
Lecture 2: Modular Learning
Deep Learning @ UvA
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o To make sure there is nothing competitive

o +0.5 bonus to everyone with more than “25 contributions”

o According to the Piazza statistics
◦ Counting all posts, responses, edits, followups, and comments, there were:

Correction for the Piazza bonus
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o Modularity in Deep Learning

o Popular Deep Learning modules

o Neural Network Cheatsheet

o Backpropagation

Lecture Overview
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The Machine 
Learning Paradigm
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o A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent 
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥;𝑤1, … , 𝑤𝐿 = ℎ𝐿(ℎ𝐿−1 …ℎ1 𝑥, 𝑤1 , 𝑤𝐿−1 , 𝑤𝐿)
◦ 𝑥:input, 𝑤𝑙: parameters for layer 𝑙, 𝑎𝑙 = ℎ𝑙(𝑥, 𝑤𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

w∗ ← argmin𝑤 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥 )

What is a neural network again?
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models

ℎ1(𝑥𝑖; 𝑤)

ℎ2(𝑥𝑖; 𝑤)

ℎ3(𝑥𝑖; 𝑤)

ℎ4(𝑥𝑖; 𝑤)

ℎ5(𝑥𝑖; 𝑤)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝑤)

ℎ4(𝑥𝑖; 𝑤)

Interweaved 
connections
(Directed Acyclic 
Graphs- DAGNN)
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Loopy connections (Recurrent architecture, special care needed)
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Functions Modules
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o A module is a building block for our network

o Each module is an object/function 𝑎 = ℎ(𝑥;𝑤) that
◦ Contains trainable parameters w
◦ Receives as an argument an input 𝑥
◦ And returns an output 𝑎 based on the activation function ℎ …

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation  store
module input
◦ easy to get module output fast
◦ easy to compute derivatives

What is a module?

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2𝑎)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5𝑎)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥2; 𝑤2𝑏)

ℎ5(𝑥5; 𝑤5𝑏)
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o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

Anything goes or do special constraints exist?
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o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝑤 , where 𝑎𝑙 = 𝑥𝑙+1

o We need to know the precise function behind
each module ℎ𝑙(… )

o Recursive operations
◦ One module’s output is another’s input

o Steps
◦ Visit modules one by one starting from the data input
◦ Some modules might have several inputs from multiple modules 

o Compute modules activations with the right order
◦ Make sure all the inputs computed at the right time

Forward computations for neural networks

𝐿𝑜𝑠𝑠

Data Input

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5)

ℎ2(𝑥2; 𝑤2)

ℎ5(𝑥5; 𝑤5)
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o Usually Maximum Likelihood on the training set

w∗ = arg max
𝑤

ෑ

𝑥,𝑦

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥;𝑤)

o Taking the logarithm, the Maximum Likelihood is equivalent to minimizing 
the negative log-likelihood cost function

ℒ 𝑤 = −𝔼𝑥,𝑦~ 𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥;𝑤)

o 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) is last layer output

How to get w? Gradient-based learning
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If our last layer is the Gaussian function 𝑁(𝑦; ℎ(𝑤; 𝑥), 𝐼) what could be our 
cost function like? (Multiple answers possible)

o ~ 𝑦 − ℎ 𝑤; 𝑥 2

o ~max{0, 1 − 𝑦 ℎ(𝑤; 𝑥)}

o ~ 𝑦 − ℎ 𝑤; 𝑥 1

o ~ 𝑦 − ℎ 𝑤; 𝑥 2 + 𝜆Ω(w)

Quiz
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o Usually Maximum Likelihood in the train set

w∗ = arg max
𝜃

ෑ

𝑥,𝑦

𝑝(𝑦|𝑥; 𝑤)

o Taking the logarithm, this means minimizing the cost function
ℒ 𝜃 = −𝔼𝑥,𝑦~ 𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥; 𝑤)

o 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥; 𝑤) is the last layer output

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) = log 1

√2𝜋𝜎2
exp(− 𝑦−ℎ 𝑥;𝑤 2

2𝜎2
)

