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What is Reinforcement Learning?

o General purpose framework for learning Artificial Intelligence models
o RL assumes that the agent (our model) can take actions

o These actions affect the environment where the agent operates, more
specifically the state of the environment and the state of the agent

o Given the state of the environment and the agent, an action taken from
the agent causes a reward (can be positive or negative)

o Goal: the goal of an RL agent is to learn how to take actions that maximize
future rewards

s
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Some examples of RL

o Controlling physical systems
> Robot walking, jumping, driving

o Logistics
> Scheduling, bandwidth allocation

o Games
o Atari, Go, Chess, Pacman

o Learning sequential algorithms
> Attention, memory
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Reinforcement Learning: An abstraction
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State

o Experience is a series of observations, actions and rewards
01,71,A1,09,175,A9, ..., 0¢, 1¢

o The state is the summary of experience so far
St = f(ol; 1,41, 02,7,,4, ..., O, rt)

o If we have fully observable environments, then

¢ = f(0r)
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Policy

o Policy is the agent’s behavior function
o The policy function maps the state input s; to an action output a;

o Deterministic policy: a; = f(s¢)

o Stochastic policy: m(a¢|sy) = P(ag|s¢)

s
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Value function

o A value function is the prediction of the future reward
° Given the state s; what will my reward be if | do action a;

o The Q-value function gives the expected future reward

o Given state s;, action ag, a policy m the Q-value function is Q™ (s, a;)
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How do we decide about actions, states, rewards?

o We model the policy and the value function as machine learning functions
that can be optimized by the data

o The policy function a; = m(s;) selects an action given the current state

o The value function Q™ (s¢, a;) is the expected total reward that we will
receive if we take action a; given state s;

o What should our goal then be?
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Goal: Maximize future rewards!

o Learn the policy and value functions such that the action taken at the t-th
time step a; maximizes the expected sum of future rewards

Q™ (S¢,ar) = E(Tpyq + ¥YTeqn +V2Teys + 0 IS, ap)

o Y is a discount factor. Why do we need it?

s
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Goal: Maximize future rewards!

o Learn the policy and value functions such that the action taken at the t-th
time step a; maximizes the expected sum of future rewards

Q™ (S¢,ar) = E(Tpyq + ¥YTeqn +V2Teys + 0 IS, ap)

o Y is a discount factor. Why do we need it?

> The further into the future we look t + 1, ..., t + 1, the less certain we can be about
our expected rewards 7441, ..., Tr4T
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o How can we rewrite the value function in more compact form
T — 2 —
Q" (st ar) = E(reqq + Vg + ¥V 143 + o0 Isp, ap) =7
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Bellman equation

o How can we rewrite the value function in more compact form
Q™ (¢, ap) = E(rppr + ¥7r4n + ¥ Teas + - ISy, ap)
!/
— [Esl,a'(r + an(S" a )lSt' at)

o This is the Bellman equation

o How can we rewrite the optimal value function Q*(s¢, a;)?
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Bellman equation

o How can we rewrite the value function in more compact form
Q" (st,ar) = E(Tpyq + ¥1eyz + ¥V T3 + ISt ap)
!/
= Eg, (r +yQ" (s, a)lsy, ar)

o This is the Bellman equation

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP REINFORCEMENT LEARNING - 15




Optimal value function

o Optimal value function Q* (s, a) is attained with the optimal policy *

0*(s,@) = maxQ"(s,@) = Q" (5,0)

o After we have found the optimal policy m* we do the optimal action
m* = argmax Q" (s, a)
a

o By expanding the optimal value function

Q*(s,a) =141 Y IcllltaX Q" (St+1,A¢41)
+1

Q*(s,a) = E,, (r -+ ymax Q*(s’, a')‘s, a)
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Model

o The model is learnt from experience
o The model acts as a replacement for the environment
o When planning, the agent can interact with the model

o Forinstance look ahead search to estimate the future states given actions
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Approaches to Reinforcement Learning

o Policy-based
o Learn directly the optimal policy *
> The policy ™™ obtains the maximum future reward

o Value-based
° Learn the optimal value function Q*(s, a)
> This value function applies for any policy

o Model-based

o Build a model for the environment
° Plan and decide using that model
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How to make RL deep?

o Use Deep Networks for the
> Value function
o Policy
> Model

o Optimize final loss with SGD
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How to make RL deep?

