


Lecture overview

o Gentle intro to Bayesian Modelling and Variational Inference
o Restricted Boltzmann Machines

o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows

s
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Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

v Direct
Maximum Likelihood
/ \ / GAN
?\

Problems Explicit density Tmplicit density

<N\ O

k hai
Tractable density Approximate density \Mar ov Chain

Fully visible belief nets \ GSN
-NADE / \.
_MADE Variational | Markov Cthn

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

o Design complex enough model
that meets data complexity

o At the same time, make sure model
is computationally tractable

models (nonlinear ICA)

o More details in the next lecture
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Deep Belief Deep Boltzmann
Network Machine

Bayesian Modelling
Variational Inference




How to define a generative model?

o We can define an explicit density function over all possible relations
W .between the input variables x,

pe) = | [we 6o

o Quite inefficient = think of all possible relations (not just pairwise)
between 256 X 256 = 65K input variables

o Solution: Define an energy function to model the relations between the
inputs variables

s
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Restricted Boltzmann Machines

o Boltzmann (or Gibbs) distribution defined over a free energy function E'(x)
1
p(x) = exp(—E(x))

o Z is the normalization factor that makes sure fxp(x) dx =1
>\ery expensive to compute = if x = {0, 1} computing Z requires 24 computations

o Better restrict the model further to a bottleneck
E(x)=—x"Wh—-b"x —c"h
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Why Boltzmann?

o In statistical mechanics and mathematics, a Boltzmann distribution (also
called Gibbs distribution) is a probability distribution, probability measure,
or frequency distribution of particles in a system over various possible
states. The distribution is expressed in the form

F(state) < exp(— T

o E is the state energy, k is the Boltzmann constant, T is the thermodynamic
temperature

https://en.wikipedia.org/wiki/Boltzmmann distribution

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS -7



https://en.wikipedia.org/wiki/Boltzmann_distribution

Restricted Boltzmann Machines

oE(x) = —x"Wh—-b"x—c"h

o The xTWh models correlations between x and the latent activations via the
parameter matrix W

oThe bTx, c"h model the priors

o Restricted Boltzmann Machines (RBM) assume X, h to be binary

s
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Restricted Boltzmann Machines

oE(x) = —x"Wh—->b"x —c'h, 6 ={W,b,c}

o The free energy function F(x) = —log )., exp(—E(x, h))
defines a bipartite graph
with undirected connections
oInformation flows forward and backward

s
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Restricted Boltzmann Machines

o The hidden units h; are independent to each other
conditioned on the visible units

p(h|x) = Hp(hj‘x, 9)
J

o The hidden units x; are independent to each other
conditioned on the visible units

plh) = | [pCuln 0)

s
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Training RBMs

o The conditional probabilities are defined as sigmoids
p(h;|x,0) = o(W,;x + by)
p(xi|h,0) = o(Wix + ¢;)

o Maximize log-likelihood

1
L(O) = Nz logp(x,|0)

o Let’s take the gradients
dlogp(x,|0) aF(xn) dlogZ

a0 Ea 20
| 0, 0 | OE G, hlf
= p(hlx,, 0) & |0 DRICLD S
h

Hidden unit (features)
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Training RBMs

o Let’s take the gradients
dlogp(x,|0) 6F(xn) dlogZ

006 Ea 006
a _|h, 8 aE h|6
= — E p(hx,, 6) (Hx ' ) 4 E p(%, h (x 9)

o Easy because we just substitute in the deflmtlons the x,, and sum over h

o Hard because you need to sum over both X, h which can be huge
°|t requires approximate inference, e.qg., MCMC
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Training RBMs with Contrastive Divergence

o Approximate the gradient with Contrastive Divergence

o Specifically, apply Gibbs sampler for k steps and approximate the gradient
dlogp(xn|0)  OE(xy, hol0) OE(xy, hy|6)

96 - 96 a 96
he ~ P(hlx) h: ~ P(h|x:)

OO

/v \ _
OO0 OO0

Observatlons Reconstructions
xi ~ P(x|h)

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002
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Deep Belief Network

o RBMs are just one layer

o Use RBM as a building block

‘ .49%(‘/5%'.{;

