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Lecture 9: Recurrent Neural Networks
Deep Learning @ UvA
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o Word and Language Representations

o From n-grams to Neural Networks

o Word2vec

o Skip-gram

Previous Lecture
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o Recurrent Neural Networks (RNN) for sequences

o Backpropagation Through Time

o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks

Lecture Overview
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o Abusing the terminology
◦ static data come in a mini-batch of size 𝐷

◦ dynamic data come in a mini-batch of size 1

Sequential vs. static data
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o Abusing the terminology
◦ static data come in a mini-batch of size 𝐷

◦ dynamic data come in a mini-batch of size 1

Sequential vs. static data

What about inputs that appear in 

sequences, such as text? Could neural 

network handle such modalities?

a
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o ... roughly equivalent to predicting what is going to happen next

Pr 𝑥 = 

𝑖

Pr 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)

o Easy to generalize to sequences of arbitrary length

o Considering small chunks 𝑥𝑖  fewer parameters, easier modelling

o Often is convenient to pick a “frame” 𝑇

Pr 𝑥 = 

𝑖

Pr 𝑥𝑖 𝑥𝑖−𝑇 , … , 𝑥𝑖−1)

Modelling sequences is …
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o One-hot vector
◦ After one-hot vector add an embedding

o Instead of one-hot vector use directly a word representation
◦ Word2vec

◦ GloVE

Word representations
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o Data inside a sequence are non i.i.d.
◦ Identically, independently distributed

o The next “word” depends on the previous “words”
◦ Ideally on all of them

o We need context, and we need memory!

o How to model context and memory ?

What a sequence really is?

I am Bond , James
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o A representation (variable) of the past

o How to adapt a simple Neural Network to include a memory variable?

Modelling-wise, what is memory?

𝑥𝑡

𝑦𝑡
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Recurrent Neural Network (RNN)
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o Imagine we care only for 3-grams

o Are the two networks that different?
◦ Steps instead of layers

◦ Step parameters are same (shared parameters in a NN)

Why unrolled?
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• Sometimes intermediate outputs are not even needed
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o Imagine we care only for 3-grams

o Are the two networks that different?
◦ Steps instead of layers

◦ Step parameters are same (shared parameters in a NN)
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• Sometimes intermediate outputs are not even needed
• Removing them, we almost end up to a standard 

Neural Network
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o At time step 𝑡

o Example
◦ Vocabulary of 500 words

◦ An input projection of 50 dimensions (U: [50 × 500])

◦ A memory of 128 units (𝑐𝑡: 128 × 1 ,W: [128 × 128])

◦ An output projections of 500 dimensions (V: [500 × 128])

RNN equations

𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

𝑦𝑡 = softmax(𝑉𝑐𝑡)

One-hot vector
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o Cross entropy loss

𝑃 = 

𝑡

 

𝑘

𝑦𝑡𝑘
𝑙𝑡𝑘 ⇒ ℒ = − log 𝑃 = −

1

𝑇
 

𝑡

𝑙𝑡 log 𝑦𝑡 ,

◦ non-target words 𝑙𝑡 = 0 ⇒ Compute loss only for target words

◦ Random loss             =? ⇒ ℒ = log𝐾

o Usually loss is measured w.r.t. perplexity

𝐽 = 2ℒ

Loss function
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o Backpropagation Through Time (BPTT)

Training an RNN
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o
𝜕ℒ

𝜕𝑉
,

𝜕ℒ

𝜕𝑊
,
𝜕ℒ

𝜕𝑈

o To make it simpler let’s focus on step 3
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𝜕ℒ3
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,
𝜕ℒ3

𝜕𝑈

Backpropagation Through Time
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𝑈
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𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑥1 𝑥2 𝑥3

𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

𝑦𝑡 = softmax(𝑉𝑐𝑡)

ℒ = − 

𝑡

𝑙𝑡 log 𝑦𝑡 = 

𝑡

ℒ𝑡
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𝜕ℒ3
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𝜕𝑉
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o
𝜕ℒ3

𝜕𝑊
=

𝜕ℒ3

𝜕𝑦3

𝜕𝑦3

𝜕𝑐3

𝜕𝑐3

𝜕𝑊

o What is the relation between 𝑐3 and 𝑊?
◦ Two-fold: 𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

o
𝜕 𝑓(𝜑 𝑥 , 𝜓(𝑥))

𝜕𝑥
=

𝜕𝑓

𝜕𝜑

𝜕𝜑

𝜕𝑥
+

𝜕𝑓

𝜕𝜓

𝜕𝜓

𝜕𝑥

o
𝜕𝑐3

𝜕𝑊
∝ 𝑐2 +

𝜕𝑐2

𝜕𝑊
(
𝜕𝑊

𝜕𝑊
= 1)

Backpropagation Through Time
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𝑉
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𝑦𝑡 = softmax(𝑉𝑐𝑡)

