Reinforcement Learning
What is Reinforcement Learning?

- General purpose framework for learning Artificial Intelligence models
- RL assumes that the agent (our model) can take actions
- These actions affect the environment where the agent operates, more specifically the state of the environment and the state of the agent
- Given the state of the environment and the agent, an action taken from the agent causes a reward (can be positive or negative)
- Goal: the goal of an RL agent is to learn how to take actions that maximize future rewards
Some examples of RL
Some examples of RL

- Controlling physical systems
 - Robot walking, jumping, driving

- Logistics
 - Scheduling, bandwidth allocation

- Games
 - Atari, Go, Chess, Pacman

- Learning sequential algorithms
 - Attention, memory
Reinforcement Learning: An abstraction

Dynamical System ("The World")

State s_t

Reward r_t

Observation o_t

Action a_t

Learning Agent ("Our Model")
Experience is a series of observations, actions and rewards
\[o_1, r_1, a_1, o_2, r_2, a_2, ..., o_t, r_t \]

The state is the summary of experience so far
\[s_t = f(o_1, r_1, a_1, o_2, r_2, a_2, ..., o_t, r_t) \]

If we have fully observable environments, then
\[s_t = f(o_t) \]
Policy

- Policy is the agent’s behavior function

- The policy function maps the state input s_t to an action output a_t

- Deterministic policy: $a_t = f(s_t)$
- Stochastic policy: $\pi(a_t | s_t) = \mathbb{P}(a_t | s_t)$
Value function

- A value function is the prediction of the future reward
 - Given the state s_t what will my reward be if I do action a_t

- The Q-value function gives the expected future reward

- Given state s_t, action a_t, a policy π the Q-value function is $Q^\pi(s_t, a_t)$
How do we decide about actions, states, rewards?

- We model the policy and the value function as machine learning functions that can be optimized by the data.

- The **policy function** \(a_t = \pi(s_t) \) selects an action given the current state.

- The **value function** \(Q^\pi(s_t, a_t) \) is the expected total reward that we will receive if we take action \(a_t \) given state \(s_t \).

- What should our goal then be?
Goal: Maximize future rewards!

- Learn the policy and value functions such that the action taken at the t-th time step a_t maximizes the expected sum of future rewards

$$Q^\pi(s_t, a_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t, a_t)$$

- γ is a discount factor. Why do we need it?
Goal: Maximize future rewards!

- Learn the policy and value functions such that the action taken at the t-th time step a_t maximizes the expected sum of future rewards

$$Q^\pi(s_t, a_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t, a_t)$$

- γ is a discount factor. Why do we need it?
 - The further into the future we look $t + 1, \ldots, t + T$, the less certain we can be about our expected rewards r_{t+1}, \ldots, r_{t+T}
How can we rewrite the value function in more compact form

\[Q^\pi(s_t, a_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t, a_t) = ? \]
Bellman equation

- How can we rewrite the value function in more compact form

 \[Q^\pi(s_t, a_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t, a_t) = \mathbb{E}_{s', a'}(r + \gamma Q^\pi(s', a') | s_t, a_t) \]

- This is the **Bellman equation**

- How can we rewrite the optimal value function \(Q^*(s_t, a_t) \)?
How can we rewrite the value function in more compact form

\[
Q^\pi(s_t, a_t) = \mathbb{E}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t, a_t)
\]

\[
= \mathbb{E}_{s'}(r + \gamma Q^\pi(s', a')| s_t, a_t)
\]

This is the **Bellman equation**
Optimal value function

- Optimal value function $Q^*(s, a)$ is attained with the optimal policy π^*

$$Q^*(s, a) = \max_{\pi} Q^\pi(s, a) = Q^{\pi^*}(s, a)$$

- After we have found the optimal policy π^* we do the optimal action

$$\pi^* = \arg\max_a Q^*(s, a)$$

- By expanding the optimal value function

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

$$Q^*(s, a) = \mathbb{E}_{s'} \left(r + \gamma \max_{a'} Q^*(s', a') \middle| s, a \right)$$
Environment Models in RL

- The model is learnt from experience
- The model acts as a replacement for the environment
- When planning, the agent can interact with the model
- For instance look ahead search to estimate the future states given actions
Approaches to Reinforcement Learning

- Policy-based
 - Learn directly the optimal policy π^*
 - The policy π^* obtains the maximum future reward

- Value-based
 - Learn the optimal value function $Q^*(s, a)$
 - This value function applies for any policy

- Model-based
 - Build a model for the environment
 - Plan and decide using that model
How to make RL deep?
How to make RL deep?

