

Group Equivariant Convolutional Networks

Outline

1. Symmetry \& Deep Learning:

* Statistical Power from Symmetry
* Invariance vs Equivariance
* Equivariance in Deep Learning

2.Group Theory

* Symmetry, Groups
* Subgroups, Cosets, Quotients
* Wallpaper groups

3. Group Equivariant Networks

* CNNs and translation equivariance
* G-Convolutions
* Equivariance of non-linearities

* Equivariance of G-pooling operator
- Backpropagation

4. Algorithms

* Spatial \& Spectral G-convs

5. Results

Background:
 Invariance, Equivariance \& Symmetry

Symmetry in ML

A symmetry of a function is a transformation that leaves that function invariant

In ML: look for symmetries of densities, factors, label functions, ...

Invariance

The "Picasso Problem"

Equivariance

Hinton, G., Krizhevsky, A., \& Wang, S. (2011). Transforming auto-encoders. ICANN-11
Lenc, K., \& Vedaldi, A. (2015). Understanding image representations by measuring their equivariance and equivalence (CVPR) Cohen, T., \& Welling, M. (2014). Learning the Irreducible Representations of Commutative Lie Groups. (ICML)

Symmetry in DL

* Why do CNNs work so well?
* They exploit translational symmetry
* In deep nets, each layer should preserve the symmetry

* The representation Φ should be an
 equivariant map for the symmetry group.

ConvNets are Translation Equivariant

Are ConvNets Rotation-Equivariant?

CNNs want to be Equivariant

Visual Group Theory

Symmetries

$+$

Groups

A group is:

- a set, G,
- together with a binary operation that combines two elements a, b in G and produces another element ab,
- that satisfies the group axioms:

1. Identity: there exists an element e in G, such that for every element a in $G, e a=a e=a$
2. Associativity: For all a, b and c in $\mathrm{G},(\mathrm{a} b) \mathrm{c}=\mathrm{a}(\mathrm{b} c)$.
3. Closure: for all a, b in G , the composition ab is also in G
4. Inverse: for each a in G , there exists an element b in G such that $\mathrm{ab}=\mathrm{ba}=\mathrm{e}$

The Symmetries of an Object form a Group

Examples

Discrete Groups

Galois Groups

Topological Groups

Space Groups

Cayley Graphs

\dagger

תนป

Subgroups

A subgroup of a group is a subset of said group, that is itself a group

\checkmark

\checkmark

Cosets

The left coset of subgroup H in G with respect to g is the set:

$$
g H=\{g h \mid h \in H\}
$$

Question: when is a coset a subgroup?

Question: do the cosets always partition the group?

Quotients

The quotient of G by subgroup H is the set of cosets of H in G

$$
G / H=\{g H \mid g \in G\}
$$

left cosets of H are near each other

collapse cosets into single nodes

Wallpaper Groups

pl	pg	pgg	pm	cm
cmm	pmg	pmm	p^{2}	p4
p4m	$p^{4 g}$	p^{3}	p3mI	p31m
p6	p6m			

The Groups p $4 \& p 4 m$

$$
\begin{aligned}
g(m, r, u, v) & =\left[\begin{array}{ccc}
(-1)^{m} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (r \pi / 2) & -\sin (r \pi / 2) & 0 \\
\sin (r \pi / 2) & \cos (r \pi / 2) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & u \\
0 & 1 & v \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(-1)^{m} \cos (r \pi / 2) & -(-1)^{m} \sin (r \pi / 2) & u \\
\sin (r \pi / 2) & \cos (r \pi / 2) & v \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The Goups p6 \& p6m

$$
\begin{aligned}
g(m, r, u, v) & =\left[\begin{array}{ccc}
(-1)^{m} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (r \pi / 3) & -\sin (r \pi / 3) & 0 \\
\sin (r \pi / 3) & \cos (r \pi / 3) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & u \\
0 & 1 & v \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(-1)^{m} \cos (r \pi / 3) & -(-1)^{m} \sin (r \pi / 3) & u \\
\sin (r \pi / 3) & \cos (r \pi / 3) & v \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Group Equivariant CNNs

How to think about CNNs

"A stack of feature maps is a 3D array"
"Mmm... Donuts"

"A stack of feature maps is a vector-valued function"

$$
f^{l}: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K_{l}}
$$

"Genus one topological space"

G-Equivariant Correlation on Z ${ }^{2}$

Standard correlation:
"translate canonical filter and compute inner product"

G-Correlation:

"transform canonical filter and compute inner product"

