

Group Equivariant Convolutional Networks

Taco Cohen

Outline

1. Symmetry & Deep Learning:

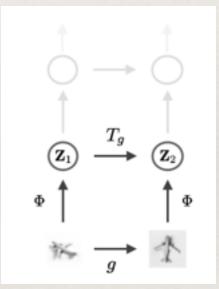
- * Statistical Power from Symmetry
- * Invariance vs Equivariance
- * Equivariance in Deep Learning

2. Group Theory

- Symmetry, Groups
- * Subgroups, Cosets, Quotients
- Wallpaper groups

3.Group Equivariant Networks

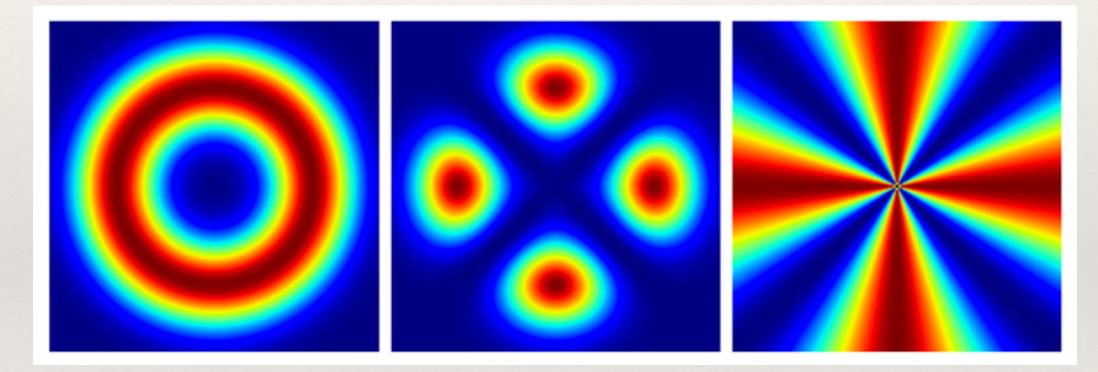
- * CNNs and translation equivariance
- * G-Convolutions
- * Equivariance of non-linearities
- * Equivariance of G-pooling operator
- Backpropagation
- 4. Algorithms
 - * Spatial & Spectral G-convs
- 5. Results



Background: Invariance, Equivariance & Symmetry

Symmetry in ML

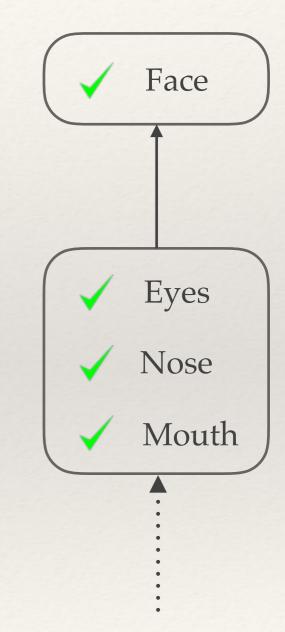
A symmetry of a function is a transformation that leaves that function invariant



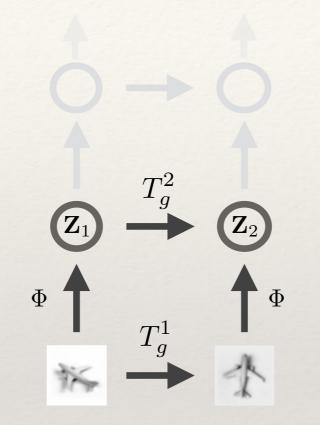
In ML: look for symmetries of densities, factors, label functions, ...

Shariff, R. (2015). Exploiting Symmetries To Construct Efficient Mcmc Algorithms.

Invariance



The "Picasso Problem"



$$\Phi(T_g^1 x) = T_g^2 \Phi(x)$$

Hinton, G., Krizhevsky, A., & Wang, S. (2011). Transforming auto-encoders. ICANN-11

Lenc, K., & Vedaldi, A. (2015). Understanding image representations by measuring their equivariance and equivalence (CVPR) Cohen, T., & Welling, M. (2014). Learning the Irreducible Representations of Commutative Lie Groups. (ICML)

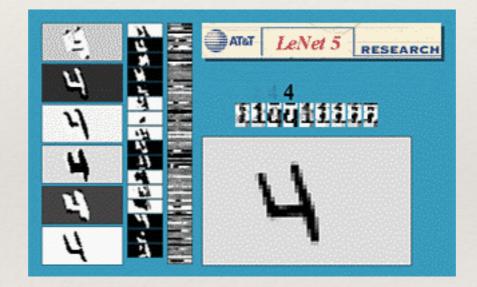
Symmetry in DL

- * Why do CNNs work so well?
- * They exploit translational symmetry
- * In deep nets, each layer should preserve the symmetry

* The representation Φ should be an *equivariant map* for the symmetry group.

ConvNets are Translation Equivariant

Are ConvNets Rotation-Equivariant?



