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Is generative modeling important?
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Is generative modeling important?

p(panda|x)=0.99

...

noise p(panda|x)=0.01

…

p(dog|x)=0.9

+ =

The neural network learns to classify images: 

There is no semantic understanding of images.
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Is generative modeling important?
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Where do we use generative modeling?

Image analysis

Reinforcement Learning

Audio analysis

Text analysis

Graph 

analysis

and more...Active Learning

Medical data
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Generative modeling: How?

Generative 

model

Autoregressive 

(e.g., PixelCNN)

Implicit models

(e.g., GANs)

Prescribed models

(e.g., VAE)

Latent variable 

models

Flow-based 

(e.g., RealNVP, GLOW)
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Generative modeling: Pros and cons

Training Likelihood Sampling Compression

Autoregressive 

models (e.g., 

PixelCNN)

Stable Yes Slow No

Flow-based models

(e.g., RealNVP)
Stable Yes Fast/Slow No

Implicit models

(e.g., GANs)
Unstable No Fast No

Prescribed models

(e.g., VAEs)
Stable Approximate Fast Yes
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Machine learning and (spherical) cows
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Machine learning and (spherical) cows
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Machine learning and (spherical) cows

flow-based models latent variable models
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Deep latent 

variable 

models
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Generative modeling

Modeling in high-dimensional spaces is difficult.
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Generative modeling

Modeling in high-dimensional spaces is difficult.

➔ Modeling all dependencies among pixels:
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Generative modeling

Modeling in high-dimensional spaces is difficult.

➔ Modeling all dependencies among pixels:

A possible solution: Latent Variable Models!

problematic
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Generative process:

Generative modeling with Latent Variables
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Generative process:

Generative modeling with Latent Variables
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Generative process:

Generative modeling with Latent Variables
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Generative process:

Log of marginal distribution:

Generative modeling with Latent Variables
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Generative process:

Log of marginal distribution:

How to train such model efficiently?

Generative modeling with Latent Variables
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Variational inference for Latent Variable Models
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Variational inference for Latent Variable Models

Variational posterior
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Variational inference for Latent Variable Models

Jensen’s inequality
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Variational inference for Latent Variable Models

Reconstruction error Regularization
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Variational inference for Latent Variable Models

decoder

encoder

prior
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Variational inference for Latent Variable Models

decoder

encoder

prior

= Variational Auto-Encoder
+ reparameterization trick
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Variational Auto-Encoders

encoder net decoder netcode

● VAE copies input to output through a bottleneck.

● VAE learns a code of the data.
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Variational Auto-Encoders
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● VAE puts a prior on the latent code.

● VAE can generate new data.
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Components of VAEs
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Variational posterior in VAEs

Question: How to minimize the 

KL(q||p)?

In other words: How to formulate a 

more flexible family of approximate 

(variational) posteriors? 

Using Gaussian is not sufficiently 

flexible.

We need a computationally efficient 

tool.

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.
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● Sample from a “simple” distribution:

Variational inference with normalizing flows

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015
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Variational inference with normalizing flows

● Sample from a “simple” distribution:

● Apply a sequence of K invertible transformations:

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

0 0 0

...
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Variational inference with normalizing flows

● Sample from a “simple” distribution:

● Apply a sequence of K invertible transformations:

and the change of variables yields: 

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

0 0 0

...
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Variational inference with normalizing flows

The learning objective (ELBO) with normalizing flows becomes:

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015
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Variational inference with normalizing flows

The learning objective (ELBO) with normalizing flows becomes:

The difficulty lies in calculating the Jacobian determinant:

● Volume-preserving flows:

● General normalizing flows:

○ is “easy” to compute

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015
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First, let us take a look at planar flows (Rezende & Mohamed, 2015):

This is equivalent to a residual layer with a single neuron.

Sylvester Normalizing Flows

= + +h
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First, let us take a look at planar flows (Rezende & Mohamed, 2015):

This is equivalent to a residual layer with a single neuron.

Can we calculate the Jacobian determinant efficiently?

Sylvester Normalizing Flows

= + +h



59

We can use the matrix determinant lemma to get the Jacobian determinant:

which is linear wrt the number of z’s.

Sylvester Normalizing Flows
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We can use the matrix determinant lemma to get the Jacobian determinant:

which is linear wrt the number of z’s.

The bottleneck requires many steps, so how we can improve on that?

1. Can we generalize planar flows?

2. If yes, how can we compute the Jacobian determinant efficiently?

Sylvester Normalizing Flows
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We can control the bottleneck by generalizing u and w to A and B.

SNF: Generalizing Planar Flows

= + +h
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We can control the bottleneck by generalizing u and w to A and B.

How to calculate det of Jacobian? Use Sylvester Determinant Identity:

SNF: Generalizing Planar Flows

= + +h
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We can control the bottleneck by generalizing u and w to A and B.