∝ 𝐶 + 𝑦 − ℎ 𝑥;𝑤 2

How to get w? Gradient-based learning
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Why should we choose a cost function that matches the form of the last 
layer of the neural network?

o Otherwise one cannot use standard tools, like automatic differentiation, in 
packages like Tensorflow or Pytorch

o It makes the math simpler

o It avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is 
stable 

Quiz
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Why should the last network layer “click” with our cost function?

o Otherwise one cannot use standard tools, like automatic differentiation, in 
packages like Tensorflow or Pytorch

o It makes the math simpler

o It avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is 
stable 

Quiz
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o In a neural net 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) is the module of the last layer (output layer)

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) = log 1

√2𝜋𝜎2
exp(− 𝑦−𝑓 𝜃;𝑥 2

2𝜎2
) ⟹

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) ∝ 𝐶 + 𝑦 − 𝑓 𝜃; 𝑥 2

o Everything gets much simpler when the learned (neural network) function 𝑝𝑚𝑜𝑑𝑒𝑙
matches the cost function ℒ(w)

o E.g the log of the negative log-likelihood cancels out the exp of the Gaussian
◦ Easier math
◦ Better numerical stability
◦ Exponential-like activations often lead to saturation, which means gradients are almost 0, which means 

no learning

o That said, combining any function that is differentiable is possible
◦ just not always convenient or smart

How to get w? Gradient-based learning
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Everything is a
module
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o Activation: 𝑎 = 𝑤𝑥

o Gradient: 
𝜕𝑎

𝜕𝑤
= 𝑥

o No activation saturation

o Hence, strong & stable gradients
◦ Reliable learning with linear modules

Linear module
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o Activation: 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

Rectified Linear Unit (ReLU) module
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What characterizes the Rectified Linear Unit?

o There is the danger the input 𝑥 is consistently 0 because of a glitch. This would 
cause "dead neurons" that always are 0 with 0 gradient.

o It is discontinuous, so it might cause numerical errors during training

o It is piece-wise linear, so the "piece"-gradients are stable and strong

o Since they are linear, their gradients can be computed very fast and speed up 
training.

o They are more complex to implement, because an if condition needs to be 
introduced.

Quiz
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o Activation: 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

o Strong gradients: either 0 or 1 

o Fast gradients: just a binary comparison 

o It is not differentiable at 0, but not a big problem 
◦ An activation of precisely 0 rarely happens with

non-zero weights, and if it happens we choose a convention

o Dead neurons is an issue
◦ Large gradients might cause a neuron to die. Higher learning rates might be beneficial
◦ Assuming a linear layer before ReLU ℎ(𝑥) = max 0,𝑤𝑥 + 𝑏 , make sure the bias term 𝑏 is initialized with a 

small initial value, 𝑒. 𝑔. 0.1more likely the ReLU is positive and therefore there is non zero gradient

o Nowadays ReLU is the default non-linearity

Rectified Linear Unit (ReLU) module

MODULAR LEARNING - PAGE 28UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



ReLU convergence rate

ReLU

Tanh
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o Soft approximation (softplus): 𝑎 = ℎ(𝑥) = ln 1 + 𝑒𝑥

o Noisy ReLU: 𝑎 = ℎ 𝑥 = max 0, x + ε , ε~𝛮(0, σ(x))

o Leaky ReLU: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o Parametric ReLu: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

𝛽𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(parameter 𝛽 is trainable)

Other ReLUs
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How would you compare the two non-linearities?

o They are equivalent for training

o They are not equivalent for training

Quiz
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o Remember: a deep network is a hierarchy of similar modules
◦ One ReLU is the input to the next ReLU

o Consistent behavior  input/output distributions must match
◦ Otherwise, you will soon have inconsistent behavior

◦ If ReLU-1 returns always highly positive numbers, e.g. ~10,000
the next ReLU-2 biased towards highly positive or highly negative values (depending 
on the weight 𝑤)
ReLU (2) essentially becomes a linear unit.

o We want our non-linearities to be mostly activated around the origin 
(centered activations)
◦ the only way to encourage consistent behavior not matter the architecture

Centered non-linearities
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o Activation: 𝑎 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥))