Il",ﬁ',"'/};."\
e

W W/,sf,/

o Stack multiple RBMs one on top of the other
p(x, hy, hy) = p(x|hy) - p(hy|hy)

o Deep Belief Networks (DBN) are directed models
°The layers are densely connected and have a single forward flow X

°This is because the RBN is directional, p(x;|h,8) = c(W.;x + ¢;),
namely the input argument has only variable only from below
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Deep Boltzmann Machines

o Stacking layers again, but now with connection
from the above and from the below layers h.

o Since it’s a Boltzmann machine, we need an
energy function

E(x,hy, hy|0) = xTW,hy + KT W, h, + RIWsh,
p(hS|hs, hs) = o) W R+ > withk)
i l

1

s
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Deep Boltzmann Machines

o Schematically similar to Deep Belief Networks

. h;
o But, Deep Boltzmann Machines (DBM) are
undirected models
°Belong to the Markov Random Field family h
o So, two types of relationships: bottom-up and up-

bottom
p(hs|hs, hs) = () W/*R] + > WiRE) b
i l

s
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Training Deep Boltzmann Machines

o Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used
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Bayesian Modelling
Variational Inference

normal gamma nomal gamma
\ \ \r /
'
K fo C Y
nomal nomal




Bayesian Terminology

o Observed variables x

o Latent variables 6

°Both unobservable model parameters w and
unobservable model activations z

o0 = {w, z}
o Joint probability density function (pdf): p(x, 8)

Y
T

3 Mo

normal

o Marginal pdf: p(x) = fgp(x, 0) do \ \

o Prior pdf = marginal over input: p(8) = J_p(x, ) dx
o Usually a user defined pdf

/ '\

)
/ Hi 1 "\
7 normal

o Posterior pdf: p(8]x) -
o Likelihood pdf: p(x|6) i
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Bayesian Terminology

o Posterior pdf

Ii(g |(§3 3:) < Conditional probability
- < Bayes Rule

p(x
_ p(xlg) p(0) « Marginal probability

'p(alg |(g)) p(g) € Px)isconstant

B Jo,p(x,8") do’
o p(x|6) p(6)

o Posterior Predictive pdf
P Vnewly) = fp(Ynewle) p(Bly) db
6
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Bayesian Terminology

o Conjugate priors
cwhen posterior and prior belong to the same
family, so the joint pdf is easy to compute

o Point estimate approximations of
latent variables

°instead of computing a distribution over all
possible values for the variable, compute one
point only, e.g. the most likely (maximum
likelihood or max a posteriori estimate)

0" = argg maxp(x|0)p(6) (MAP)
0" = argg maxp(x|0) (MLE)

°Quite good when the posterior distribution is
peaky (low variance)

Point estimate of your
neural network weight

2.1%

K

Tisnla}

ut2c pt3c
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Bayesian Modelling

o Estimate the posterior density p(8]|x) for your training data x
o To do so, need to define the prior p(6) and likelihood p(x|@) distributions

o Once the p(08]x) density is estimated, Bayesian Inference is possible
°p(8]x) is a (density) function, not just a single number (point estimate)

o But how to estimate the posterior density?
>Markov Chain Monte Carlo (MCMC) = Simulation-like estimation
°Variational Inference = Turn estimation to optimization
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Variational Inference

o Estimating the true posterior p(@]x)is not always possible
cespecially for complicated models like neural networks

o Variational Inference assumes another function g(6|@) with
which we want to approximate the true posterior p(6]x)
°q(@|¢) is the approximate posterior

> Note that the approximate posterior does not depend on the observable
variables x

o We approximate by minimizing the reverse KL-divergence w.rt. @
¢" = argmin KL(q(6|9)||p(0]x))

o Turn inference into optimization

s
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 26




Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? /
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? Forward KL /
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Mean-Field Approximation and CAVI Optimization

o To make the optimization of the VI easier, one can assume the latent
variables are independent of each other

a0l9) = | | 4,610
J

o The optimization is often done with CAV|
o Coordinate-Ascent Variational Inference
°|nitially set ¢ randomly

oFor each j in turn you set qj(0j|<pj) = E,_.[logp(6]x)]