How to calculate det of Jacobian? Use Sylvester Determinant Identity:

OK, but it’s very expensive! Can we simplify these calculations?

SNF: Generalizing Planar Flows

= + +h
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Use of Sylvester Determinant Identity yields:

Next, we can use QR decomposition to represent A and B:

SNF: Generalizing Planar Flows

columns are orthonormal vectors

triangular matrices
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SNF: Invertible transformations

But is the proposed flow invertible in general?
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But is the proposed flow invertible in general? NO
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SNF: Invertible transformations

But is the proposed flow invertible in general? NO.

Theorem

If is smooth with bounded strictly positive derivative, and if 

and , then 

is invertible.

Hence:

1. For Q and R’s computing the Jacobian-determinant is efficient.

2. Restricting R’s results in invertible transformations.
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SNF: Invertible transformations

But is the proposed flow invertible in general? NO.

Theorem

If is smooth with bounded strictly positive derivative, and if 

and , then 

is invertible.

Hence:

1. For Q and R’s computing the Jacobian-determinant is efficient.

2. Restricting R’s results in invertible transformations.

But how to keep Q orthogonal?
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SNF: Learning orthogonal matrix

1. (O-SNF) Iterative orthogonalization procedure (e.g., Kovarik, 1970):

a. Repeat until convergence:

b. We can backpropagate through this procedure.

c. We can control the bottleneck by changing the number of columns. 

2. (H-SNF) Use l Householder transformations to represent Q.

a. Then, SNF is a non-linear extension of the Householder flow.

b. No bottleneck!

3. (T-SNF) Alternate between identity matrix and a fixed permutation matrix.

a. It ensures that all elements of z are processed equally on average.

b. Used also in RealNVP and IAF.
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● A single step:

● Keep Q orthogonal:

○ With bottleneck: O-SNF.

○ No bottleneck: H-SNF, T-SNF.

Sylvester Normalizing Flows
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● A single step:

● Keep Q orthogonal:

○ With bottleneck: O-SNF.

○ No bottleneck: H-SNF, T-SNF.

● In order to increase flexibility, we can use hypernets to calculate Q and R’s:

Sylvester Normalizing Flows

= + +h

g
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SNF: Results on MNIST
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SNF: Results on other data

No. of flows: 16

IAF: 1280 wide MADE, no hypernets

Bottleneck in O-SNF: 32

No. of Householder transformations in H-SNF: 8
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Components of VAEs

Normalizing flows

Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist.

Group theory

Resnets

DRAW

Autoregressive models

Normalizing flows

Autoregressive models

Normalizing flows

VampPrior

Implicit prior

Adversarial learning

MMD

Wasserstein AE
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Geometric perspective on VAEs

Question: Is it possible to recover the 

true Riemannian structure of the 

latent space?

In other words: Will geodesics follow 

data manifold?

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.
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Geometric perspective on VAEs

Question: Is it possible to recover the 

true Riemannian structure of the 

latent space?

In other words: Will geodesics follow 

data manifold?

For Gaussian VAE: No.
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Geometric perspective on VAEs

Question: Is it possible to recover the 

true Riemannian structure of the 

latent space?

In other words: Will geodesics follow 

data manifold?

For Gaussian VAE: No.

We need a better notion of 

uncertainty

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.
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Geometric perspective on VAEs

Question: Is it possible to recover the 

true Riemannian structure of the 

latent space?

In other words: Will geodesics follow 

data manifold?

For Gaussian VAE: No.

We need a better notion of 

uncertainty or different models.

Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2017). Latent space oddity: on the curvature of deep generative models. arXiv preprint arXiv:1710.11379.
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Potential problems with Gaussians

In VAEs it is very often assumed that the posterior and the prior are Gaussians. 
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Potential problems with Gaussians

In VAEs it is very often assumed that the posterior and the prior are Gaussians. But:

● The Gaussian prior is concentrated around the origin ⟶ possible bias.
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Potential problems with Gaussians

In VAEs it is very often assumed that the posterior and the prior are Gaussians. But:

● The Gaussian prior is concentrated around the origin ⟶ possible bias.

● In high-dim, the Gaussian concentrates on a hypersphere ⟶ ℓ2 norm fails.
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Using hyperspherical latent space

Since in high-dim the Gaussian distribution 

concentrates on a hypersphere, we propose to 

use a distribution defined on the hypersphere -

von-Mises-Fisher distribution:

where is the modified Bessel 

function of the first kind of order v.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical Variational Auto-Encoders. UAI 2018
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Hyperspherical VAE

● We define the latent space to be

● The variational dist. is the von-Mises-Fisher, and the prior is uniform, i.e., von-Mises-

Fisher with . Then the KL term is as follows:
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Hyperspherical VAE

● We define the latent space to be

● The variational dist. is the von-Mises-Fisher, and the prior is uniform, i.e., von-Mises-

Fisher with . Then the KL term is as follows:

● There exist an efficient sampling procedure using Householder transformation (Ulrich, 

1984).