CNNs want to be Equivariant

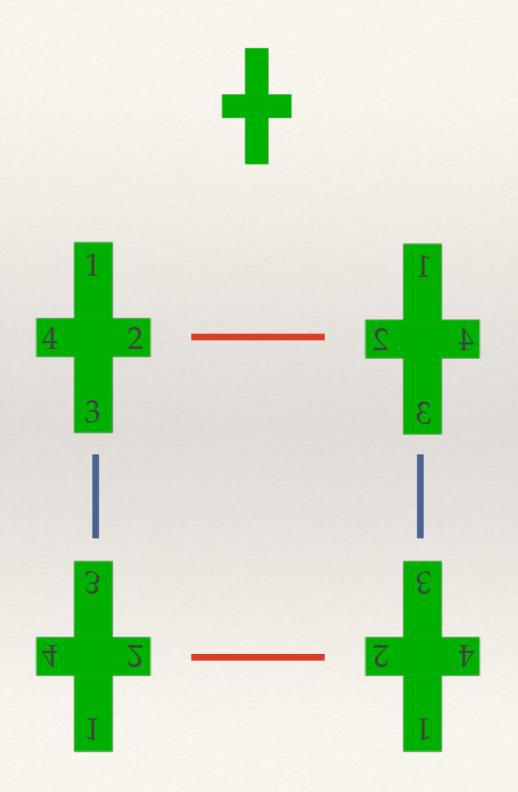
conv1_1: a fe	ew of the 64 f	ilters		
conv2_1: a fe	ew of the 128	filters		
conv3_1: a fe	w of the 256	filters	Destance of the second	
conv4_1: a fe	ew of the 512	filters		
conv5_1: a fe	ew of the 512	filters		
			1	
AT THE				

http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Visual Group Theory

With figures from "Visual Group Theory" by Nathan Carter (2009)

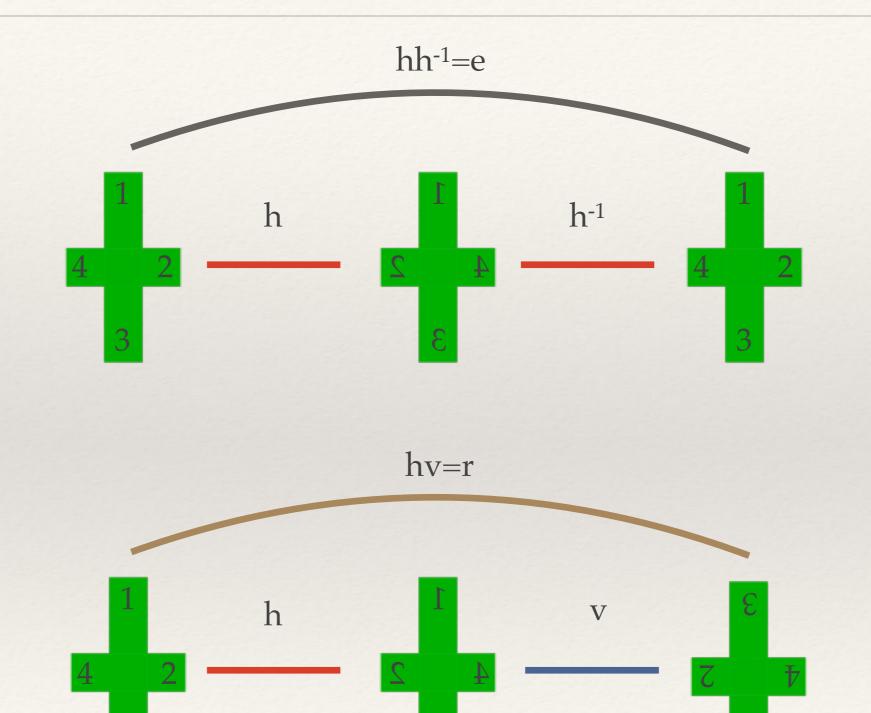
Symmetries



A group is:

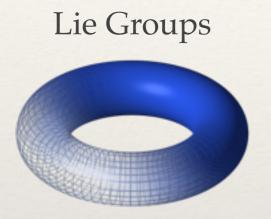
- a set, G,
- together with a binary operation that combines two elements a, b in G and produces another element ab,
- that satisfies the group axioms:
- **1. Identity:** there exists an element e in G, such that for every element a in G, ea = ae = a
- **2.** Associativity: For all a, b and c in G, (a b) c = a (b c).
- **3.** Closure: for all a, b in G, the composition ab is also in G
- **4. Inverse:** for each a in *G*, there exists an element b in *G* such that ab = ba = e

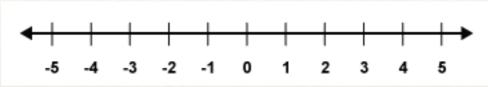
The Symmetries of an Object form a Group