J
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Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables @ and the

approximate posterior Eq, 0 llogp(x,0)] — % 59)[108 q,(6)]

q,(0) = q(0]p) _ Eﬁﬁ(g)e[(lpo(%g(x ,0)] +H
o The log marginal is
logp(x) = log f p(x,0) do or
q,(6) = Eq,(0)[logp(x|6)] — £y 0 [log p(6))]
B logjgp(x 9 q,(0) 40 + Eq,(0)[108 qcp(g)]
~ logE [P(x’ 0) = Eq, ) [108 p(x10)] — K1.(,,(0)]|p(0))
% | q,0) = ELBOg , (%)
<E [lo péux, )
= 00|87 0)

s
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Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables 8 and the
approximate posterior

4y (0) = q(0]¢p)
o The log marginal is

s
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ELBO and the marginal

o It is easy to see that the ELBO is directly related to the marginal
ELBOg (p(x) =
= Eq,(0) | logp(x,60)] — Eq ,6) [log q,(8)]
= Eq, 0 [logp(6]x)] + IEq @ [log ()] — Eq (0| log 4, (6]
= Eq,(9)[logp(x)] — KL(CI<p(9)|IP(9|X))

log p(x) KL(q,(0)|p(0]x)) € logp(x) does not depend on g, (6)
= < Eq, 0[1]=1

logp(x) = ELBOg,¢ (%) + KL(q,(0)|Ip(0]x))
o You can also see ELBOg (,(x) as Variational Free Energy

s
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ELBO and the marginal

o It is easy to see that the ELBO is directly related to the marginal
ELBO@)cp(X) =

s
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ELBO interpretations

ologp(x) = ELBOg,,(x) + KL(q,(8)|[p(6]x))
o The log-likelihood is constant, as it does not depends on any parameter

o Also, both ELBOg (,(x) > 0 and KL(q,(8)]|p(8]x)) > 0

1. The higher the Variational Lower Bound ELBOg (,(x), the smaller the
difference between the approximate posterior q,, (@) and the true
posterior p(6|x) = better latent representation

2. The Variational Lower Bound ELBOg (%) approaches the log-likelihood
- better density model

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 34




Amortized Inference

o The variational distribution g(8]¢) does not depend directly on data
°Only indirectly, via minimizing its distance to the true posterior KL(q(8|¢@)||p(8]x))

o So, with q(8|@) we have a major optimization problem, as the
approximate posterior must approximate the whole dataset x =

|x1, X5, ..., Xy ] jOintly

o As this is obviously quite complex, one can amortize the optimization on
individual data points by setting

q(0]p) = q,(0]x)
o Predict model parameters 8 using a @-parameterized model of the input x

o Use it for parameters that depend on data, such as the latent activations

s
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Amortized Inference (Intuitively)

o Originally, Variational Inference assumed that q(8|¢@) describes the
approximate posterior of the dataset as a whole
°Think of 8 not as the latent activations z, but only the latent model variables w

s
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Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOg, o, () = Eq_(o)[logp(x|0)] — KL(q,(6)]Ip(6))
= Eq,(z10) [logpe 1)) - KL(q, (z|x)]|pa(2))
o Instead of p(x|0) we have py(x|z) to indicate that the model for the

posterior density has weights parameterized by 8 and latent model
activations parameterized by z

o Instead of p(0) we have p,(z), namely we put a A-parameterized prior
only on the latent activations z and not the model weights

o Instead of q(8]¢) we have g, (z|x) to indicate that the model

approximates the posterior denS|ty of the latent activations, and the
model weights are parameterized by ¢

s
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Variational Autoencoders

o So, we have ELBOQ,(p(x) = Iqu)(Z|x) [log pg (x|2)] —
KL(q, (z|x)||pa(2))

o What if we model the densities py (x|2) and g, (z|x) as neural
networks? Decoder/Generator

o The approximate posterior looks like a standard CovnNet (or MLP), network
which receives an image input x and returns a feature map/latent |
variable z p».(2) WMWW Z
> Also known as encoder or inference network

o The likelihood term F?_g (x|z) looks like an inverted ConvNet
(deconvolutions), which given a latent feature map z reconstructs the

Input x

> Also known as decoder or generator network, because it recognizes the input given
the latent variable

o A difference from a standard autoencoder is we now have an opinion
of what the distribution of the latents z should look like, with py (z))
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(Q, 90) — II-::qcp(zpc) [108 Peo (XlZ)] T KL(Qcp(le)”p?\(Z))
o How to we optimize the ELBO?

