classification Olject detection Pixel classifieation Plxel and tnstance
classification
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Localization supervision

o Supervised (category specific)
o Examples for “bicycle”, “dog”, “person”, “face”

o Unsupervised (category agnostic)
> aka bounding box/segment proposal algorithm
> Method typically returns hundreds possible object locations

Supervised (eategory spestfle)
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Agnostic to category specific detection

o Training
o Crop objects from the images
° Train a classifier (SVM) for each of the categories

o Inference
o Detect possible, category agnostic object locations
o Crop all of them from the image
> Assign a per category score for each of them
o Keep the ones with score more than a threshold
> Success: > 50% overlap with ground truth
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Agnostic to category specific detection
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o Inference
o Detect possible, category agnostic object locations

o Crop all of them from the image

> Assign a per category score for each of them
o Keep the ones with score more than a threshold
> Success: > 50% overlap with ground truth
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Sliding window and direct classification

o Training
o Crop objects from the images
° Train a classifier for each of the categories

o Inference
o Parse image at several locations and scales
> For each location compute category score
o Keep boxes with high enough score
> More thorough search

o Potentially more expensive (or maybe not)
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Sliding window and direct classification

o Training
o Crop objects from the images
° Train a classifier for each of the categories

o Inference
o Regress bounding box coordinates
o Cheap
> Not accurate enough
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forward /inference

Convnets and
object localization

backward /learning
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R-CNN [Girshick2013]

o Simple pipeline!

o Use the convnet as a feature extractor

o Given a bounding box, compute a “deep” feature

o Run an SVM (one per category) on the deep features

R-CNN: Regions with CNN features

3 ;':5: wamid rc:g}(_)r_l _______________ ﬂl aeroplane? no. |

j -':Tj_:}:if -l>| person? yes. |
." 5% CNN\ :
; 4 A et 4' tvmonitor? no. |
1 Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions
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R-CNN [Girshick2013]

o Simple pipeline!

o Use the convnet as a feature extractor

o Given a bounding box, compute a “deep” feature

o Run an SVM (one per category) on the deep features

o Warp cropped images to make them “square”

o Add some background context R-CNN: Regions with CNN features

i : e = warped region aeroplane? no. |

o Very accuratel!!! il S A e N ;”I s
:g _1" ' ST §->| person? yes. |

== ™ CNN'\ :
O Unfortunately SlOW - 2N \ ) s "‘, ‘\ &t 4|tV]jnoni’[()r?no,|

> More than 60 seconds per image 1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions
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R-CNN results

—I—ZZS%I!I!!
VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant shee tv | mAP
R-CNN pool; 51.8 60.2 364 27.8 232 528 606 492 183 478 443 408 56.6 587 424 234 46.1 55.7|44.2
R-CNN fcg 59.3 61.8 43.1 34.0 25.1 53.1 606 52.8 21.7 478 427 478 525 585 446 256 483 58.0 | 46.2
R-CNN fcr 57.6 579 385 31.8 237 51.2 589 514 200 505 409 46.0 51.6 559 433 233 4381 574|447
R-CNN FT pool; |58.2 63.3 379 27.6 26.1 54.1 669 514 267 555 434 43.1 577 590 458 28.1 508 ] N 564|473
R-CNN FT fcg 63.5 66.0 479 37.7 299 625 702 60.2 320 579 470 535 60.1 642 522 313 550 500 57. 0] 53.1
R-CNN FT fc; 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 585 465 56.1 60.6 668 542 315 528 489 57.9 8&4.'N 54.2
R-CNN FT fc; BB | 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 344 635 545 61.2 69.1 68.6 58.7 334 629 51.1 625 M\Q 58.5
DPM v5 [20] 33.2 603 10.2 16.1 273 543 582 23.0 200 24.1 26.7 127 58.1 482 432 120 21.1 36.1 46.0 43.5\‘33.7
DPM ST [25] 23.8 58.2 105 85 27.1 504 520 7.3 192 228 18.1 8.0 559 448 324 133 159 228 462 449 29.1
DPM HSC [*1] 32.2 583 115 163 306 499 548 235 215 27.7 340 137 58.1 516 399 124 235 344 474 452|343