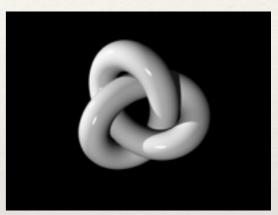
Examples

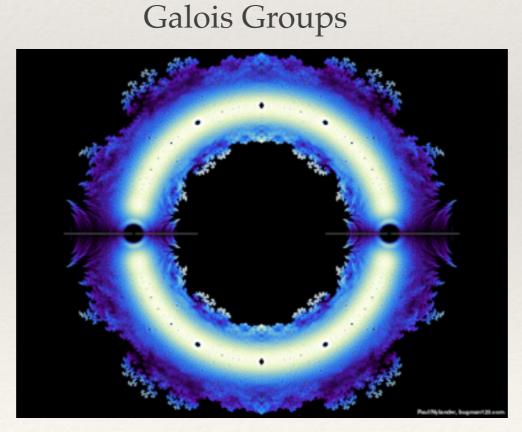
Discrete Groups



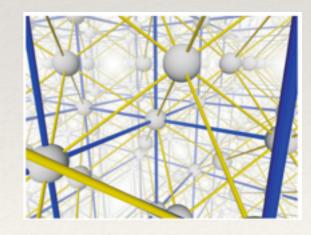


Topological Groups

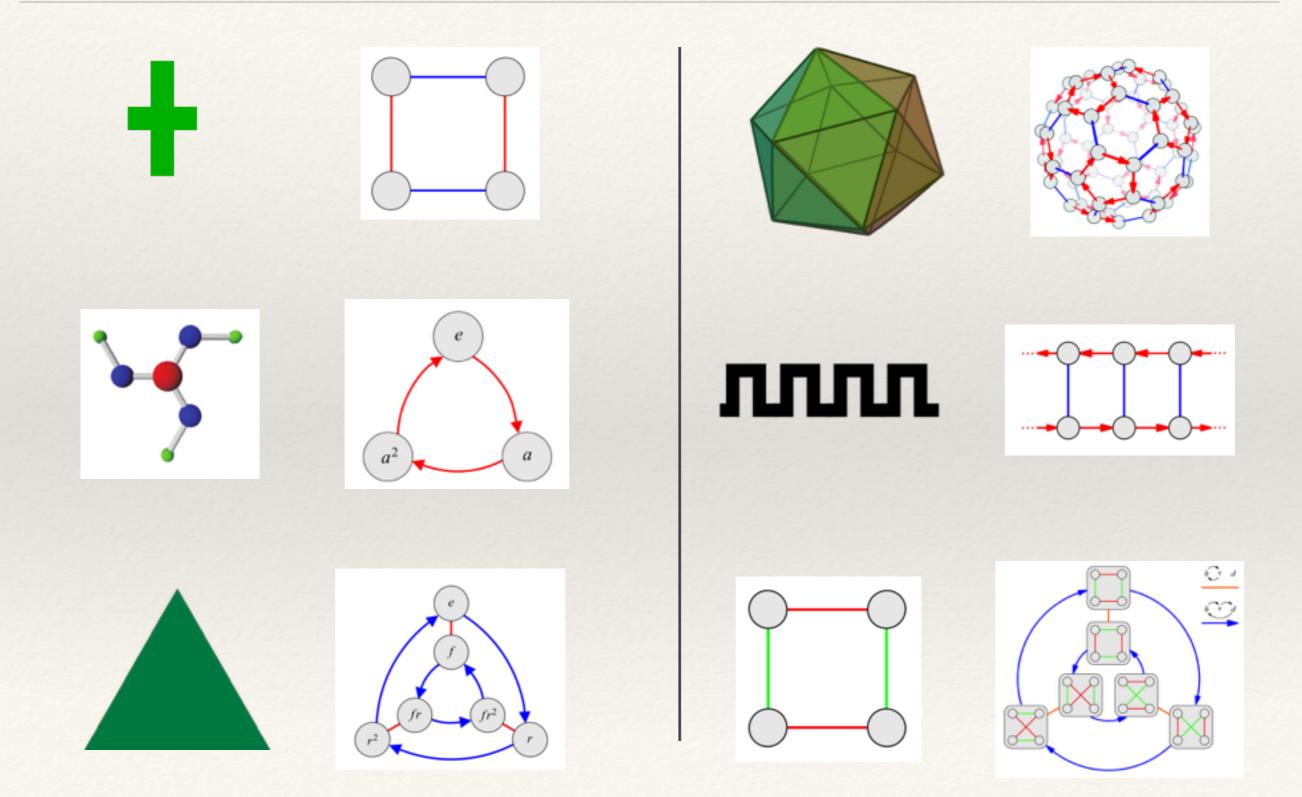




Space Groups

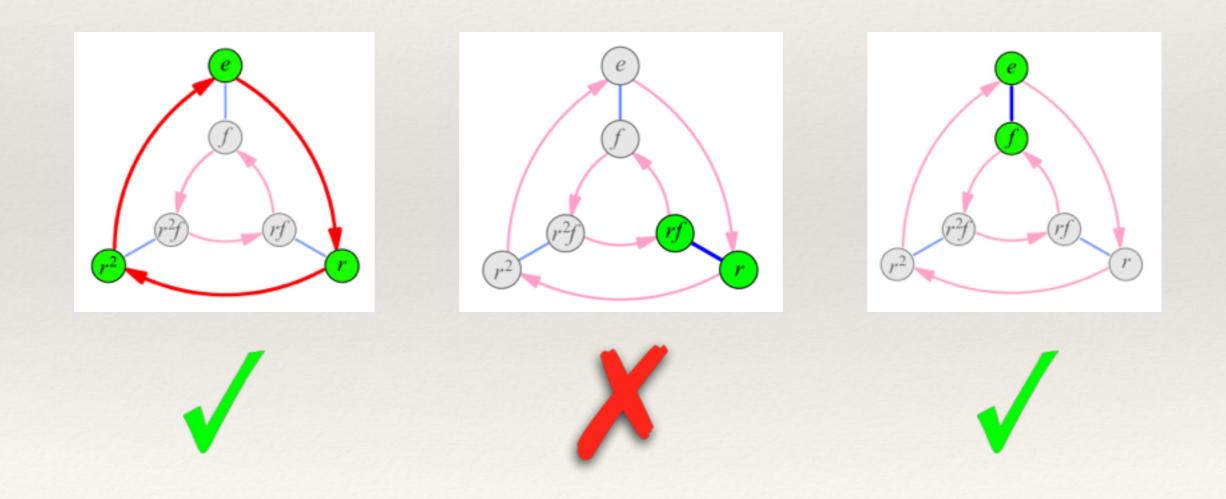


Cayley Graphs



Subgroups

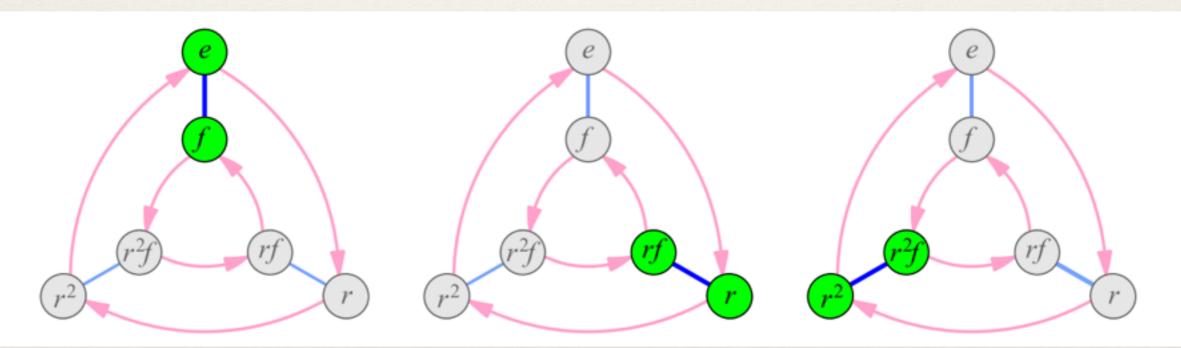