Sigmoid module
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o Activation: 𝑎 = 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥)

Tanh module
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Which non-linearity is better, the sigmoid or the tanh?

o The tanh, because on the average activation case it has stronger gradients

o The sigmoid, because it's output range [0, 1] resembles the range of probability values

o The tanh, because the sigmoid can be rewritten as a tanh

o The sigmoid, because it has a simpler implementation of gradients

o None of them are that great, they saturate for large or small inputs

o The tanh, because it's mean activation is around 0 and it is easier to combine with 
other modules

Quiz
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Which non-linearity is better, the sigmoid or the tanh?

o The tanh, because on the average activation case it has stronger gradients

o The sigmoid, because it's output range [0, 1] resembles the range of probability values

o The tanh, because the sigmoid can be rewritten as a tanh

o The sigmoid, because it has a simpler implementation of gradients

o None of them are that great, they saturate for large or small inputs

o The tanh, because it's mean activation is around 0 and it is easier to combine with 
other modules

Quiz

MODULAR LEARNING - PAGE 32UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

𝜎 𝑥 tanh(𝑥)



o Functional form is very similar: 𝑡𝑎𝑛ℎ 𝑥 = 2𝜎 2𝑥 − 1

o 𝑡𝑎𝑛ℎ 𝑥 has better output [−1,+1] range 
◦ Stronger gradients, because data is centered around 0 (not 0.5)
◦ Less “positive” bias to hidden layer neurons as now outputs

can be both positive and negative (more likely
to have zero mean in the end)

o Both saturate at the extreme  0 gradients
◦ “Overconfident”, without necessarily being correct
◦ Especially bad when in the middle layers: why should a neuron be

overconfident, when it represents a latent variable

o The gradients are < 1, so in deep layers the chain rule
returns very small total gradient

o From the two, 𝑡𝑎𝑛ℎ 𝑥 enables better learning
◦ But still, not a great choice

Tanh vs Sigmoids
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o An exception for sigmoids is …

Sigmoid: An exception
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o An exception for sigmoids is when used as the final output layer

o Sigmoid outputs can return very small or very large values (saturate)
◦ Output units are not latent variables (have access to ground truth labels)

◦ Still “overconfident”, but at least towards true values

Sigmoid: An exception
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o Activation: 𝑎(𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥(𝑘)) =
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

◦ Outputs probability distribution, σ𝑘=1
𝐾 𝑎(𝑘) = 1 for 𝐾 classes

o Avoid exponentianting too large/small numbers  better stability

𝑎(𝑘) =
𝑒𝑥

(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

, 𝜇 = max𝑘 𝑥
(𝑘) because

𝑒𝑥
(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

=
𝑒𝜇𝑒𝑥

(𝑘)

𝑒𝜇 σ𝑗 𝑒
𝑥(𝑗)

=
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

Softmax module
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o Activation: 𝑎(𝑥) = 0.5 𝑦 − 𝑥 2

◦ Mostly used to measure the loss in regression tasks

o Gradient: 
𝜕𝑎

𝜕𝑥
= 𝑥 − 𝑦

Euclidean loss module
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o Activation: 𝑎 𝑥 = −σ𝑘=1
𝐾 𝑦(𝑘) log 𝑥(𝑘), 𝑦(𝑘)= {0, 1}

o Gradient: 
𝜕𝑎

𝜕𝑥(𝑘)
= −

𝑦(𝑘)

𝑥(𝑘)

o The cross-entropy loss is the most popular classification loss for classifiers 
that output probabilities

o Cross-entropy loss couples well softmax/sigmoid module
◦ The log of the cross-entropy cancels out the exp of the softmax/sigmoid

◦ Often the modules are combined and joint gradients are computed

o Generalization of logistic regression for more than 2 outputs

Cross-entropy loss (log-likelihood) module

MODULAR LEARNING - PAGE 42UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



o Everything can be a module, given some ground rules

o How to make our own module?
◦ Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

𝜕𝑎(𝑥;𝜃)

𝜕𝑥
and 

𝜕𝑎(𝑥;𝜃)

𝜕𝜃

New modules
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o As everything can be a module, a module of modules could also be a 
module

o We can therefore make new building blocks as we please, if we expect 
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

A module of modules
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o Assume the sigmoid 𝜎(… ) operating on top of 𝑤𝑥
𝑎 = 𝜎(𝑤𝑥)

o Directly computing it  complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

1 sigmoid == 2 modules?