- Use Deep Networks for the
 - Value function
 - Policy
 - Model

- Optimize final loss with SGD
How to make RL deep?
Deep Reinforcement Learning

- Non-linear function approximator: Deep Networks
- Input is as raw as possible, e.g. image frame
 ◦ Or perhaps several frames (When needed?)
- Output is the best possible action out of a set of actions for maximizing future reward
- **Important:** no need anymore to compute the actual value of the action-value function and take the maximum: \(\arg \max_{\alpha} Q_\theta(s, a) \)
 ◦ The network returns directly the optimal action
Value-based Deep RL
Q-Learning

- Optimize for Q value function
 \[
 Q^\pi(s_t, a_t) = \mathbb{E}_{s'}(r + \gamma Q^\pi(s', a')|s_t, a_t)
 \]
- In the beginning of learning the function \(Q(s, a) \) is incorrect
- We set \(r + \gamma \max_{a'} Q_t(s', a') \) to be the learning target
- Then we minimize the loss
 \[
 \min \left(r + \gamma \max_{a'} Q_t(s', a') - Q_t(s, a) \right)^2
 \]
Q-Learning

- Value iteration algorithms solve the Bellman equation

\[
Q_{t+1}(s, a) = \mathbb{E}_{s', r} \left(r + \gamma \max_{a'} Q_t(s', a') \middle| s, a \right)
\]

- In the simplest case \(Q_t\) is a table
 - To the limit iterative algorithms converge to \(Q^*\)

- However, a table representation for \(Q_t\) is not always enough
How to optimize?

- The objective is the mean squared-error in Q-values
 \[
 \mathcal{L}(\theta) = \mathbb{E} \left[(r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta))^2 \right]
 \]

- The Q-Learning gradient then becomes
 \[
 \frac{\partial \mathcal{L}}{\partial \theta} = \mathbb{E} \left[-2 \cdot (r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta)) \frac{\partial Q(s, a, \theta)}{\partial \theta} \right]
 \]

- Optimize end-to-end with SGD

- Scalar target value → Gradient 0
In practice

1. Do a feedforward pass for the current state \(s \) to get predicted Q-values for all actions

2. Do a feedforward pass for the next state \(s' \) and calculate maximum overall network outputs
 \[\max_{a'} Q(s', a', \theta) \]

3. Set Q-value target to
 \[r + \gamma \max_{a'} Q(s', a', \theta) \]
 - use the max calculated in step 2
 - For all other actions, set the Q-value target to the same as originally returned from step 1, making the error 0 for those outputs

4. Update the weights using backpropagation.
Deep Q Networks on Atari

- End-to-end learning from raw pixels
- Input: last 4 frames
- Output: 18 joystick positions
- Reward: change of score
Stability in Deep Reinforcement Learning
Stability problems

- Naively, Q-Learning oscillates or diverges with neural networks
- Why?
Stability problems

- Naively, Q-Learning oscillates or diverges with neural networks
- Why?
 - Sequential data breaks IID assumption
 - Highly correlated samples break SGD
- However, this is not specific to RL, as we have seen earlier
Stability problems

- Naively, Q-Learning oscillates or diverges with neural networks
- Why?
The learning objective is
\[\mathcal{L}(\theta) = \mathbb{E}\left[(r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta))^2 \right] \]

The target depends on the \(Q \) function also. This means that if we update the current \(Q \) function with backprop, the target will also change.

Plus, we know neural networks are highly non-convex.

