


Lecture overview

o Gentle intro to generative models
o Generative Adversarial Networks

o Variants of Generative Adversarial Networks
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Generative models

(b) Our results (128x128)




Types of Learning

o Generative modelling
°Learn the joint pdf: p(x, y)
°Model the world = Perform tasks, e.g. use Bayes rule to classify: p(y|x)
>Naive Bayes, Variational Autoencoders, GANs

o Discriminative modelling
°Learn the conditional pdf: p(y|x)
°Task-oriented
oE.g., Logistic Regression, SVM
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Types of Learning

o What to pick?

°V. Vapnik: “One should solve the [classification] problem directly and never solve a more
general [and harder] problem as an intermediate step.”

o Typically, discriminative models are selected to do the job

o Generative models give us more theoretical guarantees that the model is
going to work as intended
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Why generative modeling?

s
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Why generative modeling?

o Act as a regularizer in discriminative learning
o Discriminative learning often too goal-oriented
> Qverfitting to the observations

o Semi-supervised learning
> Missing data

o Simulating “possible futures” for Reinforcement Learning

o Data-driven generation/sampling/simulation
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Applications: Image Generation

Generated by LSGANS.
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(b) Generated by DCGANs (Reported in [13]).

Figure 5: Generated images on LSUN-bedroom.
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Applications: Super-resolution

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)
y “ & —
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Applications: Cross-model translation

Input Ground truth Output

Labels to Street Scene

input output |
g Aerial to Map . ’

output
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A map of generative models

v Direct

Maximum Likelihood
/ \ / GAN

Explicit density Implicit density

<N\ o

- : : Mark hai
Tractable density | Approximate density arkov Chain

. . GSN
-Fully visible belief nets
'NADE AN

MADE Variational | Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables
models (nonlinear ICA)
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Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

v Direct
Maximum Likelihood
/ \ / GAN
?\

Problems Explicit density Tmplicit density

<N\ O

k hai
Tractable density Approximate density \Mar ov Chain

Fully visible belief nets \ GSN
-NADE / \.
_MADE Variational | Markov Cthn

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

o Design complex enough model
that meets data complexity

o At the same time, make sure model
is computationally tractable

models (nonlinear ICA)

o More details in the next lecture
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Generative modeling: Case |

o Density estimation

Train set @ Fitted mode| — =
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Implicit density models

o No explicit probability density function (pdf) needed
o Instead, a sampling mechanism to draw samples m\
from the pdf without knowing the pdf Maximum Likelihood / —
— |\

Explicit density Implicit density

-\ o

Markov Chaln

GAN

Tractable density Approx1mate sity

-Fully visible belief nets \_/
-NADE

_MADE Varlatlonal Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)
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Implicit density models: GANs

o Sample data in parallel

o Few restrictions on generator model
o No Markov Chains needed

o No variational bounds

o Better qualitative examples
°Weak but true

Maximum Likelihood

— \

Explicit density

Direct

GAN

-\ o

Implicit density

Tractable density

Approximate density

Markov Chain

-Fully visible belief nets
-NADE
-MADE

VAN

GSN

Variational 'Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

IMPLICIT GENERATIVE MODELS - 15



Generative modeling: Case ||

o Sample Generation

Train examples
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Generative modeling: Case ||

o Sample Generation

Train examples New samples (ideally)
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What is a GAN?

o Generative
°You can sample novel input samples
°E.g., you can literally “create” images that never existed

o Adversarial
°Qur generative model G learns adversarially, by fooling an discriminative oracle model D

o Network
°Implemented typically as a (deep) neural network
cEasy to incorporate new modules
°Easy to learn via backpropagation
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GAN: Intuition

o Assume you have two parties
°Police: wants to recognize fake money as reliably as possible
o Counterfeiter: wants to make as realistic fake money as possible

o The police forces the counterfeiter to get better (and vice versa)

o Solution relates to Nash equilibrium
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GAN: Pipeline

D tries to make
D(G(z)) near 0,
G tries to make

D(x) tries to be

near 1 D(G(z)) near 1
Differentiable

D

?

x sampled from
model

!

Differentiable
function G

f

Input noise 2

function D

*

x sampled from
data

NN
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Generator network x = G(z; 8(®)

o Must be differentiable
o No invertibility requirement
o Trainable for any size of z

o Can make conditionally Gussian given z, but no strict requirement
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Generator & Discriminator: Implementation

o The discriminator is just a standard neural network

o The generator looks like an inverse discriminator

A~ NOOT N L
. S T ;
-

Generator Network

........

Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding ¢(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Network Architecture
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Training definitions

o Minimax
o Maximin
o Heuristic, non-saturating game

o Max likelihood game
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Minimax Game

O](D) — —%]E

1
X~DPdata log D(x) T E ]EZ’VpZ log(l o D(G (Z)) ]'“l 3
oD(x) = 1 - The discriminator believes that x is a true image

oD(G(z)) = 1 - The discriminator believes that G(z) is a true image

o Equilibrium is a saddle point of the discriminator loss
o Resembles Jensen-Shannon divergence

o Generator minimizes the log-probability of the discriminator being correct
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Minimax Game

o For the simple case of zero-sum game
JG) = (D)

0 So, we can summarize game by
V(6®), @) = —j@) (gD, g(©))

o Easier theoretical analysis

o In practice not used =2 when the discriminator starts to recognize fake
samples, the generator gradients vanish
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Heuristic non-saturating game

1 1
oJP) = — > Expaata logD(x) — ~Ezvp, log(1 — D(G(2))

0J©@ = =2 E;p, log(D(6(2))

o Equilibrium not any more describable by single loss

o Generator maximizes the log-probability of the discriminator being mistaken
°Good G(z) > D(G@)=1 > J© ismaximized

o Heuristically motivated; generator can still learn even when discriminator
successfully rejects all generator samples
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DCGAN Architecture
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Examples
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Even vector space arithmetics ...

Man Man
with
glasse
S Woman with
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Moditying GANs for Max-Likelihood

o]P) = —%IE log D (x) —%IEZ log(1 —D(G(2))

X~Ddata

0]@ = —~E,log(c " (D(G(2)))

o When discriminator is optimal, the generator gradient matches that of
maximum likelihood

o “On distinguishability Criteria for Estimating Generative Models”,
Goodfellow 2014

s
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Comparison of Generator Losses

5 \ | | | |
0 E——— L
) R
S
~
—0H — Minimax a
_15 | — Non-saturating heuristic i
——  Maximum likelihood cost
_20 | | ] ]
0.0 0.2 0.4 0.6 0.8 1.0

D(G(=2))
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Optimal discriminator

o Optimal D (x) for any pageq (x) and py,oq01 () is always
. Paata(X)
D(x) =

Paata(X) + Pmoder (X)
o Estimating this ratio with supervised learning (discriminator) is the key

Discriminator S Data

A A LA Model
' .. : [2\ .~ distribution

. . .
N
. . e . o>

L3

4 .
[ L
1] L}
! )

. 7 T I




Why is this the optimal discriminator?

oL(D,G) = fx pr(x)logD(x) +p,(x) log(l — D(x)) dx
°Minimize L(D, G) w.rt. D

oBy setting X = D(x),A = p,(x), B = py(x) and setting% = 0 and

ignoring the integral because we sample over all x
pr(x)
D*(x) =
pr(x) + pg(x)
o For an optimal generator: p;(x) — p,(x) we have
1
D*(X) = z
L(G*,D*) = —2log 2

s
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GANSs and Jensen-Shannon divergence

o By expanding the Jensen-Shannon divergence, we have

+p 1

5 g)"'EDKL(pgl

=1(log2+fp (x) log pr (1) dx + log 2
2 . pr(x) + pg(x) “

Pr + Dy

1 Dr
D]S(prl pg) — EDKL(pr”

s
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GANSs and Jensen-Shannon divergence

o By expanding the Jensen-Shannon divergence, we have

+p 1

5 g)"'EDKL(pgl

=1(log2+fp (x) log pr (1) dx + log 2
2 . pr(x) + pg(x) “

Pr + Dy

1 Dr
D]S(prl pg) — EDKL(pr”

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

s
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s the divergence important?

o Does the divergence make a difference?

o Is there a difference between KL-divergence, Jensen-Shannon divergence, ...

p
DKL(pr”pg) :fpr log_rdx

X Pg
1 Pr T D 1 Pr T D
Dys(prllpg) = 5 Dkr(Prll =) + 5 Du (gl =)

o Let’s check the KL-divergence

s
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s the divergence important?

o Forward KL divergence: Dg; (p(x)|lg*(x)) = high probability everywhere
that the data occurs

o Backward KL divergence: Dg; (g™ (x)||p(x)) =2 low probability wherever
the data does not occur