𝑎1 = 𝑤𝑥 𝑎2 = 𝜎(𝑎1)
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- Two backpropagation steps instead of one

+ But now our gradients are simpler
◦ Algorithmic way of computing gradients

◦ We avoid taking more gradients than needed in a (complex) non-linearity

1 sigmoid == 2 modules?

𝑎1 = 𝑤𝑥 𝑎2 = 𝜎(𝑎1)
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o Many will work comparably to existing ones
◦ Not interesting, unless they work consistently better and there is a reason

o Regularization modules
◦ Dropout

o Normalization modules
◦ ℓ2-normalization, ℓ1-normalization

o Loss modules
◦ Hinge loss

o Most of concepts discussed in the course can be casted as modules

Many, many more modules out there …
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o Perceptrons, MLPs

o RNNs, LSTMs, GRUs

o Vanilla, Variational, Denoising Autoencoders

o Hopfield Nets, Restricted Boltzmann Machines

o Convolutional Nets, Deconvolutional Nets

o Generative Adversarial Nets

o Deep Residual Nets, Neural Turing Machines

Neural Network Cheatsheet

MODULAR LEARNING - PAGE 44UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



Backpropagation

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES  & MAX WELLING
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model

ℎ(𝑥𝑖; 𝑤)

Objective/Loss/Cost/Energy

ℒ(𝑦𝑖 , 𝑦𝑖
∗)

Score/Prediction/Output

𝑦𝑖 ∝ ℎ(𝑥𝑖; 𝑤)

𝑋Input:
𝑌Targets:

Data

𝑤

(𝑦𝑖
∗ − 𝑦𝑖)

2
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
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𝑋Input:
𝑌Targets:

Data

𝑤
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

= 1
𝑤

ℒ( )

(𝑦𝑖
∗ − 𝑦𝑖)

2

MODULAR LEARNING - PAGE 49UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

= 1
𝑤

𝜕ℒ(𝜗; ෝ𝑦𝑖)

𝜕 ෝ𝑦𝑖
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝜗; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝜗; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ

𝜕ℎ(𝑥𝑖)

𝜕𝜃
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝜗; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ

𝜕ℎ(𝑥𝑖)

𝜕𝜃
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o As for many models, we optimize our neural network with Gradient Descent
𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂𝑡𝛻𝑤ℒ

o The most important component in this formulation is the gradient

o How to compute the gradients for such a complicated function enclosing 
other functions, like 𝑎𝐿(… )?
◦ Hint: Backpropagation

o Let’s see, first, how to compute gradients
with nested functions

Optimization through Gradient Descent
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦(1) 𝑦(2)

𝑥(1) 𝑥(2) 𝑥(3)
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦1 𝑦2

𝑥1 𝑥2 𝑥3

𝑑𝑧

𝑑𝑥1
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥1
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥1
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦1 𝑦2

𝑥1 𝑥2 𝑥3

𝑑𝑧

𝑑𝑥2
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥2
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥2
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦(1) 𝑦(2)

𝑥(1) 𝑥(2) 𝑥(3)

𝑑𝑧

𝑑𝑥3
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥3
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥3
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

◦ or in vector notation

𝛻𝑥(𝑧) =
𝑑𝒚

𝑑𝒙

𝑇

⋅ 𝛻𝑦(𝑧)

◦
𝑑𝒚

𝑑𝒙
is the Jacobian

Chain rule

𝑧

𝑦(1) 𝑦(2)

𝑥(1) 𝑥(2) 𝑥(3)
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The Jacobian

o When 𝑥 ∈ ℛ3, 𝑦 ∈ ℛ2

𝐽 𝑦 𝑥 =
𝑑𝒚

𝑑𝒙
=

𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

𝜕𝑦1
𝜕𝑥3

𝜕𝑦2
𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦2
𝜕𝑥3
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o a = h 𝑥 = sin 0.5x2

o t = f y = sin 𝑦

o 𝑦 = 𝑔 𝑥 = 0.5 𝑥2

𝑑𝑓

𝑑𝑥
=
𝑑 [sin(𝑦)]

𝑑𝑔

𝑑 0.5𝑥2

𝑑𝑥

= cos 0.5𝑥2 ⋅ 𝑥

Chain rule in practice
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o The loss function ℒ(𝑦, 𝑎𝐿) depends on 𝑎𝐿, which depends on 𝑎𝐿−1, …, 
which depends on 𝑎𝑙

o Gradients of parameters of layer 𝑙 Chain rule

𝜕ℒ

𝜕𝑤𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿

𝜕𝑎𝐿−1
∙
𝜕𝑎𝐿−1

𝜕𝑎𝐿−2
∙ … ∙

𝜕𝑎𝑙

𝜕𝑤𝑙

o When shortened, we need to two quantities

𝜕ℒ

𝜕𝑤𝑙
= (

𝜕𝑎𝑙

𝜕𝑤𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙

Backpropagation ⟺ Chain rule!!!

Gradient of a module w.r.t. its parameters Gradient of loss w.r.t. the module output
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o For 
𝜕𝑎𝑙

𝜕𝑤𝑙 in  
𝜕ℒ

𝜕𝑤𝑙 = (
𝜕𝑎𝑙

𝜕𝑤𝑙)
𝑇⋅

𝜕ℒ

𝜕𝑎𝑙
we only need the Jacobian of the 𝑙-th

module output 𝑎𝑙 w.r.t. to the module’s parameters 𝑤𝑙

o Very local rule, every module looks for its own
◦ No need to know what other modules do

o Since computations can be very local
◦ graphs can be very complicated

◦ modules can be complicated (as long as they are differentiable)

Backpropagation ⟺ Chain rule!!!
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o For 
𝜕ℒ

𝜕𝑎𝑙
we apply chain rule again

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑎𝑙

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

o We can rewrite 
𝜕𝑎𝑙+1

𝜕𝑎𝑙
as gradient of module w.r.t. to input

◦ Remember, the output of a module is the input for the next one: 𝑎𝑙=𝑥𝑙+1

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

Backpropagation ⟺ Chain rule!!!

Recursive rule (good for us)!!!

Gradient w.r.t. the module input

𝑎𝑙 = ℎ𝑙(𝑥𝑙; 𝑤𝑙)

𝑎𝑙+1 = ℎ𝑙+1(𝑥𝑙+1; 𝑤𝑙+1)

𝑥𝑙+1 = 𝑎𝑙
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How do we compute the gradient of multivariate activation functions, like 
softmax: 𝑎𝑗 = exp 𝑥𝑗/(𝑥1 + 𝑥2 + 𝑥3)?

o We vectorize the inputs and the outputs and compute the gradient as 
before

o We compute the Hessian matrix of the second-order derivatives: 
𝑑2𝑎𝑗/(𝑑𝑥𝑖𝑑𝑥𝑗)

o We compute the Jacobian matrix containing all the partial derivatives: 
𝑑𝑎𝑗/𝑑𝑥𝑖

Quiz
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How do we compute the gradient of multivariate activation functions, like 
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before
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Quiz
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o Often module functions depend on multiple input variables
◦ Softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases there are multiple paths for each 𝑎𝑗

o So, for the 
𝜕𝑎𝑙

𝜕𝑥𝑙
(or 

𝜕𝑎𝑙

𝜕𝑤𝑙) we must compute the Jacobian matrix

◦ The Jacobian is the generalization of the gradient for multivariate functions

◦ e.g. in softmax 𝑎2 depends on all 𝑒𝑥1 , 𝑒𝑥2 and 𝑒𝑥3 , not just on 𝑒𝑥2

Multivariate functions 𝑓(𝒙)