Policy changes will change fast even with slight changes in the \(Q \) function.
 - Policy might oscillate
 - Distribution of data might move from one extreme to another

Stability problems
Stability problems

- Naively, Q-Learning oscillates or diverges with neural networks
- Why?
Stability problems

- Not easy to control the scale of the Q values \Rightarrow gradients are unstable Q
- Remember, the Q function is the output of a neural network
- There is no guarantee that the outputs will lie in a certain range
 - Unless care is taken
- Naïve Q gradients can be too large, or too small \Rightarrow generally unstable and unreliable
- Where else did we observe a similar behavior?
Improving stability: Experience replay

- Replay memory/Experience replay
- Store memories $< s, a, r, s' >$
- Train using random stored memories instead of the latest memory transition
- Breaks the temporal dependencies – SGD works well if samples are roughly independent
- Learn from all past policies
Experience replay

- Take action a_t according to ε-greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s') from D
- Optimize mean squared error using the mini-batch

$$\mathcal{L}(\theta) = \mathbb{E}_{(s,a,r,s') \sim D} \left[(r + \gamma \max_{a'} Q(s', a', \theta) - Q(s, a, \theta))^2 \right]$$

- Effectively, update your network using random past inputs (experience), not the ones the agent currently sees
Improving stability: Freeze target Q network

- Instead of having “moving” targets, have two networks
 - One Q-Learning and one Q-Target networks

- Copy the Q network parameters to the target network every K iterations
 - Otherwise, keep the old parameters between iterations
 - The targets come from another (Q-Target) network with slightly older parameters

- Optimize the mean squared error as before, only now the targets are defined by the “older” Q function
 $$\mathcal{L}(\theta) = \mathbb{E}[(r + \gamma \max_a Q(s', a', \theta_{old}) - Q(s, a, \theta))^2]$$

- Avoids oscillations
Improving stability: Take care of rewards

- Clip rewards to be in the range $[-1, +1]$
- Or normalize them to lie in a certain, stable range
- Can’t tell the difference between large and small rewards
Results

<table>
<thead>
<tr>
<th>Game</th>
<th>Q-learning</th>
<th>Q-learning + Target Q</th>
<th>Q-learning + Replay</th>
<th>Q-learning + Target Q + Replay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakout</td>
<td>3</td>
<td>10</td>
<td>241</td>
<td>317</td>
</tr>
<tr>
<td>Enduro</td>
<td>29</td>
<td>142</td>
<td>831</td>
<td>1006</td>
</tr>
<tr>
<td>River Raid</td>
<td>1453</td>
<td>2868</td>
<td>4103</td>
<td>7447</td>
</tr>
<tr>
<td>Seaquest</td>
<td>276</td>
<td>1003</td>
<td>823</td>
<td>2894</td>
</tr>
<tr>
<td>Space Invaders</td>
<td>302</td>
<td>373</td>
<td>826</td>
<td>1089</td>
</tr>
</tbody>
</table>
Some extra tricks

- Skipping frames
 - Saves time and computation
 - Anyways, from one frame to the other there is often very little difference

- \(\varepsilon \)-greedy behavioral policy with annealed temperature during training
 - Select random action (instead of optimal) with probability \(\varepsilon \)
 - In the beginning of training our model is bad, no reason to trust the “optimal” action

- Alternatively: Exploration vs exploitation
 - early stages \(\rightarrow\) strong exploration
 - late stages \(\rightarrow\) strong exploitation
Policy-based Deep RL
Policy Optimization

- Problems with modelling the Q-value function
 - Often too expensive \rightarrow must take into account all possible states, actions \rightarrow Imagine when having continuous or high-dimensional action spaces
 - Not always good convergence \leftarrow Oscillations

- Often learning directly a policy $\pi_\theta(a|s)$ that gives the best action without knowing what its expected future reward is easier

- Also, allows for stochastic policies \leftarrow no exploration/exploitation dilemma

- Model optimal action value with a non-linear function approximator
 \[Q^*(s, a) \approx Q(s, a; w) \]
Policy Optimization

\[\pi_\theta(a|s) \]