A *subgroup* of a group is a *subset* of said group, that is itself a group



Cosets

The left coset of subgroup H in G with respect to g is the set:

 $gH = \{gh \mid h \in H\}$



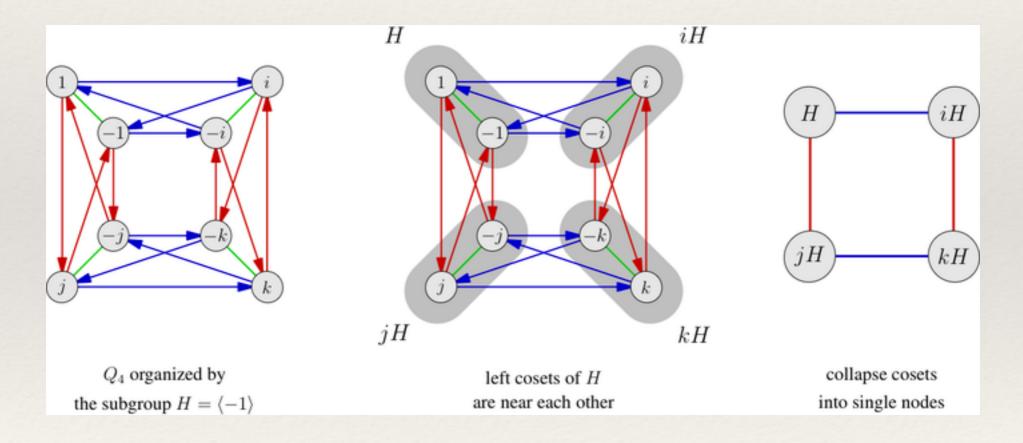
Question: when is a coset a subgroup?

Question: do the cosets always partition the group?