Translational Correlation

* Translation

$$
\left[T_{s} f\right](x)=f(x-s)
$$

* Correlation

$$
[f \star \psi](s)=\sum_{x \in \mathbb{Z}^{2}} \sum_{k=1}^{K} f_{k}(x)\left[T_{s} \psi\right]_{k}(x)
$$

* Equivariance

$$
\left[T_{s} f\right] \star \psi=T_{s}[f \star \psi]
$$

Group Correlation on Z^{2}

* Transformation

$$
\left[T_{g} f\right](x)=f\left(g^{-1} x\right)
$$

* G-Correlation

$$
[f \star \psi](g)=\sum_{x \in \mathbb{Z}^{2}} \sum_{k=1}^{K} f_{k}(x)\left[T_{g} \psi\right]_{k}(x)
$$

* Equivariance

$$
\left[T_{g} f\right] \star \psi=T_{g}[f \star \psi]
$$

Feature Transformation Law (p4)

$$
\left[\begin{array}{cc}
R\left(\theta^{\prime}\right) & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
R(\theta) & t \\
0 & 1
\end{array}\right] \quad=\left[\begin{array}{cc}
R\left(\theta-\theta^{\prime}\right) & R\left(-\theta^{\prime}\right) t \\
0 & 1
\end{array}\right]^{-1}
$$

Feature Transformation Law (p4m)

$$
\left[T_{g} f\right] \star \psi=T_{g}[f \star \psi]
$$

G-Conv is Non-Commutative

$$
\begin{aligned}
& \begin{array}{l}
G=p 4 \\
f=4 \\
p s i=
\end{array} \\
& \begin{array}{ll|l|l|l}
f \star \psi & 1 & - & 1 & - \\
\psi \star f & & & 1 & 1 \\
\cline { 2 - 4 } & & & 1 \\
\hline
\end{array}
\end{aligned}
$$

Same information content: $f \star \psi\left(g^{-1}\right)=\psi \star f(g)$

Group Correlation on G

* Transformation

$$
\left[T_{g} f\right](h)=f\left(g^{-1} h\right)
$$

* G-Correlation

$$
[f \star \psi](g)=\sum_{h \in G} \sum_{k=1}^{K} f_{k}(h)\left[T_{g} \psi\right]_{k}(h)
$$

* Equivariance

$$
\left[T_{g} f\right] \star \psi=T_{g}[f \star \psi]
$$

Non-linearities: Equivariant

Function Composition Commutes with Domain Transformations

$$
\nu \circ\left[T_{h} f\right]=\nu \circ\left(f \circ h^{-1}\right)=(\nu \circ f) \circ h^{-1}=T_{h}[\nu \circ f]
$$

Strideless G-Pooling: Equivariant

Max-pool over neighborhood gU of g:

$$
\operatorname{Pf}(g)=\max _{k \in g \cdot U} f(k)
$$

Pooling Operator Commutes with G-Action

$$
P T_{h}=T_{h} P
$$

Z^{2} pooling of a p6 feature map

Subsampling

Subsample on a subgroup H of G

$$
2 \mathbb{Z}^{2} \subset \mathbb{Z}^{2}
$$

0		0		0
0		0		0
0		0		0

$$
\begin{gathered}
C^{4} \ltimes 2 \mathbb{Z}^{2} \subset C^{4} \ltimes \mathbb{Z}^{2} \\
C^{4} \subset C^{4} \ltimes \mathbb{Z}^{2} \\
\mathbb{Z}^{2} \subset C^{4} \ltimes \mathbb{Z}^{2}
\end{gathered}
$$

Coset Pooling

Choose pooling domain U to be a subgroup H

$$
g H=\{g h \mid h \in H\}
$$

Pooled feature map is constant on cosets

$$
P f(g h)=\max _{k \in g h H} f(k)=\max _{k \in g H} f(k)
$$

That is, the pooled feature map is a function on the quotient G / H

Example: p4 Coset Pooling

p4 feature map array

Pool over $U=C^{4}$

$\mathrm{p} 4 / \mathrm{C}^{4}=\mathrm{Z}^{2}$ feature map array

Pool over $U=\mathbb{Z}^{2}$

$\mathrm{p} 4 / Z^{2}=C^{4}$ feature map array

Pool over $U=C^{4} \ltimes 2 \mathbb{Z}^{2}$

$Z^{2} / 2 Z^{2}$ feature map array

Backprop

Input grad: involuted correlation $\quad \frac{\delta L}{\delta f_{j}^{l-1}(k)}=\frac{\delta L}{\delta f^{l}} \star \psi_{j}^{l *}(k)$

Filter grad: involuted convolution $\quad \frac{\delta L}{\delta \psi_{j}^{l i}(k)}=\frac{\delta L}{\delta f_{i}^{l}} * f_{j}^{l-1 *}(k)$