R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, arXiv 2013
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R-CNN examples
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R-CNN examples
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Fast R-CNN

o Observation: A Convnet is convolutional!!l

o Convolutions are location specific
> The same filter is applied on different locations

o R-CNN assumes that the image locations
for different bounding boxes are different

o However, because of the convolutions the
convolved image locations are shared
between box proposals

o Can we reused the convolutional feature
maps
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Fast-RCNN

o Do not compute forward propagate from scratch for each box
o Compute feature maps once
o Reuse the convolutions for different boxes
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Fast-RCNN

o Do not compute forward propagate from scratch for each box
o Compute feature maps once

o Reuse the convolutions for different boxes

o Region-of-Interest pooling
> Don’t define the stride absolutely (e.g. sample every 4 pixels)
> Define stride relatively (box width divided by predefined number of_”poolings” T)

° Fixed length vector

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES CONVNETS FOR OBJECT DETECTION, SEGMENTATION AND STRUCTURED OUTPUTS - 40



Fast-RCNN

o Do not compute forward propagate from scratch for each box
o Compute feature maps once

o Reuse the convolutions for different boxes
o Region-of-Interest pooling
> Don’t define the stride absolutely (e.g. sample every 4 pixels)

o Define stride relatively (box width divided by predefined number of “poolings” T)
> Fixed length vector

o End-to-end training!

o More accurate

o Much faster
o Less than a second per image

o Still, external box proposals needed
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Fast-RCNN results

method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv | mAP
SPPnet BB [ 1] 07\ diff | 73.9 723 625 515 444 744 73.0 744 423 73.6 577 703 746 743 542 340 564 564 679 735|631
R-CNNBB [10] |07 734 770 634 454 44.6 75.1 78.1 79.8 405 737 622 794 781 731 642 356 668 672 704 711 | 66.0
FRCN [ours] 07 745 783 692 532 366 773 782 820 407 727 679 796 792 73.0 690 30.1 654 702 758 658|669
FRCN [ours] 07\ diff | 74.6 79.0 686 57.0 393 795 78.6 819 48.0 74.0 674 80.5 80.7 741 69.6 318 67.1 684 753 655| 68.1
FRCN [ours] 07+12 |77.0 78.1 693 594 383 81.6 78.6 86.7 428 78.8 68.9 847 820 76.6 69.9 318 70.1 74.8 804 704 | 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOCO7 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOCI12 trainval. "SPPnet results were prepared by the authors of [11].

Fast R-CNN R-CNN SPPnet
S M L S M L L
train time (h) 1.2 20 95 22 28 84 25
train speedup |18.3x 14.0x 88x | 1x Ix 1Ix| 34x
test rate (s/im) | 0.10 0.15 0.32] 98 12.1 47.0 2.3
o> with SVD 0.06 008 0.22 - - - -
test speedup 98x  80x 146x | 1x 1Ix 1Ix 20x
> with SVD | 169x  150x 213x - - - -
VOCO7 mAP 57.1 592 66.9|58.5 60.2 66.0 63.1
> with SVD 56.5 587 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-
CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
R. Girshick, Fast R-CNN, CVPR, 20152013 SPPnet uses the five scales specified in [11]. TTiming provided by
the authors of [| |]. Times were measured on an Nvidia K40 GPU.
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> with SVD 56.5 58.7 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-
CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
R. Girshick, Fast R-CNN, CVPR, 20152013 SPPnet uses the five scales specified in [11]. TTiming provided by
the authors of [| |]. Times were measured on an Nvidia K40 GPU.
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