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State
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Deep Reinforcement Learning

o Non-linear function approximator: Deep Networks

o Inputis as raw as possible, e.g. image frame
o Or perhaps several frames (When needed?)

o Output is the best possible action out of a set of actions for maximizing
future reward

o Important: no need anymore to compute the actual value of the action-
value function and take the maximum: arg max Qg (s, a)
a

> The network returns directly the optimal action

s
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Q-Learning

o Optimize for Q value function
Q" (st ar) = Eg (r +yQ™(s", a’)lse, ar)
o In the beginning of learning the function Q(s, a) is incorrect

o We set r + ymax Q,(s', a’) to be the learning target
a’

o Then we minimize the loss
min (7 +ymax Q,(s',a) = Qu(s, @)’
a
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Q-Learning

o Value iteration algorithms solve the Bellman equation
Qr+1(s,a) = Eg, (7” + ymax Q. (s’ a')‘s, a)
al’l

o In the simplest case Q; is a table
° To the limit iterative algorithms converge to Q

o However, a table representation for Q¢ is not always enough
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How to optimize?

o The objective is the mean squared-error in Q-values
£(6) = E[(r +ymaxQ(s',a’,0) — Q(s, a,0))°]
a
\

J

|

target

o The Q-Learning gradient then becomes

oL _ E[(r +ymaxQ(s’,a’,0) — Q(s,a,0)) 00(s.a,9)
\ a )

00 |

00

|
Scalar target value > Gradient O

o Optimize end-to-end with SGD
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In practice

1. Do a feedforward pass for the current state s to get predicted Q-values
for all actions

2. Do afeedforward pass for the next state s” and calculate maximum
overall network outputs max Q(s’, a’, 6)
a

3. Set Q-value target tor + ymaxQ(s',a’, 0)
a

o use the max calculated in step 2

o For all other actions, set the Q-value target to the same as originally returned from step 1, making the
error O for those outputs

4. Update the weights using backpropagation.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP REINFORCEMENT LEARNING - 27



Deep Q Networks on Atari

o End-to-end learning from raw pixels
o Input: last 4 frames
o Output: 18 joystick positions

o Reward: change of score

32 4x4 filcers 256 hidden units

|6 8x8 filters

Fully-connected linear

output layer

4x84x84

I

—

Convolutional layer Convolutional layer
of rectified linear units of rectified linear units

Stack of 4 previous
frames
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Deep Q Networks on Atar
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Stability in Deep
Reinforcement
Learning
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?
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Stability problems

o Naively, Q-Learning oscillates or diverges with neural networks
o Why?

o Sequential data breaks IID assumption
> Highly correlated samples break SGD

o However, this is not specific to RL, as we have seen earlier
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?
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Stability problems

o The learning objective is
£(6) = E[(r +ymaxQ(s',a’,0) = Q(s,a, 0))’]
a

o The target depends on the Q function also. This means that if we update
the current Q function with backprop, the target will also change

o Plus, we know neural networks are highly non-convex

o Policy changes will change fast even with slight changes in the Q function
> Policy might oscillate
o Distribution of data might move from one extreme to another

s
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o Naively, Q-Learning oscillates or diverges with neural networks
o Why?
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Stability problems

o Not easy to control the scale of the Q values—> gradients are unstable Q
o Remember, the Q function is the output of a neural network

o There is no guarantee that the outputs will lie in a certain range
o Unless care is taken

o Naive Q gradients can be too large, or too small = generally unstable and
unreliable

o Where else did we observe a similar behavior?

s
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Improving stability: Experience replay

o Replay memory/Experience replay

o Store memories < s,a,r,s’ >

o Train using random stored memories instead of the latest memory
transition

o Breaks the temporal dependencies — SGD works well if samples are
roughly independent

o Learn from all past policies

s
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Experience replay

o Take action a; according to e-greedy policy

o Store transition (S¢, A¢, 441, S¢41) in replay memory D

o Sample random mini-batch of transitions (s, a,r,s’) from D
o Optimize mean squared error using the mini-batch

£(8) = E(sas)-pl(r + ¥ maxQ(s',a’, 6) = Q(s,a,6))"]

o Effectively, update your network using random past inputs (experience),
not the ones the agent currently sees

s
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Improving stability: Freeze target  network

o Instead of having “moving” targets, have two networks
° One Q-Learning and one Q-Target networks

o Copy the Q network parameters to the target network every K iterations
o Otherwise, keep the old parameters between iterations
> The targets come from another (Q-Target) network with slightly older parameters

o Optimize the mean squared error as before, only now the targets are
defined by the “older” Q function

£(6) = E[(r +y max Q(s',a’, 6o1a) — Q(s,2,60))’]

o Avoids oscillations

s
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Improving stability: Take care of rewards

o Clip rewards to be in the range [—1, +1]
o Or normalize them to lie in a certain, stable range

o Can’t tell the difference between large and small rewards

s
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Results

Q-learning | Q-learning | Q-learning | Q-learning

+ Replay + Replay

+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

s
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Some extra tricks

o Skipping frames
° Saves time and computation
o Anyways, from one frame to the other there is often very little difference

o &-greedy behavioral policy with annealed temperature during training
> Select random action (instead of optimal) with probability €

|II

° In the beginning of training our model is bad, no reason to trust the “optimal” action

o Alternatively: Exploration vs exploitation
o early stages =2 strong exploration
> |ate stages 2 strong exploitation
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Policy-based
Deep RL
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Policy Optimization

o Problems with modelling the Q-value function

> Often too expensive = must take into account all possible states, actions =2 Imagine
when having continuous or high-dimensional action spaces

