

Lecture overview

o How to define our model and optimize it in practice
o Optimization methods

o Data preprocessing and normalization

o Regularizations

o Learning rate

o Weight initializations

o Good practices

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 2

Empirical Risk
Minimization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 3

A Neural/Deep Network in a nutshell

1. The Neural Network

aL(xi W1,...,L) = hy, (hy—1(... hy(x, W), wy_1), Wy)

2. Learning by minimizing empirical error

W" < arg min,, z L(y, aL(X; Wi,...L))
(x,y)S(X)Y)

3. Optimizing with Stochastic Gradient Descent based methods

Wip1 = W — NV L

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 4

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 5

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 6

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 7

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 8

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS -9

What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 10

Pure Optimization vs Machine Learning Training?

o Pure optimization has a very direct goal: finding the optimum
o Step 1: Formulate your problem mathematically as best as possible
o Step 2: Find the optimum solution as best as possible

o E.g., optimizing the railroad network in the Netherlands
o Goal: find optimal combination of train schedules, train availability, etc

o In Machine Learning, instead, the real goal and the trainable goal are
quite often different (but related)
o Even “optimal” parameters are not necessarily optimal € Overfitting ...

o E.g., You want to recognize cars from bikes (0-1 problem) in unknown images, but you
optimize the classification log probabilities (continuous) in known images

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 11

Empirical Risk Minimization

o We ideally should optimize for
mv\i,n Ex:prdata [L(W’ %, y)]
l.e. the expected loss under the true underlying distribution
but we do not have access to this distribution

o Thus, borrowing from optimization, the best way we can get satisfactory

solutions is by minimizing the empirical risk

Min Exy-p,e, [L(w; %, 7)] = = 57 L(aGw),y)

° That is, minimize the risk on the available training data sampled by the empirical data
distribution (mini-batches)
> While making sure your parameters do not overfit the data

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 12

loo’s TO looo's a Ti”)’

I&Kfs OF . RANDor

Stochastic Gradient Tings ! o . Z_DL SANPLE oF
i L THE

Descent (SGD) —

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 13

Gradient Descent

o To optimize a given loss function, most machine learning methods rely on
Gradient Descent and variants

Wir1 = We — Ne Gt
o Gradient g, = V. L

o Gradient on full training set = Batch Gradient Descent

m
1
=—) V,L(w;x;,y;
2 lew (w5 %0, Y1)
=

o Computed empirically from all available training samples (x;j, y;)

> Sample gradient = Only an approximation to the true gradient g; if we knew the real
data distribution

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 14

Advantages of Batch Gradient Descent batch learning

o Conditions of convergence well understood
o Simpler theoretical analysis on weight dynamics and convergence rates

o Acceleration techniques can be applied

> Second order (Hessian based) optimizations are possible
o Measuring not only gradients, but also curvatures of the loss surface

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 15

Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 16

Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 17

Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 18

Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 19

Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 20

Still, optimizing with Gradient Descent is not perfect

o Often loss surfaces are
° highly non-convex
° very high-dimensional

o No real guarantee that
° the final solution will be good
o we converge fast to final solution

o Datasets are typically too large
to compute complete gradients |

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 21

Gradient Descent

o The gradient approximates the expectation E(Vy L) by taking samples
E(VoL) = Y/mYVeL;

> So called Monte Carlo approximation

o Following the central limit theorem, the standard error of this first
approximation is given by “/\/m

° So, the error drops sublinearly with m. To compute 2x more accurate gradients, we
need 4x data points

o And what'’s the point anyways, since our loss function is only a surrogate?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 22

Stochastic Gradient Descent (SGD)

o Introduce a second approximation in computing the gradients = SGD
o Stochastically sample “mini-training” sets (“mini-batches”) from dataset D
B; = sample(D)
e

Wiyl = W — ViwLi

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 23

Some advantages of SGD

o Randomness helps avoid overfitting solutions
> Variance of gradients increases when batch size decreases

o In practice, accuracy is often better
o Much faster than Gradient Descent

o Suitable for datasets that change over time

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 24

SGD is often better

Loss surface

Current solutlon

~

~ y .
*\\Nousg SAD gradient
~

Full gD gradient —
* No guarantee that this is what

IS going to always happen.
But the noisy SGD gradients can
help escaping local optima

New &GP solution

Best P solution

Best SGD solution

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 25

SGD helps avoid overfitting

o Gradient Descent: Complete gradients fit optimally the (arbitrary) data we
have, not necessarily the distribution that generates them
o All training samples are the “absolute representative” of the input distribution
o Suitable for traditional optimization problems: “find optimal route”
> But for ML we cannot make this assumption = test data are always different

o SGB: sampled mini-batches produce roughly representative gradients
> Model does not overfit (as much) to the particular training samples

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 26

SGD for dynamically changing datasets

o Often data distribution changes over time, e.g. Instagram
> Should “cool 2010 pictures” have as much influence as 20187

o GD is biased towards the more “past” samples

o A properly implemented SGD can track changes better
[LeCun2002]

KIKI CHALLENGE
Popular last year
Kiki challenge

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 27

Shuffling examples

o Applicable only with SGD

o Choose samples with maximum information content
> Mini-batches should contain examples from different classes

o Prefer samples likely to generate larger errors
o Otherwise gradients will be small = slower learning
o Check the errors from previous rounds and prefer “hard examples”
° Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
> New epoch =>create new randomly shuffled batches

Dataset

Shuffling at

epoch t

Shuffling at

epoch t+1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 28

In practice

o SGD is preferred to Gradient Descent

o Training is orders of magnitude faster
° |In real datasets Gradient Descent is not even realistic

o Solutions generalize better
> Noisier gradients can help escape local minima
> More efficient = larger datasets = better generalization

o How many samples per mini-batch?
o Hyper-parameter, trial & error
o Usually between 32-256 samples
> A good rule of thumb =2 as many as your GPU fits

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 29

Challenges in optimization

o Il conditioning
o Let’s check the 2" order Taylor dynamics for optimizing the cost function

L) =L(©O)+ (O —0)Tg+-(0—0)TH®O —06) (H:Hessian)
LB —eg) =~ L(O)—eg'g+ %gTHg

o Even if the gradient g is strong, if igTHg > eglg the cost will increase

o Local minima
> Non-convex optimization produces lots of equivalent, local minima

loss loss

o Plateaus and cliffs

o Vanishing and exploding gradients

same gradient

o Long-term dependencies ok)

increase

loss

wse

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 30

Advanced
Optimizations

\3,(THE COMPUTE

.-onM(“’-i"’z)

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 31

Using different optimizers

['Momentum’, 0.01]
['RMSProp’, 0.02]

['Momentum’, 0.01]
['RMSProp’, 0.02]

® ['Adadelta’, 10.0] ® ['Adadelta’, 50]
@® ['Adagrad', 0.1] ® ['‘Adagrad’, 0.1]
® [‘Adam’, 0.05] [] ['Adam’, 0.05]
O ['Ftrl’, 0.05] Q ['Ftrl*, 0.5]
® ['GD',0.05] ® ['GD',0.05]

o
[J [}

()

Picture credit: Jaewan Yun

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 32

https://github.com/Jaewan-Yun/optimizer-visualization

Pathological curvatures

R : £, Trajectory of Gradient
I e : S Descent

§ Pathological
LR I Curvature

e e inima
. : : L U O Path taken by
Gradient Descent

Ideal Path

wl

Picture credit: Team Paperspace

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 33

https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2

Second order optimization

o Normally all weights updated with same =4
“aggressiveness” N ?g\g\)
> Often some parameters could enjoy more “teaching”

Path taken by
Gradient Descent

> While others are already about there

N Ideal Path

o Adapt learning per parameter
_ —1
W1 = W — Hp "0 gy

o Hy is the Hessian matrix of L: second-order
derivatives

wl

loss loss

l] aL N same gradient
HY = e | 1 s
L d Wi 0 W] L\ """""""""

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 34

s it easy to use the Hessian in a Deep Network?

o Yes, you just use the auto-grad
o Yes, you just compute the square of your derivatives

o No, the matrix would be too huge

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 35

s it easy to use the Hessian in a Deep Network?

o Yes, you just use the auto-grad
o Yes, you just compute the square of your derivatives

o No, the matrix would be too huge

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 36

Second order optimization methods in practice

o Inverse of Hessian usually very expensive
° Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
o Keeps memory of gradients to approximate the inverse Hessian
o L-BFGS works alright with Gradient Descent. What about SGD?

o In practice, SGD with momentum works just fine quite often

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 37

Momentum

o Don’t switch update direction all the
time

o Maintain “momentum” from previous
updates = dampens oscillations

Ut+1 = YU — NGt

Path taken by
Wip1 = Wi + Upyq

Gradient Descent

o Exponential averaging ~—— Ideal Path

o Withy =09anduy =0
U X —01

-

wl

° Uy x —0.991 — g2
°uz « —0.81g1 — 099, — g3

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 38

Momentum

o The exponential averaging
o cancels out the oscillating gradients

° gives more weight to recent updates
w2

o More robust gradients and learning

—> faster convergence Patlh taken by

Gradient Descent

o In practice, initialize y = y5 = 0.5

— Ideal Path
and annealto Yy, = 0.9

-

wl

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 39

RMSprop

Decay hyper-parameter (Usually 0.9)

o Schedule
o1y = arp_q + (1 — a)gf
5 _ __n
U = \/r_t+3gt

Path taken by
Gradient Descent

°Wgy1 = We T+ U

— Ideal Path

o Large gradients, e.g. too “noisy” loss surface
o Updates are tamed wl

o Small gradients, e.g. stuck in plateau of loss surface
o Updates become more aggressive

o Sort of performs simulated annealing

00 L L . L L . L
0.0 05 10 15 20 25 30 35 40

Square rooting boosts small values while suppresses large values

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 40

Adam [Kingma2014]

o One of the most popular learning algorithms
mt = pime_y + (1= f1)g;
= o1+ (1 — ﬁz)gt

mg
1- .31 1_,82

U = = mg
1/v,; + &

Wip1 = We + Uy

A\

)vt

my =

> Recommended values: B; = 0.9, B, = 0.999,¢ = 10~°

o Similar to RMSprop, but with momentum & correction bias

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 41

Adagrad [Duchi2011]

o Schedule
or =% (VL) = W =we—1

gt
Jr+e
> Gradients become gradually smaller and smaller

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 42

Nesterov Momentum [Sutskever2013]

Gradient + momentum

o Use the future gradient instead of
the current gradient

Mowentunt
Wtio5 = We T YUy

Ut4+1 = YU — 77t\7wt+0_513 Gradient
Wip1 = W + Upyg

Graoient + Nesterov
o Better theoretical convergence

momentum

o Generally works better with Momenkunm
Convolutional Neural Networks

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 43

Visual overview

['Momentum’, 0.01]
['RMSProp’, 0.02]

['Momentum’, 0.01]
['RMSProp’, 0.02]

® ['Adadelta’, 10.0] ® ['Adadelta’, 50]
@® ['Adagrad', 0.1] ® ['Adagrad’, 0.1]
® [‘Adam', 0.05] ® [‘Adam', 0.05]
O ['Ftrl’, 0.05] Q ['Ftrl*, 0.5]
® ['GD'.0.05] [] ['GD', 0.05]

O
[J [}

()

Picture credit: Jaewan Yun

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 44

https://github.com/Jaewan-Yun/optimizer-visualization

X1

Layer | input distribution atr(t)

Backpropagatlon

Input Normalization

Layer | input dlstrlbut|on at (t+0.5)

@ Batch Normalization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES Layer | input distribution at t+1

DEEP LEARNING OPTIMIZATIONS - 45

Data pre-processing

o Most common: center data roughly around O

o Activation functions usually “centered” around O

> Important for propagation to next layer: x=0 2 y=0
does not introduce bias within layers (for ReLU and tanh)

o Important for training: strongest gradients around x=0
(for tanh and sigmoid)

RelU © tanh(x) ©

t
|
|
I
I
|
|
|
I
I
|
I
I

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 46

Unit Normalization: N(u, 6%) — N(0, 1)

o Assume: Input variables follow a Gaussian distribution (roughly)

o Normalize by:
o Computing mean and standard deviation from training set

> Subtracting the mean from training/validation/testing samples
and dividing the result by the standard deviation

original data zero-centered data normalized data
10 10

:'é:. A X — l'l
R 3 G

v _ Picture credit:
Stanford Course

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 47

http://cs231n.github.io/neural-networks-2/

Even simpler: Centering the input

o When input dimensions have similar ranges ...
... and with the right non-linearity ...

... centering might be enough (i.e. subtract the mean)

o e.g.in images all dimensions are pixels - all pixels have more or less the same ranges

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 48

Data pre-processing

o Input variables should be as decorrelated as possible
° Input variables are “more independent”
> Model is forced to find non-trivial correlations between inputs
> Decorrelated inputs = Better optimization

o Obviously decorrelating inputs is not good when inputs are by definition
correlated, like in sequences

original data decorrelated data

‘e
LA
®
3

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 49

Batch normalization [loffe2015]

o Input distributions change for
every layer, especially during
training

o Normalize the layer inputs with
batch normalization

> Roughly speaking, normalize x; to
N (0, 1), then rescale using trainable

parameters

DEEP LEARNING OPTIMIZATIONS - 50

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

Batch normalization — The algorithm

O Up < — Zl 1 Xi

O 0g < — Z 1(xl MB)Z
-~ xl UB

O X;j €
/a§+e

o Yyieyxit+p

-

Trainable parameters

[compute mini-batch mean]

[compute mini-batch variance]

[normalize input]

[scale and shift input]

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 51

What is the mean/stdev Batch Normy = yx + (7

OU=ly+p,0=0y+Y

opu=p0=y
opu=po=+y
opu=y,0=p0

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 52

What is the mean/stdev Batch Normy = yx + (7

OU=ly+p,0=0y+Y

ou=p0=y
ou=p,o=p+y
opu=y,0=p

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 53

Batch normalization — Intuition |

o Covariate shift
o At each step, a layer must not only adapt the weights to fit better the data

° |t must also adapt to the change of its input distribution, as its input is itself the result
of another layer that changes over steps

o The distribution fed to the layers of a network should be somewhat:
o Zero-centered
o Constant through time and data

Backpropagation Batch Normalization
A | > | > A
X X X

l

[»

l

Layer | input distribution at'(t) Layer | input distribution at (t+0.5) Layer | input distribution at (t+1)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 54

Batch normalization — Intuition |

o f,y are trainable parameters, so when they change there is still
internal covariate shift

o 2" explanation: Batch norm simplifies the learning dynamics

> Neural network output is determined by higher order interactions between
layers; this complicates the gradient update

> Mean of BatchNorm output is 3, std is ¥; independent from the activation
values themselves = suppresses higher order interactions and makes
training easier

o This angle better explains practical observations:
> Why batch norm works better after the nonlinearity?
> Why have y and [if the problem is the covariate shift?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 55

Batch normalization - Benefits

o Can use higher learning rates = faster training

o Neurons of all layers get activated in a near optimal “regime”
o Model regularization |
. L e 2 P
o Neuron activations not determlnlstlc, 09
depend on the batch o8 [wimara] °
With BN M
H H . 07 10K 20K 30K 40K 50K-2 -2
o Per mini-batch mean and variance are @ (b) Withowt BN (c) With BN

NOIS

: / : o : Figure 1: (a) The test accuracy of the MNIST network
7 InJeCted noise reduces ove rflttlﬂg durmg search trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy. (b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}th
percentiles. Batch Normalization makes the distribution

more stable and reduces the internal covariate shift.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 56

From training to test time

o How do we ship the Batch Norm layer after training?

> We might not have batches at test time 1
. O Hp < = Lij=1Xi
o Usually: keep a moving average of the mean and .
variance during training o og « =2 (x; — ug)?
m
> Plug them in at test time . Xi—Up

> To the limit, the moving average of mini-batch statistics O Xi <

2
approaches the batch statistics opte

s

o yieyx+p

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 57

Regularization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 58

v

v

Regularization

o Neural networks typically have thousands, if not millions of parameters
o Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

W™ « arg min,, Z L(y, aL(x; Wi ..L)) + AQ(0)
(x,y)S(XY)
o Possible regularization methods
o £5-regularization
o £1-regularization
° Dropout

(o]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 59

¥,-regularization

o Most important (or most popular) regularization

. A)
wocargming Y L0aCom)42 w
(£)EXY) l
o The ¥,-regularization is added to the gradient descent update rule

Wi = We — (VgL + Awy) =
Wepr = (1 — lnt)w(” — NVl

\ “Weight decay”, because

o Ais usually about 1071,1072 weights get smaller

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 60

£, -regularization

o ¥-regularization is one of the most important regularization techniques

A
wheargming, Y L (tw L)) +5) wl
(6)EXY) l
o Also €;-regularization is added to the gradient descent update rule

1
Wip1 = We — ¢ (VBL + 4 |W(t)|>

o ¥4-regularization = sparse weights \

°A 7 2 more weights become O Sign function

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 61

Early stopping

o To tackle overfitting another popular technigue is early stopping
o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
> This quite likely means the network starts to overfit

Error

Training cycles

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 62

Dropout [Srivastava2014]

o During training randomly set activations to O
> Neurons sampled at random from a Bernoulli distribution with p = 0.5

o During testing all neurons are used
o Neuron activations reweighted by p

o Benefits
> Reduces complex co-adaptations or co-dependencies between neurons
o Every neuron becomes more robust
o Decreases overfitting

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 63

Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Original moolel

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 64

Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 65

Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Batch 1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 66

Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 67

Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Batch 2

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 68

Too low Just right Too high

1(0) 1(0) 1(6)

Learning rate

0 0
A sm'aII learning rate The optilmal learning oo lafge of a learning rate
requires many updates rate swiftly reaches the cayées drastic updates
before reaching the minimum point

which lead to divergent

minimum point “behaviors

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 69

Learning rate

o The right learning rate n; very important for fast convergence
> Too strong = gradients overshoot and bounce
> Too weak =2 slow training

o Learning rate per weight is often advantageous
> Some weights are near convergence, others not

Too low Just right Too high

1(0) 1(0) 1(6)

/

-

) 0 6
A sm.aII learning rate The opt.|ma| learning ' Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates

befqre reach!ng the minimum point which lead to divergent
minimum point

“behaviors

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 70

Convergence

o The step sizes theoretically should satisfy the following [Robbins—Monro]

Yn, =0 and XPnE <o

o Intuitively,
> The first term ensures that search will explore enough
> The second term ensures convergence