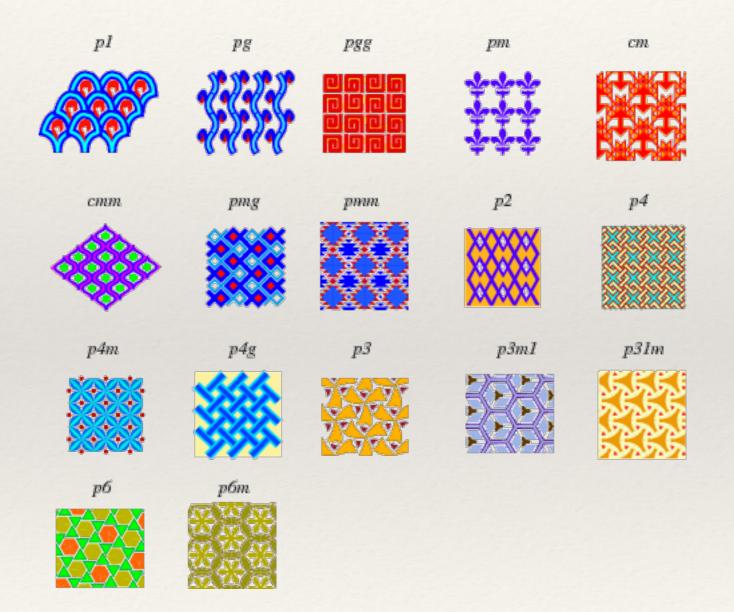
Quotients

The quotient of G by subgroup H is the set of cosets of H in G

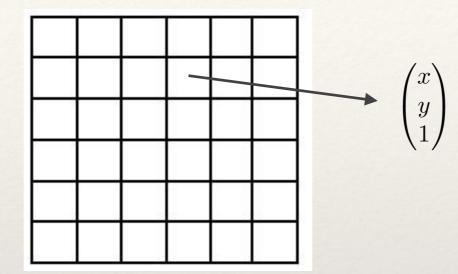
 $G/H = \{gH \mid g \in G\}$



Wallpaper Groups

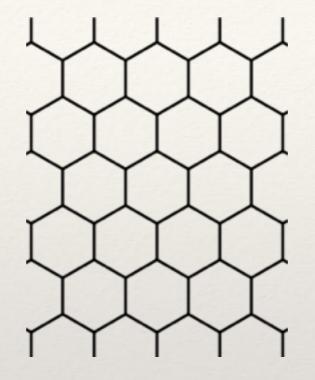


The Groups p4 & p4m



$$g(m,r,u,v) = \begin{bmatrix} (-1)^m & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(r\pi/2) & -\sin(r\pi/2) & 0\\ \sin(r\pi/2) & \cos(r\pi/2) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & u\\ 0 & 1 & v\\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (-1)^m \cos(r\pi/2) & -(-1)^m \sin(r\pi/2) & u\\ \sin(r\pi/2) & \cos(r\pi/2) & v\\ 0 & 0 & 1 \end{bmatrix}$$

The Goups p6 & p6m



$$g(m, r, u, v) = \begin{bmatrix} (-1)^m & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(r\pi/3) & -\sin(r\pi/3) & 0 \\ \sin(r\pi/3) & \cos(r\pi/3) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & u \\ 0 & 1 & v \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (-1)^m \cos(r\pi/3) & -(-1)^m \sin(r\pi/3) & u \\ \sin(r\pi/3) & \cos(r\pi/3) & v \\ 0 & 0 & 1 \end{bmatrix}$$

Group Equivariant CNNs

How to think about CNNs

"A stack of feature maps is a 3D array"

"A stack of feature maps is a vector-valued function"

 $f^l: \mathbb{Z}^2 \to \mathbb{R}^{K_l}$

"Mmm... Donuts"

"Genus one topological space"

G-Equivariant Correlation on Z²

Standard correlation: "translate canonical filter and compute inner product"

G-Correlation:

"transform canonical filter and compute inner product"

Translational Correlation

Translation

$$[T_s f](x) = f(x - s)$$

Correlation

$$[f \star \psi](s) = \sum_{x \in \mathbb{Z}^2} \sum_{k=1}^K f_k(x) [T_s \psi]_k(x)$$

* Equivariance

$$[T_s f] \star \psi = T_s [f \star \psi]$$

Group Correlation on Z²

Transformation

$$[T_g f](x) = f(g^{-1}x)$$

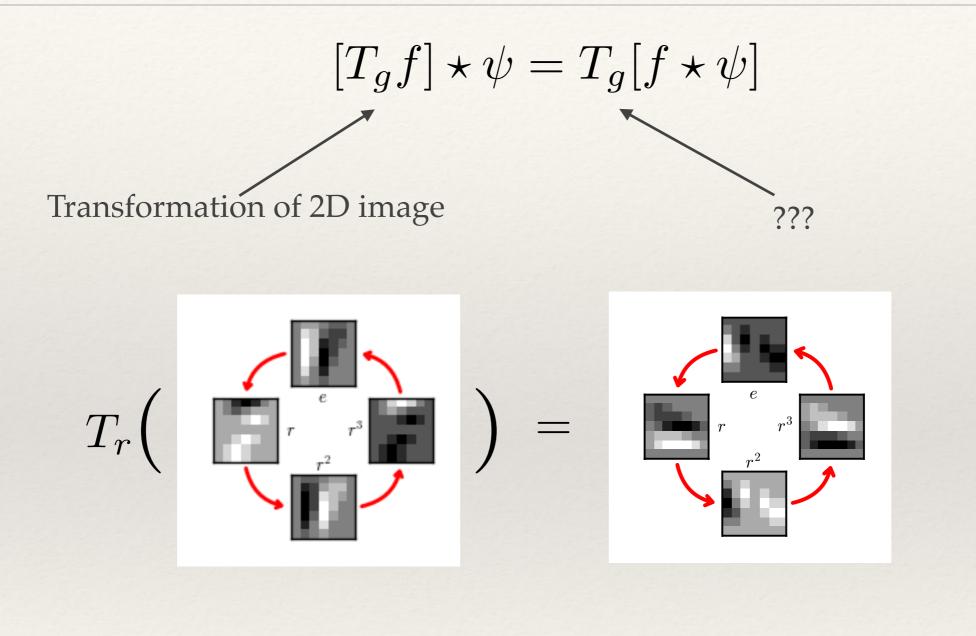
* G-Correlation

$$[f \star \psi](g) = \sum_{x \in \mathbb{Z}^2} \sum_{k=1}^K f_k(x) [T_g \psi]_k(x)$$

* Equivariance

$$[T_g f] \star \psi = T_g [f \star \psi]$$

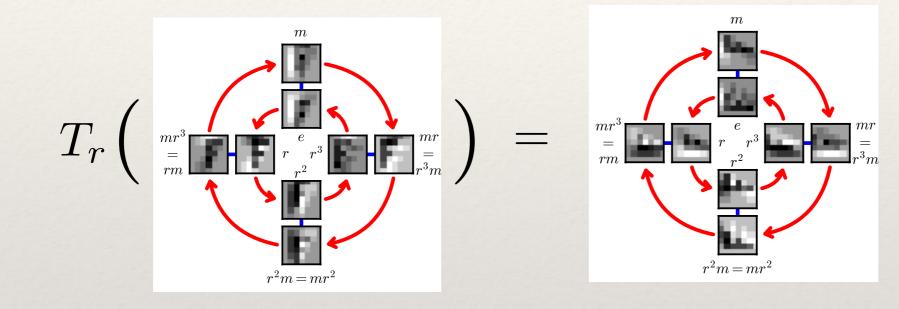
Feature Transformation Law (p4)