> Not always good convergence € Oscillations

o Often learning directly a policy mg (a|s) that gives the best action without
knowing what its expected future reward is easier

o Also, allows for stochastic policies € no exploration/exploitation dilemma

o Model optimal action value with a non-linear function approximator

Q*(s,a) = Q(s,a; w)
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Policy Optimization

A

Dynamic System

) 4 \ 4

A

y

A 4

Learning Agent

Tg(als)

S

Slide inspired by P. Abbeel
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Policy Optimization

Dynamic System

A

o Train learning agent for the optimal

v

: . policy m,, (al|s) given states s and
@@ @@ @D possible actions a

A

Learning Agent o The policy class can be either
deterministic or stochastic

A 4

Ty (als)

Slides inspired by P. Abbeel
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Policy Optimization

o Use a deep networks as non-linear approximator that finds optimal policy by maximizing

Q(s,a; 0)
L(w) =Q(s,a;w)
= E[ry + ¥7ee1 +V2Tes2 + o [Ty (St ag)]
o If policy is deterministic

oL [6 logm(als, w)
_ ]E
ow

o If policy is stochastic a = m(s)

sl

ow

L . dQ™(s,a) da
ow da ow

o To compute gradients use the log-derivative trick (REINFORCE algorithm (Williams, 1992))
Vop(x; 8)

p(x;6)
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Asynchronous Advantage Actor-Critic (A3C)

o Estimate Value function
V(s,v) = Elrp4q +y7reqn + - IS]
o Estimate the Q value after n steps
Qe = Teg1 T VT4 + oV T YV (S V)

o Update actor by
0Lgctor  0logm(ag|se, w)

= (qc = V(sev))

ow ow

s
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A3C in labyrinth

o End-to-end learning of softmax policy from pixels
o Observations are the raw pixels

o The state is implemented as an LSTM

n(als;_q) V(s;.4) n(als,) Vl(sy) n(als,,4) V(s;4)

o Outputs value V(s) and softmax over
actions m(als)

o Task
o Collect apples (+1)
o escape (+10)

o Demo
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https://www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be

Model-based
Deep RL
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Learning models of the environment

o Often quite challenging because of cumulative errors

o Errors in transition models accumulate over trajectory

o Planning trajectories are different from executed trajectories
o At the end of a long trajectory final rewards are wrong

o Can be better if we know the rules

s
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AlphaGo

R 1E
o At least 101°* possible game states O .
o Chess has 10129 o S *l°|z;;:°|z {;L;fo"ﬁ/fi'fail'S':
' linn o fisscisoSGaogaG:
o Monte Carlo Tree Search used mostly At o o
> Start with random moves and evaluate A Baueouasnuesciniican fou:
how often they lead to victory NIA ponoionciyoen[ooogcsjoo:
> Learn the value function to predict the quality — o0 o5 CER CER o BLE R

of a move ! L a.i:l axl':ixxﬁzx'h

o Exploration-exploitation trade-off TH

Tic-Tac-Toe possible game states
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AlphaGo

Policy network Value network

o AlphaGo relies on a tree procedure for search

P, @ |s) vy (s)

o A ConvNet trained to predict human moves achieved JT

Y ~
57% accuracy {

> Humans make intuitive moves instead of thinking too far ahead’ 0
o For Deep RL we don’t want to predict human moves

° Instead, we want the agent to learn the optimal moves

o AlphaGo relies on ConvNets to guide the tree search

o Two policy networks (one per side) + One value network

o Value network trained on 30 million positions while policy networks play
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Policy network Value network
o Both humans and Deep RL agents play better end games |
> Maybe a fundamental cause? B 8 el
o In the end the value of a state is computed JC = w

equally from Monte Carlo simulation and the value
network output
o Combining intuitive play and thinking ahead

o Where is the catch?

> &
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AlphaGo

Policy network Value network

o Both humans and Deep RL agents play better end games |
> Maybe a fundamental cause? ok 810 e

: L ] '
o In the end the value of a state is computed |,!. *

equally from Monte Carlo simulation and the value X

network output 3
o Combining intuitive play and thinking ahead ’ 0

o Where is the catch?

o State is not the pixels but positions

o Also, the game states and actions are highly discrete
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Exam

o What is allowed
> 1 A4 page with whatever you want on it
° Printed slides from the course
> The Deep Learning book

o What is not allowed
° [nternet
> Phones
> And all sorts of personal communication
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o Reinforcement Learning

o Q-Learning

Summary

Deep Q-Learning
Policy-based Deep RL

o Model-based Deep RL
o Making Deep RL stable
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