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Background: 
Invariance, Equivariance & Symmetry



Symmetry in ML

A symmetry of a function is a transformation that leaves that function invariant

In ML: look for symmetries of densities, factors, label functions, …

Shariff, R. (2015). Exploiting Symmetries To Construct Efficient Mcmc Algorithms.



Invariance

The “Picasso Problem”
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Equivariance

Lenc, K., & Vedaldi, A. (2015). Understanding image representations by measuring their equivariance and equivalence (CVPR)
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Cohen, T., & Welling, M. (2014). Learning the Irreducible Representations of Commutative Lie Groups. (ICML)
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Symmetry in DL

❖ In deep nets, each layer should preserve the symmetry

❖ The representation     should be an 
equivariant map for the symmetry group.

�
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❖ They exploit translational symmetry

❖ Why do CNNs work so well?

Szegedy et al. (2015) 



ConvNets are Translation Equivariant

Source: http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


Are ConvNets Rotation-Equivariant?

Source: http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


CNNs want to be Equivariant

http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Visual Group Theory

With figures from “Visual Group Theory” by Nathan Carter (2009)



Symmetries
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Groups

1. Identity: there exists an element e in G, such that for every element a in G, ea = ae = a

2. Associativity: For all a, b and c in G, (a b) c = a (b c).

3. Closure: for all a, b in G, the composition ab is also in G 

4. Inverse: for each a in G, there exists an element b in G such that ab = ba = e

A group is:
• a set, G,
• together with a binary operation that combines two elements a, b in G and produces 

another element ab,
• that satisfies the group axioms:



The Symmetries of an Object form a Group
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Examples

Lie Groups

Galois Groups

Topological Groups

Wallpaper Groups Space Groups

Discrete Groups



Cayley Graphs



Subgroups
A subgroup of a group is a subset of said group, that is itself a group



Cosets

Question: when is a coset a subgroup?

The left coset of subgroup H in G with respect to g is the set:

gH = {gh |h 2 H}

Question: do the cosets always partition the group?



Quotients

G/H = {gH | g 2 G}

The quotient of G by subgroup H is the set of cosets of H in G



Wallpaper Groups



The Groups p4 & p4m
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The Goups p6 & p6m
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Group Equivariant CNNs



How to think about CNNs

“A stack of feature maps is a vector-valued function“

f l : Z2 ! RKl

“A stack of feature maps is a 3D array”

“Mmm… Donuts” “Genus one topological space”



G-Equivariant Correlation on Z2

Standard correlation:  
“translate canonical filter and compute inner product”

G-Correlation:

 “transform canonical filter and compute inner product”



Translational Correlation
❖ Translation

[Tsf ](x) = f(x� s)

❖ Equivariance

[Tsf ] ?  = Ts[f ?  ]

❖ Correlation
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Group Correlation on Z2

❖ Transformation

[Tgf ](x) = f(g�1
x)

❖ G-Correlation
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❖ Equivariance

[Tgf ] ?  = Tg[f ?  ]



Feature Transformation Law (p4)
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Feature Transformation Law (p4m)
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G-Conv is Non-Commutative
G = p4

f = 

psi = 

f ?  

 ? f

Same information content: f ?  (g�1) =  ? f(g)



Group Correlation on G
❖ Transformation

❖ Equivariance

[Tgf ] ?  = Tg[f ?  ]

❖ G-Correlation

[f ?  ](g) =
X

h2G

KX

k=1

fk(h)[Tg ]k(h)

[Tgf ](h) = f(g�1h)



Non-linearities: Equivariant

Function Composition Commutes with Domain Transformations

⌫ � [Thf ] = ⌫ � (f � h�1) = (⌫ � f) � h�1 = Th[⌫ � f ]
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Strideless G-Pooling: Equivariant

PTh = ThP

Pooling Operator Commutes with G-Action

Pf(g) = max

k2g·U
f(k)

Max-pool over neighborhood gU of g:

f
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Z2 pooling of a p6 feature map
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Subsampling
Subsample on a subgroup H of G

2Z2 ⇢ Z2

C4 n 2Z2 ⇢ C4 n Z2

C4 ⇢ C4 n Z2

Z2 ⇢ C4 n Z2



Coset Pooling
Choose pooling domain U to be a subgroup H

gH = {gh |h 2 H}

Pooled feature map is constant on cosets

Pf(gh) = max

k2ghH
f(k) = max

k2gH
f(k)

That is, the pooled feature map is a function on the quotient G / H



Example: p4 Coset Pooling

x y

r p4 feature map array

p4/C4 = Z2 feature map arrayU = C4Pool over

Z2/2Z2 feature map array

Pool over U = Z2 p4/Z2 = C4 feature map array

Pool over U = C4 n 2Z2



Backprop

Input grad: involuted correlation
�L
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Algorithms: 
Spatial & Spectral G-Convs



Naive Spatial Implementation
r(g) = f ⇤  (g)Compute:

For each output channel j:

For each g in G-grid:

rj [g] = hf, 
g
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Efficient Spatial Implementation

Decompose into translation and rotation:

To get output feature plane theta, do a planar convolution with rotated filter:

[f ?  ](g) =
X

h2G

KX

k=1

fk(h)[Tg ]k(h)

G-Correlation
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Spectral G-Convolution
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Folland, G. B. (1995). A Course in Abstract Harmonic Analysis.



Results: Rotated MNIST

[1] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007)  An empirical evaluation of deep architectures on 
problems with many factors of variation. (ICML)

SVM[1] NNet[1] DBN[1] RC-RBM[2] Z2CNN P4CNNRP P4CNN

10,38 17,62 12,11 3,98 5,68 3,90 2.51

[2] Schmidt, U., & Roth, S. (2012). Learning rotation-aware features: From invariant priors to equivariant descriptors. (CVPR)



CIFAR-10

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU (stride 2)
3 x 3 conv. 192 ReLU
3 x 3 conv. 192 ReLU

3 x 3 conv. 192 ReLU (stride 2)
3 x 3 conv. 192 ReLU
3 x 3 conv. 96 ReLU1 x 1 conv. 192 ReLU
1 x 1 conv. 10 ReLU
3 x 3 conv. 96 ReLUGlobal averaging

softmax

All-CNN P4-All-CNN

Replace conv by p4-conv,
halve number of filters

Results



Work in Progress..
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