ℒ = − 

𝑡

𝑙𝑡 log 𝑦𝑡 = 

𝑡
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o
𝜕𝑐3

𝜕𝑊
= 𝑐2 +

𝜕𝑐2

𝜕𝑊

o
𝜕𝑐2

𝜕𝑊
= 𝑐1 +

𝜕𝑐1

𝜕𝑊

o
𝜕𝑐1

𝜕𝑊
= 𝑐0 +

𝜕𝑐0

𝜕𝑊

Recursively

𝑦1, ℒ1 𝑦2, ℒ2 𝑦3, ℒ3

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑥1 𝑥2 𝑥3

𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

𝑦𝑡 = softmax(𝑉𝑐𝑡)

ℒ = − 

𝑡

𝑙𝑡 log 𝑦𝑡 = 

𝑡

ℒ𝑡

𝜕𝑐3
𝜕𝑊

= 

𝑡=1

3
𝜕𝑐3
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑊

⇒
𝜕ℒ3
𝜕𝑊

= 

𝑡=1

3
𝜕ℒ3
𝜕𝑦3

𝜕𝑦3
𝜕𝑐3

𝜕𝑐3
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑊
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o NO
◦ Although in theory yes!

o Vanishing gradient
◦ After a few time steps the gradients become almost 0

o Exploding gradient
◦ After a few time steps the gradients become huge

o Can’t really capture long-term dependencies

Are RNNs perfect?



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    RECURRENT NEURAL NETWORKS - 29

o
𝜕ℒr

𝜕𝑊
=  𝑡=1

r 𝜕ℒ𝑟

𝜕𝑦𝑟

𝜕𝑦𝑟

𝜕𝑐𝑟

𝜕𝑐𝑟

𝜕𝑐𝑡

𝜕𝑐𝑡

𝜕𝑊

o
𝜕𝑐𝑟

𝜕𝑐𝑡
can be decomposed further based on the chain rule

o
𝜕𝑐𝑟

𝜕𝑐𝑡
=

𝜕𝑐𝑟

𝜕𝑐𝑟−1
⋅
𝜕𝑐𝑟−1

𝜕𝑐𝑟−2
⋅ … ⋅

𝜕𝑐𝑡+1

𝜕𝑐𝑡

o When many long-term factors, for many of which  
𝜕𝑐𝑖

𝜕𝑐𝑖−1
≫ 1

◦ then 
𝜕𝑐𝑟

𝜕𝑐𝑡
≫ 1

◦ then 
𝜕ℒr

𝜕𝑊
≫ 1

Exploding gradients

𝜏 ≫ 𝑟 → short-term factors 𝑅𝑒𝑠𝑡 → long-term factors 𝜏 ≫ 𝑟 → short-term factors 

Gradient explodes
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o Scale the gradients to a threshold

o Step 1. g ←
𝜕ℒ

𝜕𝜃

o Step 2. Is 𝑔 > 𝜃0?

◦ Step 3a. If yes g ←
𝜃0

𝑔
𝑔

◦ Step 3b. If no, then do nothing

o Simple, but works!

Remedy for exploding gradients

𝜃0

g

𝜃0
𝑔

𝑔
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o
𝜕ℒr

𝜕𝑊
=  𝑡=1

r 𝜕ℒ𝑟

𝜕𝑦𝑟

𝜕𝑦𝑟

𝜕𝑐𝑟

𝜕𝑐𝑟

𝜕𝑐𝑡

𝜕𝑐𝑡

𝜕𝑊

o
𝜕𝑐𝑟

𝜕𝑐𝑡
can be decomposed further based on the chain rule

o
𝜕𝑐𝑟

𝜕𝑐𝑡
=

𝜕𝑐𝑟

𝜕𝑐𝑟−1
⋅
𝜕𝑐𝑟−1

𝜕𝑐𝑟−2
⋅ … ⋅

𝜕𝑐𝑡+1

𝜕𝑐𝑡

o When many 
𝜕𝑐𝑖

𝜕𝑐𝑖−1
→ 0 (e.g. with sigmoids), 

◦ then 
𝜕𝑐𝑟

𝜕𝑐𝑡
→ 0

◦ then 
𝜕ℒr

𝜕𝑊
→ 0

Vanishing gradients

𝜏 ≫ 𝑟 → short-term factors 𝑅𝑒𝑠𝑡 → long-term factors 

Gradient vanishes
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Advanced RNNs
+

𝜎𝜎𝜎

tanh

tanh

Input

Output

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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A more realistic memory unit needs what?

New memory

and NN state
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A more realistic memory unit needs what?