_ . " q" = argmin, Dkr.(pl|q) q" = argmin, Dkr(q||p)
o Which version makes the model “c
— p(z) N — p(x)
> * > \ *
4 - q"(x) 7 . - q'(x)
A A I
2 2 I
z 2\
3 - - 3 / \
E e ~ E / \
yal h / \
Maximum likelihood Reverse KL
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s the divergence important?

o Dgr (p(x)||q” (x))=2 high probability everywhere that the data occurs
0 Dp 1 (g*(x)||p(x)) =2 low probability wherever the data does not occur

o Which version makes the model “conservative”?

oDk (@ )Ip(0) = [ q" ()10l =i Darlel " = argmin, D 4l
o — p(x) A — p(x)
Avoid areas where p(x) — 0 : I | T
o Zero-forcing ; 1 \‘
°q*(x) — 0in areas when approximation 2 E M\
* : _ - \
q°(x) cannot be good = /- N £l \
p(x) ’ ‘ ) \
Maximum likelihood Reverse KL
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KL vs JS

0JS is symmetric, KL is not

] N Dectpll) /|
0.3 4 ke \Pl|1g :
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GAN Problems: Reaching Nash equilibrium causes instabilities

o GANS is a mini-max optimization
> Non-cooperative game with a tied objective

o Training is not always easy
- When optimizing one player/network,
we might hurt the other one
—> oscillations

o E.g., assume we have two players f(x) =
Xy one step at a time

o - dfy
Player 1 minimizes: min filx) =xy = = - — % . -
= xt+1 = xt — r’ . y Iterations
L . d
o Player 2 minimizes: min f,(x) = —xy = d—fcz = —X

y
= YVt41 =Y+ X

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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GAN Problems: Vanishing Gradients

D) 1 1
J¥ == Exip,,,, 108D (x) — EIEZ log(1 — D(G(2))
J© = — =, log(D(G(2)) T B

—  After 25 epochs

o If the discriminator is quite bad, then the generator
does not get reasonable gradients

10-%

o But, if the discriminator is perfect, D(x) = D*(x), .|
the gradients go to O
°No learning anymore R O

o Bad when this happens early in the training
cEasier to train the discriminator than the generator
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GAN Problems: Mode collapse
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GAN Problems: Vanishing Gradients

D) 1 1
J¥ == Exip,,,, 108D (x) — EIEZ log(1 — D(G(2))
J© = — =, log(D(G(2)) T B

—  After 25 epochs

o If the discriminator is quite bad, then the generator
does not get reasonable gradients

10-%

o But, if the discriminator is perfect, D(x) = D*(x), .|
the gradients go to O
°No learning anymore R O

o Bad when this happens early in the training
cEasier to train the discriminator than the generator
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GAN Problems: Low dimensional supports

o Data lie in low-dim manifolds

o However, the manifold is not known

o During training p is not perfect
either, especially in the start

0 So, the support of p;- and py is non-
overlapping and disjoint
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Wasserstein GAN

o Instead of KL/JS, use Wasserstein (Earth Mover’s) Distance

Wip., = inf  Evyov]|x —
(pr pg) y~T(prpe) (x,y) yl Y|

o Even for non-overlapping supports, the distance is meaningful

wu

o~
1

# Shovelfuls in P

wu [} [l N w
1 1 1
T T T

N W B
L L L

# Shovelfuls in Q

o -
1 1
T

QL Q Qs Q4 Q1 Q2 Qs Q4 Q1 Q2 Qs Q4 Q1 Q: Qs Qs
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Feature matching

o Instead of matching image statistics, match feature statistics
2
J P = By, f () = By, f(G@)]]

o f can be any statistic of the data, like the mean or the median
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Training procedure

o Use SGD-like algorithm of choice
o Adam Optimizer is a good choice

o Use two mini-batches simultaneously
°The first mini-batch contains real examples from the training set
°The second mini-batch contains fake generated examples from the generator

o Optional: run k-steps of one player (e.g. discriminator) for every step of
the other player (e.g. generator)
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Use labels if possible

o Learning a conditional model p(y|x) is often generates better samples
°Denton et al., 2015

o Even learning p(x, y) makes samples look more realistic
°Salimans et al., 2016

o Conditional GANs are a great addition for learning with labels
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One-sided label smoothing

o Default discriminator cost:

cross_entropy(l., discriminator(data))
+ cross_entropy(@., discriminator(samples))

o One-sided label smoothing:

cross_entropy(0.9, discriminator(data))
+ cross_entropy(0., discriminator(samples))