“tabby cat”

convolutionalization

; tabby cat heatmap
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a
convolution
> The size of the convolution filter equals the size of the

whole layer
II’II’II
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a
convolution
> The size of the convolution filter equals the ciza nf tha

“tabby cat”
whole layer
s A" 1,‘96».0_9 5.0:\,0_°°

B l |
convolutlonahzatlon

¢ tabby cat heatmap
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a
convolution
> The size of the convolution filter equals the ciza nf tha

whole layer
g ey 1,‘96».0_9 5.0:\,0_°°

convolutlonahzatlon

“tabby cat”

tabby cat heatmap
sl -

Ccla
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a
convolution
> The size of the convolution filter equals the ciza nf tha

whole layer
g ey 1,‘96».0_9 5.0:\,0_°°

convolutlonahzatlon

“tabby cat”

tabby cat heatmap

” E
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a
convolution
> The size of the convolution filter equals the ciza nf tha

whole layer
g ey 1,‘96».0_9 ug\;@

convolutlonahzatlon

“tabby cat”

’ tabby cat heatmap
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Fully Convolutional Networks [LongCVPR2014]

o Not single number output (“car” vs. “not car”)
° Pixel-wise output (as many outputs, as inputs)

o A fully connected layer can be viewed as a

convolution
> The size of the convolution filter equals the size of the whole
layer “tabby cat”
o Upsampling @m@@w@_ﬁg@ PRl

\

convolutionalization

> Deconvolution filters learnt with
backpropagation

tabby cat heatmap

> Deconvolution filter return feature maps
larger than input

o0

> Outputs progressively bigger till they ' s SR
reach input size ' «' 7
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Fully Convolutional Networks architecture

o Connect intermediate layers to output
32x upsampled

image convl pooll conv2 pool2 conv3 pool3 conv4 pool4 convh pool5  conv6-7 prediction (FCN-32s)

16x upsampled

2 7
* conv prediction (FCN-16s)
pool4
8x upsampled
4x conv7 prediction (FCN-8s)
2x poold [ [ |

1 I

p0013l \ |

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from pool 3, at stride 8, provide further precision.
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Fully Convolutional Networks results

Table 3. Our fully convolutional net gives a 20% relative improve-
ment over the state-of-the-art on the PASCAL VOC 2011 and 2012
test sets and reduces inference time.

mean [U mean [U inference
VOC2011 test VOC2012 test time
R-CNN [17] 479 - -
SDS [17] 52.6 51.6 ~ 50 s
FCN-8s 62.7 62.2 ~ 175 ms
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Deep Face Recognition

o |dentity verification
° Find whether two pictures belong to the same person

o Essentially similar to metric learning

° Find a projection matrix (metric), with which distances between different person faces
are smaller than distances from different persons

o Triplet “Euclidean” loss
2
E(W") = Z max{O,a — |x, — x,|5 + ‘xa — xp‘z},xi =W’
(a,pn)€ET
o Start from very deep architecture

o)
[P (£)],

o More similar to classification, but face detection already very accurate
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Deep Face Recognition results

No. Method Images |Networks | Acc.
1 | Fisher Vector Faces [ - - 93.10
2 DeepFace ] 4M 3 97.35
3 Fusion [E] 500M 5 08.37
4 DeepID-2,3 200 9947
S FaceNet [[3] 200M 1 08.87
6 |FaceNet [[[Q] + Alignment| 200M 1 99.63
7 Ours Q26M | 1  [9895
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sky building
&

road airplane

grass

3:?;:‘; building  grass tree cow sheep sky airplane ~ water face car

bicycle = flower sign bird book chair. road cat dog body boat

[Shotton et al., 2009]

Image Segmentation using Conditional
Random Fields

Deep Learning @ UvA
Patrick Putzky




Outlook

road grass
(b) Unary classifiers (e) Fully connected CRF,

[Kr&henbuhl & Koltun, 2011]



Conditional Random Fields

pyIx) = o exp(—E(y}o)