Algorithms: Spatial \& Spectral G-Convs

Naive Spatial Implementation

$$
\text { Compute: } r(g)=f * \psi(g)
$$

For each output channel j:
For each g in G-grid:
Warp filter: $\psi_{g}^{j}=T_{g} \psi^{j}$
Compute inner product:

$$
r^{j}[g]=\left\langle f, \psi_{g}\right\rangle=\sum_{i} \sum_{t_{x}} \sum_{t_{y}} \sum_{\theta} f^{i}\left[t_{x}, t_{y}, \theta\right] \psi_{g}^{j i}\left[t_{x}, t_{y}, \theta\right]
$$

Efficient Spatial Implementation

$$
[f \star \psi](g)=\sum_{h \in G} \sum_{k=1}^{K} f_{k}(h)\left[T_{g} \psi\right]_{k}(h)
$$

Decompose into translation and rotation:

$$
T_{g}=T_{t r}=T_{t} T_{r}
$$

To get output feature plane theta, do a planar convolution with rotated filter:

$$
[f \star \psi](t, r)=\sum_{h} \sum_{k} f(h) L_{t} \psi_{r}(h)
$$

Spectral G-Convolution

$$
\mathcal{F}
$$

$$
\begin{aligned}
& \mathcal{F}^{-1} \\
& \downarrow \\
& f * \psi
\end{aligned}
$$

Results: Rotated MNIST

Z2CNN	P4CNNRotPool	P4CNN
C(1,16,7)	$\mathrm{P} 4 \mathrm{Cl}(1,16,7)$	$\mathrm{P} 4 \mathrm{C} 1(1,10,3)$
MP(3,2)	$\mathrm{MPR}+\mathrm{MP}(3,2)$	$\mathrm{P} 4 \mathrm{C}(10,10,3)$
$\mathrm{C}(16,16,5)$	$\mathrm{P} 4 \mathrm{C} 1(16,16,5)$	$\mathrm{MP}(2,2)$
MP(3,2)	$\mathrm{MPR}+\mathrm{MP}(3,2)$	$\mathrm{P} 4 \mathrm{C}(10,10,3)$
$\mathrm{C}(16,32,5)$	$\mathrm{P} 4 \mathrm{C} 1(16,32,5)$	$\mathrm{P} 4 \mathrm{C}(10,10,3)$
MP(3,2)	$\mathrm{MPR}+\mathrm{MP}(3,2)$	$\mathrm{P} 4 \mathrm{C}(10,10,3)$
$\mathrm{C}(32,10,3)$	$\mathrm{C}(32,10,3)$	$\mathrm{P} 4 \mathrm{C}(10,10,3)$

Table 1. Rotated MNIST architectures.
Legend: C (in, out, sz) denotes a convolution layer with given number of input channels, output channels and kernel size, P4C1(in, out, sz) denotes first-layer P4 convolution while P4C denotes full P4 convolutions, MP(ksize, stride) denotes max pooling and MPR denotes max pooling over all 4 rotation angles.

SVM $^{[1]}$	NNet $^{[1]}$	DBN $^{[1]}$	RC-RBM $^{[2]}$	Z2CNN	P4CNNRP	P4CNN
10,38	17,62	12,11	3,98	5,68	3,90	$\mathbf{2 . 5 1}$

[1] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007) An empirical evaluation of deep architectures on problems with many factors of variation. (ICML)
[2] Schmidt, U., \& Roth, S. (2012). Learning rotation-aware features: From invariant priors to equivariant descriptors. (CVPR)

CIFAR-10

All-CNN

3×3 conv. 96 ReLU
3×3 conv. 96 ReLU
3×3 conv. 96 ReLU (stride 2)
3×3 conv. 192 ReLU
3×3 conv. 192 ReLU
3×3 conv. 192 ReLU (stride 2)
3×3 conv. 192 ReLU
1×1 conv. 192 ReLU
1×1 conv. 10 ReLU
Global averaging

P4-All-CNN

Replace conv by p4-conv, halve number of filters

Results

Model	Test Error (\%)
Maxout (Goodfellow et al., 2013)	11.68
NiN (Lin et al., 2013)	10.41
DSN (Lee et al., 2015)	9.69
All-CNN (our baseline)	9.82
All-CNN (Springenberg et al., 2015)	9.07
All-CNN-BN (added batchnorm)	9.44
P4-All-CNN (ours)	8.84
Elu (Clevert et al., 2015)	6.55

Work in Progress..

Projects / Theses / Internships

taco.cohen@gmail.com

Questions?