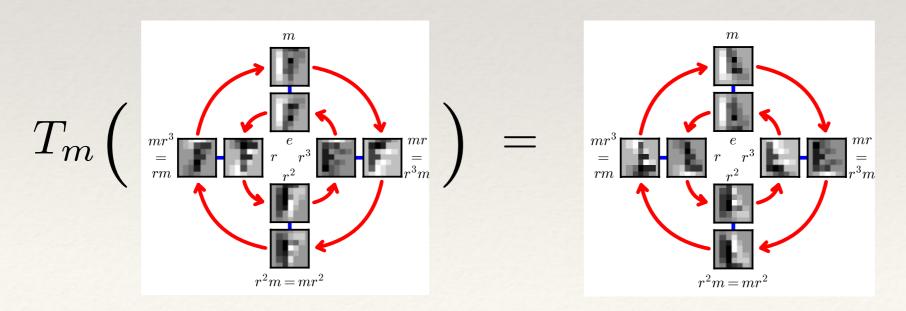


 $\begin{bmatrix} R(\theta') & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} R(\theta) & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R(\theta - \theta') & R(-\theta')t \\ 0 & 1 \end{bmatrix}^{-1}$

Feature Transformation Law (p4m)

$[T_g f] \star \psi = T_g [f \star \psi]$





G-Convis Non-Commutative

$$G = p4$$
$$f = \mathbf{4}$$
$$psi = \mathbf{4}$$

$$\begin{array}{c|c}f\star\psi & f = f = f = f \\ \psi\star f & f = f = f \\ \hline \end{array}$$

Same information content: $f \star \psi(g^{-1}) = \psi \star f(g)$

Group Correlation on G

Transformation

 $[T_g f](h) = f(g^{-1}h)$

G-Correlation

$$[f \star \psi](g) = \sum_{h \in G} \sum_{k=1}^{K} f_k(h) [T_g \psi]_k(h)$$

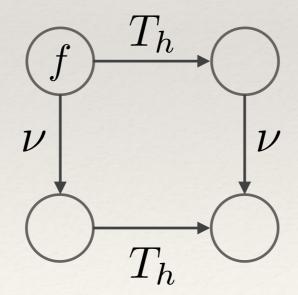
Equivariance

$$[T_g f] \star \psi = T_g [f \star \psi]$$

Non-linearities: Equivariant

Function Composition Commutes with Domain Transformations

$$\nu \circ [T_h f] = \nu \circ (f \circ h^{-1}) = (\nu \circ f) \circ h^{-1} = T_h [\nu \circ f]$$



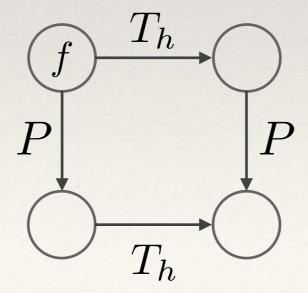
Strideless G-Pooling: Equivariant

Max-pool over neighborhood gU of g:

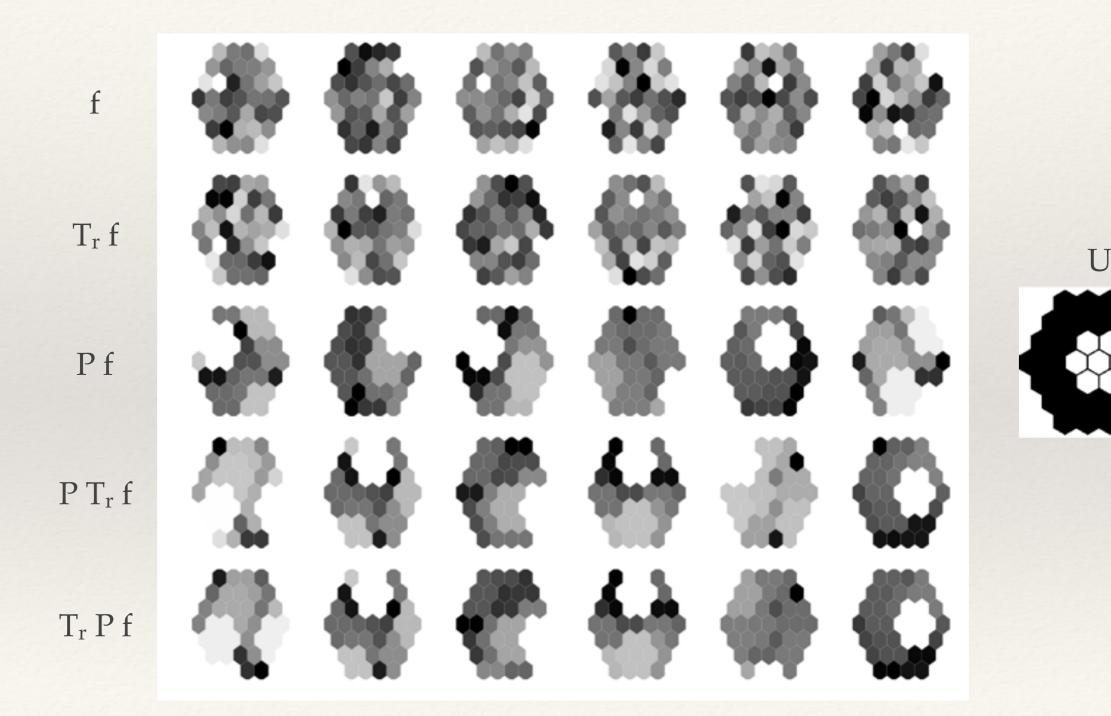
$$Pf(g) = \max_{k \in g \cdot U} f(k)$$

Pooling Operator Commutes with G-Action

 $PT_h = T_h P$

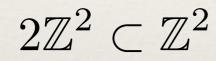


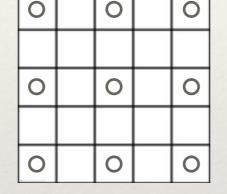
Z² pooling of a p6 feature map

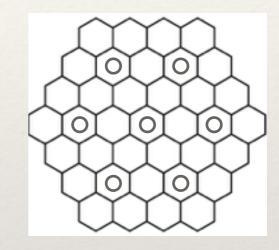


Subsampling

Subsample on a subgroup H of G







 $C^4 \ltimes 2\mathbb{Z}^2 \subset C^4 \ltimes \mathbb{Z}^2$

 $C^4 \subset C^4 \ltimes \mathbb{Z}^2$

 $\mathbb{Z}^2 \subset C^4 \ltimes \mathbb{Z}^2$

Coset Pooling

Choose pooling domain U to be a subgroup H

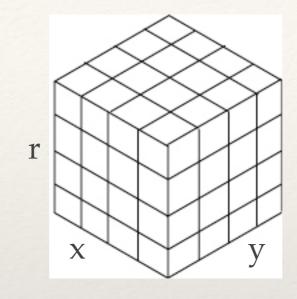
 $gH = \{gh \mid h \in H\}$

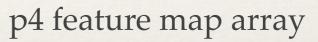
Pooled feature map is constant on cosets

$$Pf(gh) = \max_{k \in ghH} f(k) = \max_{k \in gH} f(k)$$

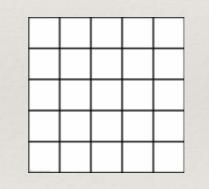
That is, the pooled feature map is a function on the quotient G / H

Example: p4 Coset Pooling





Pool over $U = C^4$

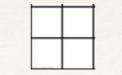


 $p4/C^4 = Z^2$ feature map array

Pool over $U = \mathbb{Z}^2$

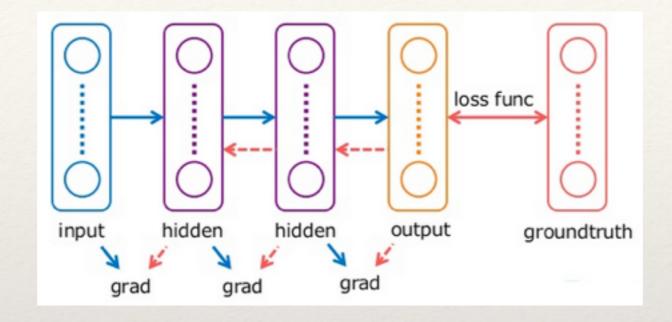
 $p4/Z^2 = C^4$ feature map array

Pool over $U = C^4 \ltimes 2\mathbb{Z}^2$



 $Z^2/2Z^2$ feature map array

Backprop



Input grad: involuted correlation

$$\frac{\delta L}{\delta f_j^{l-1}(k)} = \frac{\delta L}{\delta f^l} \star \psi_j^{l*}(k)$$

Filter grad: involuted convolution

$$\frac{\delta L}{\delta \psi_j^{li}(k)} = \frac{\delta L}{\delta f_i^l} * f_j^{l-1*}(k)$$

Algorithms: Spatial & Spectral G-Convs

Naive Spatial Implementation

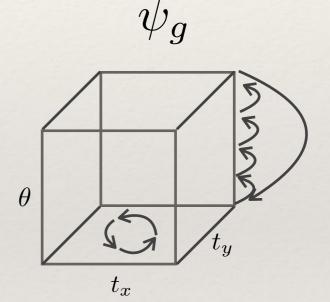
Compute:
$$r(g) = f * \psi(g)$$

For each output channel j:

For each g in G-grid:

Warp filter:
$$\psi_g^s = I_g \psi^s$$

Compute inner product:



$$r^{j}[g] = \langle f, \psi_{g} \rangle = \sum_{i} \sum_{t_{x}} \sum_{t_{y}} \sum_{\theta} f^{i}[t_{x}, t_{y}, \theta] \psi_{g}^{ji}[t_{x}, t_{y}, \theta]$$