New memory

and NN state
Input

Previous

memory

Previous

NN state
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Long Short-Termn Memory (LSTM: Beefed up RNN)

𝑖 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

 𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 +  𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

Input

Output

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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o E.g. Model the sentence “Yesterday she slapped me. Today she loves me.”

o Decide what to forget and what to remember for the new memory
◦ Sigmoid 1  Remember everything

◦ Sigmoid 0  Forget everything

LSTM Step-by-Step: Step (1)

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

 𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 +  𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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o Decide what new information should you add to the new memory
◦ Modulate the input 𝑖𝑡
◦ Generate candidate memories  𝑐𝑡

LSTM Step-by-Step: Step (2)

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

 𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 +  𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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o Compute and update the current cell state 𝑐𝑡
◦ Depends on the previous cell state

◦ What we decided to forget

◦ What inputs we allowed

◦ The candidate memories

LSTM Step-by-Step: Step (3)

+

𝜎𝜎𝜎

tanh

tanh

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

 𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 +  𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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o Modulate the output
◦ Does the cell state contain something relevant?  Sigmoid 1

o Generate the new memory

LSTM Step-by-Step: Step (4)

+

𝜎𝜎𝜎

tanh

tanh

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

 𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 +  𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

 𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡
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o Macroscopically very similar to standard RNNs

o The engine is a bit different (more complicated)
◦ Because of their gates LSTMs capture long and short term dependencies

LSTM Unrolled Network

× +

𝜎𝜎𝜎

×

tanh

×

tanh

× +

𝜎𝜎𝜎

×

tanh

×

tanh

× +

𝜎𝜎𝜎

×

tanh

×

tanh
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o LSTM with peephole connections
◦ Gates have access also to the previous cell states 𝑐𝑡−1 (not only memories)

◦ Coupled forget and input gates, 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 1 − 𝑓𝑡 ⊙  𝑐𝑡
◦ Bi-directional recurrent networks

o GRU
◦ A bit simpler than LSTM

◦ Performance similar to LSTM

o Deep LSTM

Even more beef to the RNNs

LSTM (2)

LSTM (1)

LSTM (2)

LSTM (1)

LSTM (2)

LSTM (1)
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Applications of 
Recurrent Networks

Click to go to the video in Youtube Click to go to the website

https://www.youtube.com/watch?v=8BFzu9m52sc
http://cloudcv.org/vqa/
https://www.youtube.com/watch?v=8BFzu9m52sc
http://cloudcv.org/vqa/
http://www.codeproject.com/KB/TipsnTricks/788739/tsneplot.jpg
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o Generate text like Nietzsche, Shakespeare or Wikipedia

o Generate Linux kernel-like  C++ code 

o Or even generate a new website

Pr 𝑥 =  𝑖 Pr 𝑥𝑖 𝑥𝑝𝑎𝑠𝑡; 𝜃), where 𝜃 are the LSTM parameters

Text generation

LSTM (1) LSTM (1) LSTM (1)

To be or

Two are or

Shakespeare

Prediction

…

…

Training Inference

LSTM (1)

O

LSTM (1)

Romeo
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o Problem 1: Model real coordinates instead of one-hot vectors

o Recurrent Mixture Density Networks

o Have outputs follow a Gaussian Distribution
◦ Output needs to be suitably squashed

o We don’t just fit a Gaussian to the data
◦ We also condition on the previous outputs

Pr 𝑜𝑡 = 

𝑖

𝑤𝑖 𝑥1:𝑇 𝑁(𝑜𝑡|𝜇𝑖 𝑥1:𝑇 , Σ𝑖(𝑥1:𝑇))

Handwriting generation
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o The phrase in the source language is one sequence 
◦ “Today the weather is very good”

o The phrase in the target language is also a sequence
◦ “Vandaag de weer is heel goed”

o Problems
◦ no perfect word alignment, sentence length might differ

o Solution
◦ Encoder-decoder scheme

Machine Translation

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Today the weather is good <EOS> Vandaag de weer is heel

Vandaag de weer is heel goed

Encoder

<EOS>

goed

Decoder
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o It might even pay off reversing the source sentence
◦ The first target words will be closer to their respective source words

o The encoder and decoder parts can be modelled with different LSTMs

o Deep LSTM

Better Machine Translation

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

good is weather the Today <EOS> Vandaag de weer is heel

Vandaag de weer is heel goed

goed

<EOS>
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o An image is a thousand words, literally!

o Pretty much the same as machine transation

o Replace the encoder part with the output of a Convnet
◦ E.g. use Alexnet or a VGG16 network

o Keep the decoder part to operate as a translator

Image captioning

LSTM LSTM LSTM LSTM LSTM LSTM

Today the weather is good

Today the weather is good <EOS>

Convnet
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o Bleeding-edge research, no real consensus
◦ Very interesting open, research problems

o Again, pretty much like machine translation

o Encoder-Decoder scheme
◦ Insert the question to the encoder part
◦ Model the answer at the decoder part

o You can also have question answering with 
images

◦ Again, bleeding-edge research
◦ How/where to add the image?
◦ What has been working so far is to add the image 

only in the beginning

Question answering

Q: what are the people playing?

A: They play beach football

Q: John entered the living room, where 
he met Mary. She was drinking some 
wine and watching a movie. What room 

did John enter?

A: John entered the living room.
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Summary

o Recurrent Neural Networks (RNN) for sequences

o Backpropagation Through Time

o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks
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Next lecture

o Memory networks

o Recursive networks