● The reparameterization trick could be achieved by using the rejection sampling

(Naesseth et al., 2017).
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Hyperspherical VAE: Results on MNIST
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Hyperspherical VAE: Results on MNIST
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Hyperspherical VAE: Results on semi-supervised MNIST
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Hyperspherical GraphVAE: Link prediction
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Components of VAEs

Normalizing flows

Discrete encoders

Hyperspherical dist.

Hyperbolic-normal dist.

Group theory

Resnets

DRAW

Autoregressive models

Normalizing flows

Autoregressive models

Normalizing flows

VampPrior

Implicit prior

Adversarial learning

MMD

Wasserstein AE
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● There is a discrepancy between 

posteriors and the Gaussian prior 

that results in regions that were 

never “seen” by the posterior 

(holes). ⇾multi-modal prior

● Sampling process could produce 

unrealistic samples.

Problems of holes in VAEs

Rezende, D.J. and Viola, F., 2018. Taming VAEs. arXiv preprint arXiv:1810.00597.

Multi-modal priorStandard
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● Let’s rewrite ELBO over the training data:

Looking for the optimal prior

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018
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● Let’s rewrite ELBO over the training data:

● KL = 0 iff , then the optimal prior = aggregated posterior.

Looking for the optimal prior

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018
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● Let’s rewrite ELBO over the training data:

● KL = 0 iff , then the optimal prior = aggregated posterior.

● Summing over all training data is infeasible and since the sample is finite, it could cause 

some additional instabilities.

Looking for the optimal prior

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018
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● Let’s rewrite ELBO over the training data:

● KL = 0 iff , then the optimal prior = aggregated posterior.
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Looking for the optimal prior
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● Let’s rewrite ELBO over the training data:

● KL = 0 iff , then the optimal prior = aggregated posterior.

● Summing over all training data is infeasible and since the sample is finite, it could cause 

some additional instabilities. Instead we propose to use:

Looking for the optimal prior

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018 Multi-modal prior
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● Let’s rewrite ELBO over the training data:

● KL = 0 iff , then the optimal prior = aggregated posterior.

● Summing over all training data is infeasible and since the sample is finite, it could cause 

some additional instabilities. Instead we propose to use:

Looking for the optimal prior

Tomczak, J.M., Welling, M. (2018), VAE with a VampPrior, AISTATS 2018

pseudoinputs are trained 

from scratch by SGD
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VampPrior: Experiments (pseudoinputs)
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VampPrior: Experiments (samples)
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VampPrior: Experiments (reconstructions)
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Flow-based 
models
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The change of variables formula

● Let’s recall the change of variables formula with invertible transformations:

● We can think of it as an invertible neural network:

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.

0 0 0

...

pixel spacelatent space
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The change of variables formula

● Let’s recall the change of variables formula with invertible transformations:

● We can think of it as an invertible neural network:

0 0 0

...

pixel spacelatent space

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv preprint arXiv:1302.5125.
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RealNVP

● Design the invertible transformations as follows:

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
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RealNVP

● Design the invertible transformations as follows:

● Invertible by design:

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
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RealNVP

● Design the invertible transformations as follows:

● Invertible by design:

● Easy Jacobian:

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
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Results
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Results
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GLOW

● Adding trainable 1x1 convolution followed 

by affine coupling layer.

● Adding actnorm.

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NIPS
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Results

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. NIPS
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Future 
directions
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Blurriness and sampling in VAEs

● How to avoid sampling from holes?

● Should we follow geodesics in the 

latent space?

● How to use geometry of the latent 

space to build better decoders?

● How to build temporal decoders? 

Can we do better than Conv3D?
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Compression and VAEs

● Taking a deterministic encoder

allows to simplify the objective.

● It is important to learn a powerful 

prior. This is challenging!

● Is it easier to learn a prior with 

temporal dependencies? 

● Can we alleviate some dependencies 

by using hypernets?
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Active learning/RL and VAEs

● Using latent representation to 

navigate and/or quantify uncertainty.

● Formulating policies in the latent 

space entirely.

● Do we need a better notion of 

sequential dependencies?
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Hybrid and flow-based models

● We need a better understanding of 

the latent space.

● Joining an invertible model (flow-

based model) with a predictive 

model.

● Isn’t this model an overkill?

● How would it work in the multi-

modal learning scenario?
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Hybrid models and OOO sample

● Going back to first slides, we need a 

good notion of p(x).

● Distinguishing out-of-distribution 

(OOO) samples is very important.

● Crucial for decision making, outlier 

detection, policy learning…
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