s
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(@, (P) — [Eq(p(Z|x) [log Peo (X|Z)] _ KL(qcp (le)”p?\(z))
_ CIgo(le)
. j 4 (21%) log po (x|2) dz — f 4o (21%) log dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
So, we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

s
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Complex integrals
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(H; 90) — IIEq(p(Z|x) [108P9(X|Z)] _ KL(Q(p(le)”p?\(Z))
_ Chp(zlx)
- f 4o (21%) log po (x|2) dz — f 4 (z1%) log dz

o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically. So,
we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral is hard
to compute analytically

o The second term is the KL divergence between two distributions that we know

s
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Typical VAE

o We set the prior py (Z) to be the unit Gaussian
p(Z)~N(0,1)
o We set the likelihood to be a Bernoulli for binary data
p(X|Z)~Bernoulli(m)

o We set g, (Z]x) to be a neural network (MLP, ConvNet),
which maps an input X to the Gaussian distribution,
specifically it's mean and variance

Uz, 07 ~ (g (Z]x)

°The neural network has two outputs, one is the mean u, and the
other the g,., which corresponds to the covariance of the Gaussian

o We set pg(X|Z) to be an inverse neural network, which
maps Z to the Bernoulli distribution if our outputs binary
(e.g. Binary MINIST)

O-Z'
HZ\ _
o

nuZ VA

qy(z]x)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

EXPLICIT GENERATIVE MODELS - 43



in the latent space

10N

Interpolati

VAE

round 65536: train in latent space
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO?
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO? Backpropagation?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 46




Backward propagation in VAE

o Backpropagation = compute the gradients of
L6, 9) = E;q,z10logpe(x|2)] — KL(q4,(Z]|x)||pa(Z))

oVeL = II5:z~qgo(Z|x) [VH log pg (x|z)]
°The expectation and sampling in IEZ~q(p(Z|x)does not depend on 8, so no problem!
°Also, the KL does not depend on 8, so no gradient from over there!

VoL = Ty |Eygy a1 10 26 (2121 | = T [KL (g (Z10) 192 (2)) |

s
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L, ¢) = E;q,z10logpe(x]2)] — KL(q4, (Z]|x)||pa(Z))
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L6, 9) = E;q,z10logpe(x|2)] — KL(q4,(Z]|x)||pa(Z))

oVeL = II5:z~qgo(Z|x) [VH log pg (x|z)]
°The expectation and sampling in IEZ~q(p(Z|x)does not depend on 8, so no problem!
°Also, the KL does not depend on 8, so no gradient from over there!

VoL = Ty |Eygy a1 10 26 (2121 | = T [KL (g (Z10) 192 (2)) |

o Problem?

s
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Backward propagation in VAE

o Backpropagation = compute the gradients of
L6, 9) = E;q,z10logpe(x|2)] — KL(q4,(Z]|x)||pa(Z))

oVeL = II5:z~qgo(Z|x) [\79 log pe (X|Z)]
°The expectation and sampling in IEZ~q(p(Z|x)does not depend on 8, so no problem!
°Also, the KL does not depend on 8, so no gradient from over there!

VoL = Ty |Eygy a1 10 26 (2121 | = T [KL (g (Z10) 192 (2)) |

o Problem? Sampling z~q<p(Z|x) is not differentiable = no gradients
o No gradients = No backprop = No training! = Solution?

s
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Solution: REINFORCE?

0 So, our latent variable Z is a Gaussian (in the standard VAE) represented by
the mean and variance u,, 6z, which are the output of a neural net

0 So, we can train by sampling randomly from that Gaussian
z~N(Uz, 07)

o Once we have that z, however, it’s a fixed value (not a function), so we
cannot backprop

o We could use, however, the REINFORCE algorithm to compute an
approximation to the gradient
>High-variance gradients =2 slow and not very effective learning

s
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Solution: Reparameterization trick

o Remember, we have a Gaussian output z~N(uz, o)

o For certain pdfs, including the Gaussian, we can rewrite their random variable z
as deterministic transformations of a simpler random variable &

o For the Gaussian specifically, the following two formulations are equivalent
z~N(Uuz,07) & z=lz+¢e- 0y,
where e~N(0,1) and uy, o, are deterministic values from the NN function
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Solution: Reparameterization trick

o Instead of sampling from z~N (uy, o), we sample from e~N (0, 1) and
then we compute z

o Sampling directly from z~N(u,, 0,) leads to high-variance estimates

o Sampling directly from e~N(0,1) leads to low-variance estimates
°Why low variance? Exercise for the interested reader

o Remember: since we are sampling for z, we are also sampling gradients

o More distributions beyond Gaussian possible: Laplace, Student-t, Logistic,
Cauchy, Rayleight, Pareto