Slide inspired by P. Abbeel
Policy Optimization

- Train learning agent for the optimal policy $\pi_w(a|s)$ given states s and possible actions a
- The policy class can be either deterministic or stochastic

$\pi_w(a|s)$

Slides inspired by P. Abbeel
Policy Optimization

- Use a deep network as a non-linear approximator that finds an optimal policy by maximizing $Q(s, a; \theta)$

$$
\mathcal{L}(w) = Q(s, a; w) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | \pi_w(s_t, a_t)]
$$

- If policy is deterministic

$$
\frac{\partial \mathcal{L}}{\partial w} = \mathbb{E} \left[\frac{\partial \log \pi(a | s, w)}{\partial w} Q^\pi(s, a) \right]
$$

- If policy is stochastic $a = \pi(s)$

$$
\frac{\partial \mathcal{L}}{\partial w} = \mathbb{E} \left[\frac{\partial Q^\pi(s, a)}{\partial a} \frac{\partial a}{\partial w} \right]
$$

- To compute gradients use the log-derivative trick (REINFORCE algorithm (Williams, 1992))

$$
\nabla_\theta \log p(x; \theta) = \frac{\nabla_\theta p(x; \theta)}{p(x; \theta)}
$$
Asynchronous Advantage Actor-Critic (A3C)

- Estimate Value function
 \[V(s, v) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \cdots | s] \]

- Estimate the Q value after \(n \) steps
 \[q_t = r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, v) \]

- Update actor by
 \[\frac{\partial \mathcal{L}_{actor}}{\partial w} = \frac{\partial \log \pi(a_t | s_t, w)}{\partial w} (q_t - V(s_t, v)) \]
A3C in labyrinth

- End-to-end learning of softmax policy from pixels
- Observations are the raw pixels
- The state is implemented as an LSTM
- Outputs value $V(s)$ and softmax over actions $\pi(a|s)$
- Task
 - Collect apples (+1)
 - Escape (+10)
- Demo

Diagram:

- $\pi(a|s_{t-1}) V(s_{t-1})$
- $\pi(a|s_t) V(s_t)$
- $\pi(a|s_{t+1}) V(s_{t-1})$

Images:

- s_{t-1}
- s_t
- s_{t+1}

- o_{t-1}
- o_t
- o_{t+1}
Model-based Deep RL
Learning models of the environment

- Often quite challenging because of cumulative errors
- Errors in transition models accumulate over trajectory
- Planning trajectories are different from executed trajectories
- At the end of a long trajectory final rewards are wrong
- Can be better if we know the rules
At least $10^{10^{48}}$ possible game states
 - Chess has 10^{120}

Monte Carlo Tree Search used mostly
 - Start with random moves and evaluate how often they lead to victory
 - Learn the value function to predict the quality of a move
 - Exploration-exploitation trade-off

Tic-Tac-Toe possible game states
AlphaGo

- AlphaGo relies on a tree procedure for search
- AlphaGo relies on ConvNets to guide the tree search
- A ConvNet trained to predict human moves achieved 57% accuracy
 - Humans make intuitive moves instead of thinking too far ahead
- For Deep RL we don’t want to predict human moves
 - Instead, we want the agent to learn the optimal moves
- Two policy networks (one per side) + One value network
- Value network trained on 30 million positions while policy networks play
Both humans and Deep RL agents play better end games
 • Maybe a fundamental cause?

In the end the value of a state is computed equally from Monte Carlo simulation and the value network output
 • Combining intuitive play and thinking ahead

Where is the catch?
Both humans and Deep RL agents play better end games
 - Maybe a fundamental cause?

In the end, the value of a state is computed equally from Monte Carlo simulation and the value network output
 - Combining intuitive play and thinking ahead

Where is the catch?

State is not the pixels but positions

Also, the game states and actions are highly discrete
Summary

- Reinforcement Learning
- Q-Learning
- Deep Q-Learning
- Policy-based Deep RL
- Model-based Deep RL
- Making Deep RL stable