o Do not smooth negative labels:

cross_entropy(1l.-alpha, discriminator(data))
+ cross_entropy(beta, discriminator(samples))

s
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Benefits of label smoothing

o Max likelihood often is overconfident
°Might return accurate prediction, but too high probabilities

o Good regularizer
°Szegedy et al., 2015

o Does not reduce classification accuracy, only confidence

o Specifically for GANs
°Prevents discriminator from giving very large gradient signals to generator
°Prevents extrapolating to encourage extreme samples
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Batch normalization

o Generally, good practice for neural networks
o Given inputs X = {x x@) _ x(mn
o Compute mean and standard deviation of features of X: up,,, 0pn

o Normalize features
°Subtract mean, divide by standard deviation
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Batch normalization: Graphically

Zr = h(xk—1) Xk+1 = Zk=
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Batch normalization: Graphically
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Reference batch normalization

o Training with two mini-batches

o One fixed reference mini-batch for
computing mean and standard deviation

o The other for doing the training as usual

o Proceed as normal, only use the mean
and standard deviation for the batch

norm from the fixed reference mini-
batch

o Problem: Overfitting to the reference
mini-batch

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

Standard Reference
mini-batch mini-batch

teration 2 . .
(3)

lteration 3 dj
do
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Solution: Virtual batch normalization

o Mini-batch= standard mini-batch + reference, fixed mini-batch

Standard Reference
mini-batch mini-batch

lteration 2

3
Iteration 3 d]( )
do
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Balancing Generator & Discriminator

o Usually the discriminator wins
°That’s good, in that the theoretical justification assume a perfect discriminator

o Usually the discriminator network is bigger than the generator

o Sometimes running discriminator more often than generator works better
°>However, no real consensus

o Do not limit the discriminator to avoid making it too smart
°Better use non-saturating cost
oBetter use label smoothing
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Open Question: Non-convergence

o Optimization is tricky and unstable
°finding a saddle point does not imply a global minimum

o An equilibrium might not even be reached

o Mode-collapse is the most severe form of non-convergence

s
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Open Question: Mode collapse

o Discriminator converges to the correct distribution

o Generator however places all mass in the most likely point

- - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k
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Open Question: Mode collapse

o Discriminator converges to the correct distribution

o Generator however places all mass in the most likely point

o Problem: low sample diversity
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Minibatch features

o Classify each sample by comparing to other examples in the mini-batch

o If samples are too similar, the model is penalized
Sample

Mini-batchIII IIII

Penalized Not Penalized
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Open Question: Evaluation of GANs

o Despite the nice images, who cares?
o It would be nice to quantitatively evaluate the model

o For GANs it is even hard to estimate the likelihood

s
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Open Question: Discrete outputs

o The generator must be differentiable
o It cannot be differentiable if outputs are discrete
o E.g., harder to make it work for text

o Possible workarounds
o REINFORCE [Williams, 1992]
o Concrete distribution [Maddison et al., 2016]
°cGumbel softmax [Jang et al., 2016]
°Train GAN to generate continuous embeddings
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Open Question: Semi-supervised classification

Real cat

Hidden Hidden

units units

Input
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Interpretable latent codes

o InfoGAN [Chen et al., 2016]

LeLDe PLOHD
SeLDe PUODHD
SeLDe PDPUODHD
LD DOODHD ;
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GAN spinoffs

o Conditional GANs /it owy) (@) A
Standard GANs have no encoder!
. 00000
o Actor-Critic T

00000 (@000
\

cRelated to Reinforcement Learning \

QOO OO

N

3 | r
\.....CXXXXz/

Conditional GAN
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Connections to Reinforcement Learning

o GANs interpreted as actor-critic [Pfau and Vinyals, 2016]
o GANs as inverse reinforcement learning [Finn et al., 2016]

o GANs for imitation learning [Ho and Ermin 2016]
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Application: Image to Image translation

PIX2pix
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Application: Style transfer

orange — apple
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Application: Face generation

o https://www.youtube.com/watch?v=XOxxPcy5Gr4
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https://www.youtube.com/watch?v=XOxxPcy5Gr4

o GANSs are generative models using supervised
learning to approximate an intractable cost
function

Summary

o GANSs can simulate many cost functions,
including max likelihood

o Finding Nash equilibria in high-dimensional,
continuous, hon-convex games is an important
open research problem

o GAN research is in its infancy, most works
published only in 2016. Not mature enough vet,
but very compelling results
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