General form Unary form Pairwise CRF

‘B =




Unary models
E(y|x) = Z% Yi|x)

Example: Fully Convolutional Networks

O O OO
O O OO
O O O O
O O O O

- Per pixel predictions Long etal,, 2015]
- No Interactions between neighbouring class predictions



Unary models

Fully Convolutional Networks: Fail Case

FCN-8s Ground Truth

[Zheng et al., 2015]

Per pixel predictions
No interactions between neighbouring class predictions
No object coherency



Adjacency CRFs

E(y|x) = Z P ?/z‘X T Z Vp(Yi, yj[X)
JEN (1)

unary potentlal pairwise potential

— - define a neighbourhood graph
| | | - arises naturally in images

SR — efficient inference
‘ ‘ ‘ only local interactions

Y - graph is not trainable



Adjacency CRFs

Popular: Potts model

Up(Yis Y5 1X) = Lpy,zy,) (w1 exp (=Blxs — x;[%) 4 wo)

grid crf grid crf

No distinction between classes - Shrinking bias
Limited edge-awareness
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Edges between all pairs of nodes

Long-range interactions




Fully connected CRFs
E(Y\X)ZZ

wu(yz‘x) _l'z wp(yiayj‘x)

unary potential

T N ——
J 71

pairwise potential

fully connected fully connected

- Strength of edges define connectivity
- No more shrinking bias
- N2 edges -> computationally expensive



Gaussian Edge Potentials

Potts model
Vp(Yi, Yj|X) = L1y, £y,] (w1 CXp (—5“Xz — XjHQ) + w2)

Generalisation

=

Up (i, Y5 1%) =|0(yi, y5)| > [wmlkm, (£, ;)

3
}l

With Gaussian kernels trainable parameters

—1m—@mem—@Q

km (fz, fj) — €XP

2

7\

Label compatibility £(¥:,y;) models interactions between classes
Potts 11(yi, Ys) = Ly,
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cage potentials as
convolutions

E,(y|x) = Z Z@Dp(yi, yjlx)
i g



cage potentials as
convolutions

E,(y|x) = Z Z@Dp(yi, yjlx)
i g

M
=D D 1iys) Y Wik (£i, 1)
i g m=1



Edge potentials as
convolutions



Edge potentials as
convolutions



Edge potentials as
convolutions

99.7% of the data are within

< 3 standard deviations of the mean
Y|X E E ﬁ% yZ7yj|X 95% within

2 standard deviations

: J#Z 68% within
<— 1 standard —>|
deviation
T ZZM yuyg Z mkm (f’uf])
e )
_Zwmzzluy'wyj fzaf)
1 j;éz
= Z W ) Zu@uyj)km (£, 55) — 1y, 9o (81, 5;)
m=1 7 j—l u—30 u— 20 U— 0O U u+ao U+ 20 u+ 3o
M 1—N o .
Wikipedia
= wmz Z (Vi Yie1) b (£, £i21) — (s, yi ) b (£, £3) [ P ]
m=1 1 l=1—1

If km is @ symmetric kernel the pairwise potential can be implemented as a convolution
Gaussian has most probability mass around a close region about it's mean
Approximate this using a truncated Gaussian



Gaussian Edge Potentials
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Convolution in a high dimensional space



Permutohedral Lattices for
convolution in high dimensional space

Problem:
f; can be high dimensional
as a result the feature space will be sparsely populated

o } } © a
o | < | ‘®. . B ) @ @ @ PR

Splat Blur Slice
[Adams et al., 2010]

Convolutions in (’)(dQn) and O(dn) for separable filters
Naive convolution on a grid is O(2%n)



Efficient Inference In dense
CRFs

p(ylx) = Z(lx) eXp ( Z¢U(yi’X) - Z¢p(yiaij))

J7#1

Hard to evaluate

Mean-field approximation: Q(y|x) = HQ y; %)

Mean field updates:

@(yil)Zl,exp(wu( i) = 3w (l) Y wm Yk (£ £7) Q5 (1 )
¢ l'el m=1 VE=)
Naively implemented an update over all Q; costs O(N2)

With the approximations from before it is O(N)
Krahenbuhl & Koltun, 2011]




Efficient Inference In dense
CRFs

Mean field updates:

O iterations 1 iteration 2 iterations 10 iterations

(b) Distributions Q (X ; =“bird”) (top) and Q(X; =“sky”) (bottom)

10 lterations own 0.2 seconds
[KréahenbUhl & Koltun, 2011]



Efficient Inference In dense
CRFs

Unary Grid CRF FC CRF

"
P .
a y
T 5 ¢ building building SkY
- PR Loy o3 tree tree ' tree
B i i
4 y e ( .
(o) e S grass grass grass

Time | Global | Avg
Unary - 84.0 | 76.6

Grid CRF 1s 84.6 77.2
FCCRF| 0.2s | 86.0 | 78.3
> [Krahenbiihl & Koltun, 2011]




What are these features”

o (5 £5) = exp (=5 (8~ £)7 Qu (6~ )

Input Output
fzz(pl) Q—IIIIDI _llllllb
X?: ©0
Splat J Blur \! Slice
Pi position vector [Adams et al., 2010]

X; vector of pixel values

This is known as bilateral filtering
't Is an edge-preserving approach to filtering



Input Image |

CRFs as RNNSs

Mean-field

Unary Potential U

Iteration

Hz = fo(U,Hy, 1)

H,

Softmax
Normalisation

Mean field iterations as steps in an RNN

[Zheng et al., 2015]

End-to-end training

PASCAL VOC

Our approach achieved state-of-the-art comparable
performance in PASCAL VOC semantic image seg-
mentation dataset, with mean intersection-over-union
(I0U) score 74.7% on VOC 2012 test set.

Input Image FCN-8s Deeplab CRF-RNN Ground Truth

N e =Y
1 V. .

: \
S \

of I

* ]
=l -y
1) - - red )
. i M
L ~. U

B-ground Aeroplane Bicycle
Car Cat Chair

Motorbike ersc Potted-Plant

Demo: http://www.robots.ox.ac.uk/~szheng/crfasrnndemo



http://www.robots.ox.ac.uk/~szheng/crfasrnndemo

|_earning the filters

+ MF-1step + MF-2 step + loose MF-2 step
Semantic segmentation (IoU) - CNN [16]: 72.08 / 66.95
Gauss CRF +2.48 +3.38 +3.38 / +3.00
Learned CRF +2.93 +3.71 +3.85/+3.37
Material segmentation (Pixel Accuracy) - CNN [11]: 67.21/69.23
Gauss CRF  +7.91/ +6.28 +9.68 / +7.35 +9.68 / +7.35
Learned CRF +9.48 / +6.23 +11.89/+6.93 +11.91/+6.93

Table 2. Improved mean-field inference with learned poten-
tials. (top) Average IoU score on Pascal VOCI12 validation/test
data [20] for semantic segmentation; (bottom) Accuracy for all
pixels / averaged over classes on the MINC test data [1 1] for ma-  Figure 4. Segmentation results. An example result for semantic

terial segmentation. (top) and material (bottom) segmentation. (c) depicts the unary
results before application of MF, (d) after two steps of loose-MF
with a learned CRF. More examples with comparisons to Gaussian
pairwise potentials are in Sec. C.5 and Sec. C.6.

(a) Input (b) Ground Truth (c) CNN (d) +looseMF

[Kiefel et al., 2015]



summary

- We can improve performance of segmentation
algorithms by adding pairwise interactions
between pixel predictions

- Approximate Inference in dense CRFs can be
done efficiently

- End-to-end learning can improve pertormance

- Pairwise kernels can be learned and lead to

potential Improvements

- These methods could have an impact in other
problem domains
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