𝑎𝑗 =
𝑒𝑥𝑗

𝑒𝑥1 + 𝑒𝑥2 + 𝑒𝑥3
, 𝑗 = 1,2,3
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o But, quite often in modules the output depends only in a single input
◦ e.g. a sigmoid  𝑎 = 𝜎(𝑥), or 𝑎 = tanh(𝑥), or 𝑎 = exp(𝑥)

o Not need for full Jacobian, only the diagonal: anyways 
d𝑎𝑖

𝑑𝑥𝑗
= 0, ∀ i ≠ j

o Can rewrite equations as inner products to save computations

Diagonal Jacobians

𝑑𝒂

𝑑𝒙
=
𝑑𝝈

𝑑𝒙
=

𝜎(𝑥1)(1 − 𝜎(𝑥1)) 0 0
0 𝜎(𝑥2)(1 − 𝜎(𝑥2)) 0
0 0 𝜎(𝑥3)(1 − 𝜎(𝑥3))

~

𝜎(𝑥1)(1 − 𝜎(𝑥1))
𝜎(𝑥2)(1 − 𝜎(𝑥2))
𝜎(𝑥3)(1 − 𝜎(𝑥3))

𝑎 𝑥 = σ 𝒙 = σ

𝑥1
𝑥2
𝑥3

=

σ(𝑥1)
σ(𝑥2)
σ(𝑥3)
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o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝑤 , where 𝑎𝑙 = 𝑥𝑙+1(or 𝑥𝑙 = 𝑎𝑙−1)

o We need to know the precise function behind
each module ℎ𝑙(… )

o Recursive operations
◦ One module’s output is another’s input
◦ Store intermediate values to save time

o Steps
◦ Visit modules one by one starting from the data input
◦ Some modules might have several inputs from multiple modules 

o Compute modules activations with the right order
◦ Make sure all the inputs computed at the right time

Forward graph

𝐿𝑜𝑠𝑠

Data Input

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5)

ℎ2(𝑥2; 𝑤2)

ℎ5(𝑥5; 𝑤5)
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o Simply compute the gradients of each module for our data
◦ We need to know the gradient formulation of each module
𝜕ℎ𝑙(𝑥𝑙; 𝑤𝑙) w.r.t. their inputs 𝑥𝑙 and parameters 𝑤𝑙

o We need the forward computations first
◦ Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

Backward graph

𝒅𝑳𝒐𝒔𝒔(𝑰𝒏𝒑𝒖𝒕)Data:

𝑑ℎ1(𝑥1; 𝑤1)

𝑑ℎ2(𝑥2; 𝑤2)

𝑑ℎ3(𝑥3; 𝑤3)

𝑑ℎ4(𝑥4; 𝑤4)

𝑑ℎ5(𝑥5; 𝑤5)

𝑑ℎ2(𝑥2; 𝑤2)

𝑑ℎ5(𝑥5; 𝑤5)
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝑤𝑙 with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1
𝜕ℒ

𝜕𝑤𝑙
=
𝜕𝑎𝑙

𝜕𝑤𝑙
⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝜃𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1
𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

𝜕ℒ

𝜕𝜃𝑙
=
𝜕𝑎𝑙
𝜕𝜃𝑙

⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇

Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions 𝑑𝑙+1 × 𝑑𝑙
𝑇

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙−1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙−1× 1]

Vector with dimensions [1 × 𝑑𝑙]
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Backpropagation visualization

ℒ

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1
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Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example
𝑎1 = 𝜎(𝑤1𝑥1)

Store!!! 
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𝑤1

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎1 = 𝜎(𝑤1𝑥1)

Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝑤2𝑥2)

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎2 = 𝜎(𝑤2𝑥2)

Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

ℒ 𝑦, 𝑎2 = 𝑦 − 𝑎2 2 = 𝑦 − 𝑥3 2

Store!!! 
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𝑎1 = 𝜎(𝑤1𝑥1)

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ
Backpropagation Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝑤3

𝑎3 = ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3 2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ

Stored during forward computations

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2

𝜕𝑤2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3

𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑤2
= 𝑥2𝜎(𝑤2𝑥2)(1 − 𝜎(𝑤2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ
Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3 2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝑤2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑎1
=
𝜕𝑎2