High-variance
gradient

Low-variance
gradient

s
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Check what is random

o Again, the latent variableisz = u, + € - o,
o 1z and g, are deterministic functions (via the neural network encoder)

o € is a random variable, which comes externally

o The z as a result is itself a random variable, because of &

o However, now the randomness is not associated with the neural network
and its parameters that we have to learn
°The randomness instead comes from the external €
°The gradients flow through u, and o,
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Reparameterization Trick (graphically)

Original form Reparameterised form

Backprop \;/

0f/9z; 2, = 9PXE)

v/

of/0g B X/ ~ p(€)

—

o 3L/3(pi N
L T e A
«_ : Deterministic node [Kingma, 2013]
4 [Bengio, 2013]
: [Kingma and Welling 2014]
. - Random node [Rezende et al 2014]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES EXPLICIT GENERATIVE MODELS - 55




VAE Training Pseudocode

Data:
D: Dataset
d¢(z|x): Inference model
pe(x,z): Generative model
Result:
0, ¢: Learned parameters

(6, ¢) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

e ~ p(e) (Random noise for every datapoint in M)

Compute Lg 4 (M, €) and its gradients Vg ¢£9 4,(./\/1 €)

Update 0 and ¢ using SGD optimizer

end " The ELBO’s gradients

s
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VAE for NLP

“ i want to talk to you . ”

“ want to be with you . ”

“ do n’t want to be with you .
© do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sen-
tences, from [Bowman et al., 2015]. The intermediate sentences are gram-
matically correct, and the topic and syntactic structure are typically locally
consistent.
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VAE for Image Resynthesis

Smile vector:
mean smiling faces -
mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.
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VAE for desighing chemical compounds

clceeecl

Discrete Structure ~ ENCODER CONTINUOUSMOLECULAR  DECODER ~ Discrete Structure

SMILES  Neural Network REPRESENTATION Neural Network SMILES Mol S
Latent Space Most Probable Decoding -

argmax p(*lz)

Figure 2.D.1: Example application of a VAE in [Gémez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f(z).
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o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

o Using simple pdfs, like a Gaussian, for the

approximate posterior limits the p(y)
expressivity of the model

o Better make sure the approximate posterior ~ ~ -_
comes from a class of models that can even 0 y

contain the true posterior

o Use a series of K invertible transformations
to construct the approximate posterior ‘

°Zi = fr © fr-1° f1(20)

°Rule of change for variables

f:RoR, flz)=20+1

X

0 1

Changing from the x variable to y using
the transformationy = f(x) = 2x + 1
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https://blog.evjang.com/2018/01/nf1.html
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://arxiv.org/pdf/1505.05770.pdf

o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

Sampling and Entropy

zg = fr o...0 fao fi(zo)
0

Distribution flows through a sequence of invertible transforms
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Normalizing Flows

Unit Gaussian

Uniform

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
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https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds

S« wibudiy

Normalizing
Flows

Probability Density

—

[

Figure 1: Left: Construction of a complex density on S™ by first projecting the manifold to R",
transforming the density and projecting it back to S™. Right: Illustration of transformed (S? — R?)
densities corresponding to an uniform density on the sphere. Blue: empirical density (obtained by
Monte Carlo); Red: Analytical density from equation (@); Green: Density computed ignoring the

intrinsic dimensionality of S™. N
1 T

log gk (zx) = log qo(zg) — 5 E log det |J¢ J¢|
=]

Gemici et al., 2016 : ' _
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
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Normalizing Flows on Non-Euclidean Manifolds

&
&
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Summary
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o Gentle intro to Bayesian Modelling and
Variational Inference

o Restricted Boltzmann Machines
o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows



