


Lecture overview

o How to define our model and optimize it in practice
o Optimization methods

o Data preprocessing and normalization

o Regularizations

o Learning rate

o Weight initializations

o Good practices
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Empirical Risk
Minimization
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A Neural/Deep Network in a nutshell

1. The Neural Network

aL(xi W1,...,L) = hy, (hy—1(... hy(x, W), wy_1), Wy)

2. Learning by minimizing empirical error

W" < arg min,, z L(y, aL(X; Wi,...L ))
(x,y)S(X)Y)

3. Optimizing with Stochastic Gradient Descent based methods

Wip1 = W — NV L
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What is a difference between Optimization and Machine Learning?

o The optimal machine learning solution is not necessarily the optimal
solution

o They are practically equivalent
o Machine learning relates to optimization, with some differences

o Inlearning we usually do not optimize the intended task but an easier
surrogate one

o Optimization is offline while Machine Learning can be online

s
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Pure Optimization vs Machine Learning Training?

o Pure optimization has a very direct goal: finding the optimum
o Step 1: Formulate your problem mathematically as best as possible
o Step 2: Find the optimum solution as best as possible

o E.g., optimizing the railroad network in the Netherlands
o Goal: find optimal combination of train schedules, train availability, etc

o In Machine Learning, instead, the real goal and the trainable goal are
quite often different (but related)
o Even “optimal” parameters are not necessarily optimal € Overfitting ...

o E.g., You want to recognize cars from bikes (0-1 problem) in unknown images, but you
optimize the classification log probabilities (continuous) in known images
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Empirical Risk Minimization

o We ideally should optimize for
mv\i,n Ex:prdata [L(W’ %, y)]
l.e. the expected loss under the true underlying distribution
but we do not have access to this distribution

o Thus, borrowing from optimization, the best way we can get satisfactory

solutions is by minimizing the empirical risk

Min Exy-p,e, [L(w; %, 7)] = = 57 L(aGw),y)

° That is, minimize the risk on the available training data sampled by the empirical data
distribution (mini-batches)
> While making sure your parameters do not overfit the data
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Gradient Descent

o To optimize a given loss function, most machine learning methods rely on
Gradient Descent and variants

Wir1 = We — Ne Gt
o Gradient g, = V. L

o Gradient on full training set = Batch Gradient Descent

m
1
=— ) V,L(w;x;,y;
2 lew (w5 %0, Y1)
=

o Computed empirically from all available training samples (x;j, y;)

> Sample gradient = Only an approximation to the true gradient g; if we knew the real
data distribution
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Advantages of Batch Gradient Descent batch learning

o Conditions of convergence well understood
o Simpler theoretical analysis on weight dynamics and convergence rates

o Acceleration techniques can be applied

> Second order (Hessian based) optimizations are possible
o Measuring not only gradients, but also curvatures of the loss surface
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Disadvantages of Batch Gradient Descent?

o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster
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Still, optimizing with Gradient Descent is not perfect

o Often loss surfaces are
° highly non-convex
° very high-dimensional

o No real guarantee that
° the final solution will be good
o we converge fast to final solution

o Datasets are typically too large
to compute complete gradients |
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Gradient Descent

o The gradient approximates the expectation E(Vy L) by taking samples
E(VoL) = Y/mYVeL;

> So called Monte Carlo approximation

o Following the central limit theorem, the standard error of this first
approximation is given by “/\/m

° So, the error drops sublinearly with m. To compute 2x more accurate gradients, we
need 4x data points

o And what'’s the point anyways, since our loss function is only a surrogate?
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Stochastic Gradient Descent (SGD)

o Introduce a second approximation in computing the gradients = SGD
o Stochastically sample “mini-training” sets (“mini-batches”) from dataset D
B; = sample(D)
e

Wiyl = W — ViwLi
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Some advantages of SGD

o Randomness helps avoid overfitting solutions
> Variance of gradients increases when batch size decreases

o In practice, accuracy is often better
o Much faster than Gradient Descent

o Suitable for datasets that change over time
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SGD is often better

Loss surface

Current solutlon

~

~ y .
*\\Nousg SAD gradient
~

Full gD gradient —
* No guarantee that this is what

IS going to always happen.
But the noisy SGD gradients can
help escaping local optima

New &GP solution

Best P solution

Best SGD solution
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SGD helps avoid overfitting

o Gradient Descent: Complete gradients fit optimally the (arbitrary) data we
have, not necessarily the distribution that generates them
o All training samples are the “absolute representative” of the input distribution
o Suitable for traditional optimization problems: “find optimal route”
> But for ML we cannot make this assumption = test data are always different

o SGB: sampled mini-batches produce roughly representative gradients
> Model does not overfit (as much) to the particular training samples
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SGD for dynamically changing datasets

o Often data distribution changes over time, e.g. Instagram
> Should “cool 2010 pictures” have as much influence as 20187

o GD is biased towards the more “past” samples

o A properly implemented SGD can track changes better
[LeCun2002]

KIKI CHALLENGE
Popular last year
Kiki challenge
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Shuffling examples

o Applicable only with SGD

o Choose samples with maximum information content
> Mini-batches should contain examples from different classes

o Prefer samples likely to generate larger errors
o Otherwise gradients will be small = slower learning
o Check the errors from previous rounds and prefer “hard examples”
° Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
> New epoch =>create new randomly shuffled batches

Dataset

Shuffling at

epoch t

Shuffling at

epoch t+1
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In practice

o SGD is preferred to Gradient Descent

o Training is orders of magnitude faster
° |In real datasets Gradient Descent is not even realistic

o Solutions generalize better
> Noisier gradients can help escape local minima
> More efficient = larger datasets = better generalization

o How many samples per mini-batch?
o Hyper-parameter, trial & error
o Usually between 32-256 samples
> A good rule of thumb =2 as many as your GPU fits
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Challenges in optimization

o Il conditioning
o Let’s check the 2" order Taylor dynamics for optimizing the cost function

L) =L(©O)+ (O —0)Tg+-(0—0)TH®O —06) (H:Hessian)
LB —eg) =~ L(O)—eg'g+ %gTHg

o Even if the gradient g is strong, if igTHg > eglg the cost will increase

o Local minima
> Non-convex optimization produces lots of equivalent, local minima

loss loss

o Plateaus and cliffs

o Vanishing and exploding gradients

same gradient

o Long-term dependencies ok )

increase

loss

wse
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Advanced
Optimizations

\3,( THE COMPUTE

.-onM(“’-i"’z)
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Using different optimizers

['Momentum’, 0.01]
['RMSProp’, 0.02]

['Momentum’, 0.01]
['RMSProp’, 0.02]

® ['Adadelta’, 10.0] ® ['Adadelta’, 50]
@® ['Adagrad', 0.1] ® ['‘Adagrad’, 0.1]
® [‘Adam’, 0.05] [ ] ['Adam’, 0.05]
O ['Ftrl’, 0.05] Q ['Ftrl*, 0.5]
® ['GD',0.05] ® ['GD',0.05]

o
[ J [}

()

Picture credit: Jaewan Yun
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Pathological curvatures

R : £, Trajectory of Gradient
I e : S Descent

§ Pathological
LR I Curvature

e e inima
. : : L U O Path taken by
Gradient Descent

Ideal Path

wl

Picture credit: Team Paperspace
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https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2

Second order optimization

o Normally all weights updated with same =4
“aggressiveness” N ?g\g\)
> Often some parameters could enjoy more “teaching”

Path taken by
Gradient Descent

> While others are already about there

N Ideal Path

o Adapt learning per parameter
_ —1
W1 = W — Hp "0 gy

o Hy is the Hessian matrix of L: second-order
derivatives

wl

loss loss

l] aL N same gradient
HY = e | 1 s
L d Wi 0 W] L\ """""""""
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s it easy to use the Hessian in a Deep Network?

o Yes, you just use the auto-grad
o Yes, you just compute the square of your derivatives

o No, the matrix would be too huge

s
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Second order optimization methods in practice

o Inverse of Hessian usually very expensive
° Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
o Keeps memory of gradients to approximate the inverse Hessian
o L-BFGS works alright with Gradient Descent. What about SGD?

o In practice, SGD with momentum works just fine quite often
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Momentum

o Don’t switch update direction all the
time

o Maintain “momentum” from previous
updates = dampens oscillations

Ut+1 = YU — NGt

Path taken by
Wip1 = Wi + Upyq

Gradient Descent

o Exponential averaging ~—— Ideal Path

o Withy =09anduy =0
U X —01

-

wl

° Uy x —0.991 — g2
°uz « —0.81g1 — 099, — g3
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Momentum

o The exponential averaging
o cancels out the oscillating gradients

° gives more weight to recent updates
w2

o More robust gradients and learning

—> faster convergence Patlh taken by

Gradient Descent

o In practice, initialize y = y5 = 0.5

—  Ideal Path
and annealto Yy, = 0.9

-

wl
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RMSprop

Decay hyper-parameter (Usually 0.9)

o Schedule
o1y = arp_q + (1 — a)gf
5 _ __n
U = \/r_t+3gt

Path taken by
Gradient Descent

°Wgy1 = We T+ U

—  Ideal Path

o Large gradients, e.g. too “noisy” loss surface
o Updates are tamed wl

o Small gradients, e.g. stuck in plateau of loss surface
o Updates become more aggressive

o Sort of performs simulated annealing

00 L L . L L . L
0.0 05 10 15 20 25 30 35 40

Square rooting boosts small values while suppresses large values
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Adam [Kingma2014]

o One of the most popular learning algorithms
mt = pime_y + (1= f1)g;
= o1+ (1 — ﬁz)gt

mg
1- .31 1_,82

U = = mg
1/v,; + &

Wip1 = We + Uy

A\

)vt

my =

> Recommended values: B; = 0.9, B, = 0.999,¢ = 10~°

o Similar to RMSprop, but with momentum & correction bias
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Adagrad [Duchi2011]

o Schedule
or =% (VL) = W =we—1

gt
Jr+e
> Gradients become gradually smaller and smaller
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Nesterov Momentum [Sutskever2013]

Gradient + momentum

o Use the future gradient instead of
the current gradient

Mowentunt
Wtio5 = We T YUy

Ut4+1 = YU — 77t\7wt+0_513 Gradient
Wip1 = W + Upyg

Graoient + Nesterov
o Better theoretical convergence

momentum

o Generally works better with Momenkunm
Convolutional Neural Networks
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Visual overview

['Momentum’, 0.01]
['RMSProp’, 0.02]

['Momentum’, 0.01]
['RMSProp’, 0.02]

® ['Adadelta’, 10.0] ® ['Adadelta’, 50]
@® ['Adagrad', 0.1] ® ['Adagrad’, 0.1]
® [‘Adam', 0.05] ® [‘Adam', 0.05]
O ['Ftrl’, 0.05] Q ['Ftrl*, 0.5]
® ['GD'.0.05] [ ] ['GD', 0.05]

O
[ J [}

()

Picture credit: Jaewan Yun
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X1

Layer | input distribution atr(t)

Backpropagatlon

Input Normalization

Layer | input dlstrlbut|on at (t+0.5)

@ Batch Normalization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES Layer | input distribution at t+1
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Data pre-processing

o Most common: center data roughly around O

o Activation functions usually “centered” around O

> Important for propagation to next layer: x=0 2 y=0
does not introduce bias within layers (for ReLU and tanh)

o Important for training: strongest gradients around x=0
(for tanh and sigmoid)

RelU © tanh(x) ©

t
|
|
I
I
|
|
|
I
I
|
I
I
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Unit Normalization: N(u, 6%) — N(0, 1)

o Assume: Input variables follow a Gaussian distribution (roughly)

o Normalize by:
o Computing mean and standard deviation from training set

> Subtracting the mean from training/validation/testing samples
and dividing the result by the standard deviation

original data zero-centered data normalized data
10 10

:'é:. A X — l'l
R 3 G

v _ Picture credit:
Stanford Course
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Even simpler: Centering the input

o When input dimensions have similar ranges ...
... and with the right non-linearity ...

... centering might be enough (i.e. subtract the mean)

o e.g.in images all dimensions are pixels - all pixels have more or less the same ranges
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Data pre-processing

o Input variables should be as decorrelated as possible
° Input variables are “more independent”
> Model is forced to find non-trivial correlations between inputs
> Decorrelated inputs = Better optimization

o Obviously decorrelating inputs is not good when inputs are by definition
correlated, like in sequences

original data decorrelated data

‘e
LA
®
3
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Batch normalization [loffe2015]

o Input distributions change for
every layer, especially during
training

o Normalize the layer inputs with
batch normalization

> Roughly speaking, normalize x; to
N (0, 1), then rescale using trainable

parameters

DEEP LEARNING OPTIMIZATIONS - 50
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Batch normalization — The algorithm

O Up < — Zl 1 Xi

O 0g < — Z 1(xl MB)Z
-~ xl UB

O X;j €
/a§+e

o Yyieyxit+p

-

Trainable parameters

[compute mini-batch mean]

[compute mini-batch variance]

[normalize input]

[scale and shift input]

s
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What is the mean/stdev Batch Normy = yx + (7

OU=ly+p,0=0y+Y

opu=p0=y
opu=po=+y
opu=y,0=p0

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 52




What is the mean/stdev Batch Normy = yx + (7

OU=ly+p,0=0y+Y

ou=p0=y
ou=p,o=p+y
opu=y,0=p

s
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Batch normalization — Intuition |

o Covariate shift
o At each step, a layer must not only adapt the weights to fit better the data

° |t must also adapt to the change of its input distribution, as its input is itself the result
of another layer that changes over steps

o The distribution fed to the layers of a network should be somewhat:
o Zero-centered
o Constant through time and data

Backpropagation Batch Normalization
A | > | > A
X X X

l

[ »

l

Layer | input distribution at'(t) Layer | input distribution at (t+0.5) Layer | input distribution at (t+1)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 54



Batch normalization — Intuition |

o f,y are trainable parameters, so when they change there is still
internal covariate shift

o 2" explanation: Batch norm simplifies the learning dynamics

> Neural network output is determined by higher order interactions between
layers; this complicates the gradient update

> Mean of BatchNorm output is 3, std is ¥; independent from the activation
values themselves = suppresses higher order interactions and makes
training easier

o This angle better explains practical observations:
> Why batch norm works better after the nonlinearity?
> Why have y and [ if the problem is the covariate shift?
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Batch normalization - Benefits

o Can use higher learning rates = faster training

o Neurons of all layers get activated in a near optimal “regime”
o Model regularization |
. L e 2 P
o Neuron activations not determlnlstlc, 09
depend on the batch o8 [ wimara] °
With BN M
H H . 07 10K 20K 30K 40K 50K-2 -2
o Per mini-batch mean and variance are @ (b) Withowt BN (c) With BN

NOIS

: / : o : Figure 1: (a) The test accuracy of the MNIST network
7 InJeCted noise reduces ove rflttlﬂg durmg search trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy. (b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}th
percentiles. Batch Normalization makes the distribution

more stable and reduces the internal covariate shift.
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From training to test time

o How do we ship the Batch Norm layer after training?

> We might not have batches at test time 1
. O Hp < = Lij=1Xi
o Usually: keep a moving average of the mean and .
variance during training o og « =2 (x; — ug)?
m
> Plug them in at test time . Xi—Up

> To the limit, the moving average of mini-batch statistics O Xi <

2
approaches the batch statistics opte

s

o yieyx+p
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Regularization
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Regularization

o Neural networks typically have thousands, if not millions of parameters
o Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Proper weight regularization is crucial to avoid overfitting

W™ « arg min,, Z L(y, aL(x; Wi ..L )) + AQ(0)
(x,y)S(XY)
o Possible regularization methods
o £5-regularization
o £1-regularization
° Dropout

(o]
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¥,-regularization

o Most important (or most popular) regularization

. A )
wocargming Y L0aCom )42 w
(£ )EXY) l
o The ¥,-regularization is added to the gradient descent update rule

Wi = We — (VgL + Awy) =
Wepr = (1 — lnt)w(” — NVl

\ “Weight decay”, because

o Ais usually about 1071,1072 weights get smaller

s
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£, -regularization

o ¥-regularization is one of the most important regularization techniques

A
wheargming, Y L (tw L)) +5 ) wl
(6 )EXY) l
o Also €;-regularization is added to the gradient descent update rule

1
Wip1 = We — ¢ (VBL + 4 |W(t)|>

o ¥4-regularization = sparse weights \

°A 7 2 more weights become O Sign function

s
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Early stopping

o To tackle overfitting another popular technigue is early stopping
o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
> This quite likely means the network starts to overfit

Error

Training cycles
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Dropout [Srivastava2014]

o During training randomly set activations to O
> Neurons sampled at random from a Bernoulli distribution with p = 0.5

o During testing all neurons are used
o Neuron activations reweighted by p

o Benefits
> Reduces complex co-adaptations or co-dependencies between neurons
o Every neuron becomes more robust
o Decreases overfitting
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Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Original moolel
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Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles
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Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Batch 1
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Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles
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Dropout

o Effectively, a different architecture for every input batch during training
o Similar to model ensembles

Batch 2

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP LEARNING OPTIMIZATIONS - 68



Too low Just right Too high

1(0) 1(0) 1(6)

Learning rate

0 0
A sm'aII learning rate The optilmal learning oo lafge of a learning rate
requires many updates rate swiftly reaches the cayées drastic updates
before reaching the minimum point

which lead to divergent

minimum point “behaviors
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Learning rate

o The right learning rate n; very important for fast convergence
> Too strong = gradients overshoot and bounce
> Too weak =2 slow training

o Learning rate per weight is often advantageous
> Some weights are near convergence, others not

Too low Just right Too high

1(0) 1(0) 1(6)

/

-

) 0 6
A sm.aII learning rate The opt.|ma| learning ' Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates

befqre reach!ng the minimum point which lead to divergent
minimum point

“behaviors
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Convergence

o The step sizes theoretically should satisfy the following [Robbins—Monro]

Yn, =0 and XPnE <o

o Intuitively,
> The first term ensures that search will explore enough
> The second term ensures convergence
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay

o Decrease every T number of epochs
or when validation loss stopped decreasing

No
1+¢&t

o Exponential decay n, = nge”

o Inverse decay n; =

et

o Often step decay preferred
> simple, intuitive, works well
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In practice

o Try several log-spaced values 1071, 107%,1073, ... on a smaller set

° Then, you can narrow it down from there around where you get the lowest validation
error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs A
o Although this highly depends on your data

loss
very high learning rate

low learning rate

high learning rate

Picture credit: good learning rate
Stanford Course

>

epoch
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http://cs231n.github.io/neural-networks-2/
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Weight initialization

Large gradients

10

—  a=tanh(x)

o There are few contradictory requirements:

—  dajdx

05

o Weights need to be small enough

o Otherwise output values explode 0ol

o Weights need to be large enough
-05 |
o Otherwise signal is too weak for any serious learning

-1.0 A ! ! L
-6 -4 -2 0 2 4 6

—

o Around origin (0) for symmetric functions (tanh, sigmoid)
> When training starts, better stimulate activation functions near their linear regime
o larger gradients = faster training
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Weight initialization

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations

Question: Why similar input/output variance?

o Initialize weights to be different from one another

> Don’t give same values to all weights (like all 6)
° In that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
° non-linearities
o data normalization
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Weight initialization

o Weights must be initialized to preserve the variance of the activations
during the forward and backward computations

Question: Why similar input/output variance?
Answer: Because the output of one module is the input to another

o Initialize weights to be different from one another

> Don’t give same values to all weights (like all 6)
° In that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
° non-linearities
o data normalization
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One way of initializing weights

o For a = wx the variance is
var(a) = E[x]?var(w) + E[w]?var(x) + var(x)var(w)

o Since E|x] = E[w] =0
var(a) = var(x)var(w) = d - var(x;)var(w;)

1

o Forvar(a) = var(x) = var(w;) = -

o Draw random weights from
w~N(0,1/d)

where d is the number of input variables to the layer
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Xavier initialization [Glorot 2010]

o For tanh: initialize weights from U[ J \/ 6 ]
dp— 1+dl

di—1+d;

° d;_4 is the number of input variables to the tanh layer and d; is the number of the
output variables

oForasigmoidU[—éL-\/ ° ,4-\/ ° ]
di—1+d; di—1+d;
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[He2015] Initialization for ReLUs

o Unlike sigmoidals, ReLUs return O half of the time

o Double the weight variance

o> Compensate for the zero flat-area
- Input and output maintain same variance

o Draw random weights from w~N (0, 2/d)
where d is the number of input variables »
to the layer

|
o
—— e ——————

ReLU

s
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Babysitting Deep Nets

o Always check your gradients if not computed automatically
o Check that in the first round you get loss that corresponds to random guess

o Check network with few samples
o Turn off regularization. You should predictably overfit and get a loss of O

o Turn on regularization. The loss should be higher than before

o Have a separate validation set
o Use validation set for hyper-parameter tuning
o Compare the curve between training and validation sets - there should be a gap, but not too large

o Preprocess the data (at least to have O mean)

o Initialize weights based on activations functions
o Xavier or He initialization

o Use regularization (€,-regularization, dropout, ...)

o Use batch normalization
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o SGD and advanced SGD-like optimizers

o Input normalization and Batch normalization
Summary o Regularization

o Learning rate

o Weight initialization

Reading material
o Chapter 8, 11

o And the papers mentioned in the slide
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Deep Learning Book
o Chapter §, 11
Papers

Reading material

o Efficient Backprop

o How Does Batch Normalization Help Optimization? (No, It Is Not About
Internal Covariate Shift)

Blog

o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-
momentum-rmsprop-and-adam-8335f15fdee?

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-

descent/
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http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