𝜕𝑎2
= 𝑤2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝑤1 =
𝜕ℒ

𝜕𝑤1 𝑥
1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝑤1𝑥1)

𝜕𝑎1

𝜕𝑤1 = 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)?
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Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example
𝑎1 = 𝜎(𝑤1𝑥1)

Store!!! 
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𝑤1

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎1 = 𝜎(𝑤1𝑥1)

Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝑤2𝑥2)

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎2 = 𝜎(𝑤2𝑥2)

Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

ℒ 𝑦, 𝑎2 = 𝑦 − 𝑎2 2 = 𝑦 − 𝑥3 2

Store!!! 
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𝑎1 = 𝜎(𝑤1𝑥1)

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Backpropagation Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝑤3

𝑎3 = ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3 2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)

ℒ

Stored during forward computations

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2

𝜕𝑤2

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3

𝜕𝑎2

Backpropagation

Example

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑤2
= 𝑥2𝜎(𝑤2𝑥2)(1 − 𝜎(𝑤2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Example

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3 2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝑤2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑎1
=
𝜕𝑎2

𝜕𝑎2
= 𝑤2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝑤1 =
𝜕ℒ

𝜕𝑤1 𝑥
1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝑤1𝑥1)

𝜕𝑎1

𝜕𝑤1 = 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



o To make sure everything is done correctly  “Dimension analysis”

o The dimensions of the gradient w.r.t. 𝑤𝑙 must be equal to the dimensions 
of the respective weight 𝑤𝑙

dim
𝜕ℒ

𝜕𝑎𝑙
= dim 𝑎𝑙

dim
𝜕ℒ

𝜕𝑤𝑙
= dim 𝑤𝑙

Dimension analysis
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o For  
𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇
𝜕ℒ

𝜕𝑎𝑙+1

[𝑑𝑙× 1] = 𝑑𝑙+1 × 𝑑𝑙
𝑇 ⋅ [𝑑𝑙+1× 1]

o For  
𝜕ℒ

𝜕𝑤𝑙 =
𝜕𝑎𝑙

𝜕𝑤𝑙 ⋅
𝜕ℒ

𝜕𝑤𝑙

𝑇

[𝑑𝑙−1× 𝑑𝑙] = [𝑑𝑙−1× 1] ∙ [1 × 𝑑𝑙]

Dimension analysis

dim 𝑎𝑙 = 𝑑𝑙
dim 𝑤𝑙 = 𝑑𝑙−1 × 𝑑𝑙
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o 𝑑𝑙−1 = 15 (15 neurons), 𝑑𝑙 = 10 (10 neurons), 𝑑𝑙+1 = 5 (5 neurons)

o Let’s say 𝑎𝑙 = 𝑤𝑙 𝑇
𝑥𝑙

o Forward computations
◦ 𝑎𝑙−1 ∶ 15 × 1 , 𝑎𝑙: 10 × 1 , 𝑎𝑙+1: [5 × 1]

◦ 𝑥𝑙: 15 × 1 , 𝑥𝑙+1: 10 × 1

◦ 𝑤𝑙: 15 × 10

o Gradients

◦
𝜕ℒ

𝜕𝑎𝑙
: 5 × 10 𝑇 ∙ 5 × 1 = 10 × 1

◦
𝜕ℒ

𝜕𝑤𝑙 ∶ 15 × 1 ∙ 10 × 1 𝑇 = 15 × 10

Dimensionality analysis: An Example

𝑥𝑙 = 𝑎𝑙−1
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o Backprop is as simple as it is complicated

o Mathematically, just the chain rule
◦ Found some time around the 1700s by I. Newton and Leibniz, who invented calclulus

◦ That simple, that we can even automate it

o However, why is it that we can train a highly non-complex machine with 
many local optima, like neural nets, with a strongly local learning 
algorithm like Backprop?
◦ Why even is it a good choice?

◦ Not really known, even today

So, Backprop, what’s the big deal?
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Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

MODULAR LEARNING- PAGE 92

o Modularity in Neural Networks

o Neural Network Modules

o Neural Network Cheatsheet

o Backpropagation

Reading material

o Chapter 6

o Efficient Backprop, LeCun et al., 1998