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 71

Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay

o Decrease every T number of epochs
or when validation loss stopped decreasing

No
1+¢&t

o Exponential decay n, = nge”

o Inverse decay n; =

et

o Often step decay preferred
> simple, intuitive, works well

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 72

In practice

o Try several log-spaced values 1071, 107%,1073, ... on a smaller set

° Then, you can narrow it down from there around where you get the lowest validation
error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs A
o Although this highly depends on your data

loss
very high learning rate

low learning rate

high learning rate

Picture credit: good learning rate
Stanford Course

>

epoch

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 73

http://cs231n.github.io/neural-networks-2/

120000 - ,
100000
80000
60000
40000
20000

0

5000010
40000
30000 |
20000
10000

0

3000012
25000 |
20000 |
15000 |
10000
5008
08 06 -04_ -02 00 02 04 06 _ 08

L] L L L] L]

| Lo
o

Weight initialization

L]

L

L

L]

L

L] L3 L

L

T

L]

.35 0.;40 0.45 0.50 0.55 0.60 0.65 0.70
UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 74

Weight initialization

Large gradients

10

— a=tanh(x)

o There are few contradictory requirements:

— dajdx

05

o Weights need to be small enough

o Otherwise output values explode 0ol

o Weights need to be large enough
-05 |
o Otherwise signal is too weak for any serious learning

-1.0 A ! ! L
-6 -4 -2 0 2 4 6

—

o Around origin (0) for symmetric functions (tanh, sigmoid)
> When training starts, better stimulate activation functions near their linear regime
o larger gradients = faster training

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 75

Weight initialization

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations

Question: Why similar input/output variance?

o Initialize weights to be different from one another

> Don’t give same values to all weights (like all 6)
° In that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
° non-linearities
o data normalization

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 76

Weight initialization

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations

Question: Why similar input/output variance?
Answer: Because the output of one module is the input to another

o Initialize weights to be different from one another

> Don’t give same values to all weights (like all 6)
° In that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
° non-linearities
o data normalization

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 77

One way of initializing weights

o For a = wx the variance is
var(a) = E[x]?var(w) + E[w]?var(x) + var(x)var(w)

o Since E|x] = E[w] =0
var(a) = var(x)var(w) = d - var(x;)var(w;)

1

o Forvar(a) = var(x) = var(w;) = -

o Draw random weights from
w~N(0,1/d)

where d is the number of input variables to the layer

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 78

Xavier initialization [Glorot 2010]

o For tanh: initialize weights from U[J \/ 6]
dp— 1+dl

di—1+d;

° d;_4 is the number of input variables to the tanh layer and d; is the number of the
output variables

oForasigmoidU[—éL-\/ ° ,4-\/ °]
di—1+d; di—1+d;

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 79

[He2015] Initialization for ReLUs

o Unlike sigmoidals, ReLUs return O half of the time

o Double the weight variance

o> Compensate for the zero flat-area
- Input and output maintain same variance

o Draw random weights from w~N (0, 2/d)
where d is the number of input variables »
to the layer

|
o
—— e ——————

ReLU

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 80

Babysitting Deep Nets

o Always check your gradients if not computed automatically
o Check that in the first round you get loss that corresponds to random guess

o Check network with few samples
o Turn off regularization. You should predictably overfit and get a loss of O

o Turn on regularization. The loss should be higher than before

o Have a separate validation set
o Use validation set for hyper-parameter tuning
o Compare the curve between training and validation sets - there should be a gap, but not too large

o Preprocess the data (at least to have O mean)

o Initialize weights based on activations functions
o Xavier or He initialization

o Use regularization (€,-regularization, dropout, ...)

o Use batch normalization

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 81

o SGD and advanced SGD-like optimizers

o Input normalization and Batch normalization
Summary o Regularization

o Learning rate

o Weight initialization

Reading material
o Chapter 8, 11

o And the papers mentioned in the slide

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 82

Deep Learning Book
o Chapter §, 11
Papers

Reading material

o Efficient Backprop

o How Does Batch Normalization Help Optimization? (No, It Is Not About
Internal Covariate Shift)

Blog

o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-
momentum-rmsprop-and-adam-8335f15fdee?

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-

descent/

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP LEARNING OPTIMIZATIONS - 83

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