Efficient Spatial Implementation

$$[f \star \psi](g) = \sum_{h \in G} \sum_{k=1}^{K} f_k(h) [T_g \psi]_k(h)$$

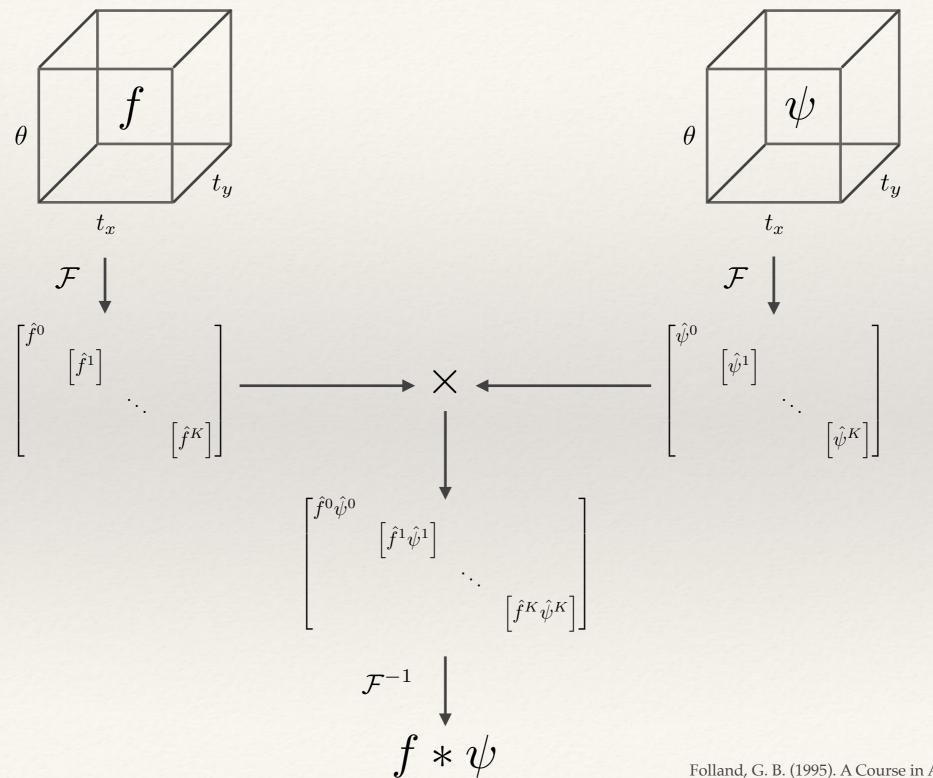
Decompose into translation and rotation:

$$T_g = T_{tr} = T_t T_r$$

To get output feature plane theta, do a planar convolution with rotated filter:

$$[f \star \psi](t, r) = \sum_{h} \sum_{k} f(h) L_t \psi_r(h)$$

Spectral G-Convolution



Folland, G. B. (1995). A Course in Abstract Harmonic Analysis.

Results: Rotated MNIST

Z2CNN	P4CNNRotPool	P4CNN
C(1, 16, 7)	P4C1(1, 16, 7)	P4C1(1, 10, 3)
MP(3, 2)	MPR + MP(3, 2)	P4C(10, 10, 3)
C(16, 16, 5)	P4C1(16, 16, 5)	MP(2, 2)
MP(3, 2)	MPR + MP(3, 2)	P4C(10, 10, 3)
C(16, 32, 5)	P4C1(16, 32, 5)	P4C(10, 10, 3)
MP(3, 2)	MPR + MP(3, 2)	P4C(10, 10, 3)
C(32, 10, 3)	C(32, 10, 3)	P4C(10, 10, 3)

Table 1. Rotated MNIST architectures.

Legend: C(in, out, sz) denotes a convolution layer with given number of input channels, output channels and kernel size, P4C1(in, out, sz) denotes first-layer P4 convolution while P4C denotes full P4 convolutions, MP(ksize, stride) denotes max pooling and MPR denotes max pooling over all 4 rotation angles.

SVM ^[1]	NNet ^[1]	DBN ^[1]	RC-RBM ^[2]	Z2CNN	P4CNNRP	P4CNN
10,38	17,62	12,11	3,98	5,68	3,90	2.51

[1] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007) An empirical evaluation of deep architectures on problems with many factors of variation. (ICML)

[2] Schmidt, U., & Roth, S. (2012). Learning rotation-aware features: From invariant priors to equivariant descriptors. (CVPR)

CIFAR-10

All-CNN

3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU (stride 2)

3 x 3 conv. 192 ReLU

3 x 3 conv. 192 ReLU

3 x 3 conv. 192 ReLU (stride 2)

3 x 3 conv. 192 ReLU

1 x 1 conv. 192 ReLU

1 x 1 conv. 10 ReLU

Global averaging

softmax

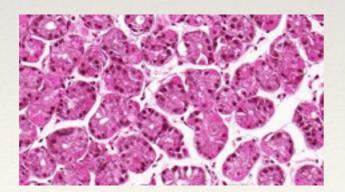
P4-All-CNN

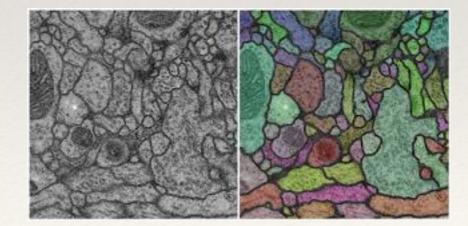
Replace conv by p4-conv, halve number of filters

Results

Model	Test Error (%)
Maxout (Goodfellow et al., 2013)	11.68
NiN (Lin et al., 2013)	10.41
DSN (Lee et al., 2015)	9.69
All-CNN (our baseline)	9.82
All-CNN (Springenberg et al., 2015)	9.07
All-CNN-BN (added batchnorm)	9.44
P4-All-CNN (ours)	8.84
Elu (Clevert et al., 2015)	6.55

Work in Progress..





Projects / Theses / Internships

taco.cohen@gmail.com

