

Lecture 5: Modern ConvNets

Efstratios Gavves

Lecture overview

• Popular Convolutional Neural Networks architectures

- Go deeper on what makes them tick
 - what makes them different

ConvNet Configuration							
А	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
input (224×224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E		
Number of parameters	133	133	134	138	144		

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 3

VGGnet

VGG16

Characteristics

- \circ Input size: 224 \times 224
- Filter sizes: 3×3
- Convolution stride: 1
 - Spatial resolution preserved
- Padding: 1
- Max pooling: 2×2 with a stride of 2
- ReLU activations
- No fancy input normalizations
 - No Local Response Normalizations
- Although deeper, number of weights is not exploding

Why 3×3 filters?

• The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"

- \circ Two 3 \times 3 filters have the receptive field of one 5 \times 5
- $_{\odot}$ Three 3 \times 3 filters have the receptive field of ...

- The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"
- \circ Two 3 \times 3 filters have the receptive field of one 5 \times 5
- \circ Three 3 \times 3 filters have the receptive field of one 7 \times 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- o Benefit?

- The <u>smallest</u> possible filter to captures the "up", "down", "left", "right"
- Two 3×3 filters have the receptive field of one 5×5
- Three 3×3 filters have the receptive field of one 7×7
- o 1 large filter can be replaced by a deeper stack of successive smaller filters

• Benefit?

- Three more nonlinearities for the same "size" of pattern learning
- Also fewer parameters and regularization

 $(3 \times 3 \times C) \times 3 = 27 \cdot C, 7 \times 7 \times C \times 1 = 49 \cdot C$

• Conclusion: 1 large filter can be replaced by a deeper, potentially more powerful, stack of successive smaller filters

Even smaller filters?

- o Also 1x1 filters are used
- Followed by a nonlinearity

o Why?

Even smaller filters?

- Also 1x1 filters are used
- Followed by a nonlinearity

• Why?

 Increasing nonlinearities without affecting receptive field sizes

• Linear transformation of the input channels

- o Batch size: 256
- o SGD with momentum=0.9
- o Weight decay $\lambda = 5 \cdot 10^{-4}$
- Dropout on first two fully connected layers
- $_{\rm O}$ Learning rate $\eta_0=10^{-2}$, then decreased by factor of 10 when validation accuracy stopped improving
 - Three times this learning rate decrease
- Faster training
 - $^{\circ}$ Smaller filters ightarrow
 - Depth also serves as regularization

Inception

ι	JVA DEEP LEARNING COURSE
	EFSTRATIOS GAVVES
	MODERN CONVNETS - 13

type	patch size/	output	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool	params	ops
••	stride	size	-		reduce		reduce		proj		
convolution	$7 \times 7/2$	$112 \times 112 \times 64$	1							2.7K	34M
max pool	$3 \times 3/2$	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3/2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

• Problem?

Picture credit: Bharath Raj

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

- Salient parts have great variation in sizes
- Hence, the receptive fields should vary in size accordingly
- Naively stacking convolutional operations is expensive
- Very deep nets are prone to overfitting

Picture credit: Bharath Raj

Inception module

- Multiple kernel filters of different sizes $(1 \times 1, 3 \times 3, 5 \times 5)$
 - Naïve version
- Problem?

Picture credit: Bharath Raj

Inception module

- Multiple kernel filters of different sizes $(1 \times 1, 3 \times 3, 5 \times 5)$
 - Naïve version
- Problem?
 - Very expensive!
- \circ Add intermediate 1×1 convolutions

- o 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- o 6.67% Imagenet error, compared to 18.2% of Alexnet

Houston, we have a problem

Problem: Vanishing gradients

- The network was too deep (at the time)
- Roughly speaking, backprop is lots of matrix multiplications $\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$
- Many of intermediate terms $< 1 \rightarrow$ the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- \circ Extremely small gradient \rightarrow ?

Problem: Vanishing gradients (more details later)

- The network was too deep (at the time)
- Roughly speaking, backprop is lots of matrix multiplications $\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$
- Many of intermediate terms $< 1 \rightarrow$ the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → Extremely slow learning

- o 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- Because of the increased depth → Vanishing gradients
- o Inception solution to vanishing gradients: intermediate classifiers

• Intermediate classifiers removed after training

Picture credit: Bharath Raj

Inceptions v2, v3, v4,

 $_{\odot}$ Factorize 5 \times 5 in two 3 \times 3 filters

- Factorize $n \times n$ in two $n \times 1$ and $1 \times n$ filters (quite a lot cheaper)
- Make nets wider

ResNets DenseNets HighwayNets

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 24

A residual block

- The first truly Deep Network, going deeper than 1,000 layers
- More importantly, the first Deep Architecture that proposed a novel concept on how to gracefully go deeper than a few dozen layers
 - Not simply getting more GPUs, more training time, etc
- Smashed Imagenet, with a 3.57% error (in ensembles)
- Won all object classification, detection, segmentation, etc. challenges

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- Thought experiment: Let's assume two Convnets A, B. They are almost identical, in that B is the same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should ...

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- **Thought experiment:** Let's assume two Convnets A, B. They are almost identical, in that B is the same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should be similar. Thus, there is a Convnet B, which is at least as good as Convnet A w.r.t. training error

Quiz: What looks weird?

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Adding identity layers increases training error!!
 - Training error, not testing error
- Performance degradation not caused by overfitting
 - Just the optimization task is harder
- Assuming optimizers are doing their job fine, it appears that not all networks are the same as easy to optimize

What is the problem?

- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates and starts unlearning
- Signal gets lost through so many layers
- Thought experiment: take a trained shallow network and just stack a few identity layers
 a = I(x) → a ≡ x
- What should happen?

F

G and M act as Identity Functions. Both the Networks Give same output

Picture credit: <u>Prakash Jay</u>

What is the problem?

- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates and starts unlearning
- Signal gets lost through so many layers
- Thought experiment: take a trained shallow network and just stack a few identity layers
 a = I(x) → a ≡ x
- The network should in principle just keep its existing knowledge
- Surprisingly, they start failing

Picture credit: Prakash Jay

G and M act as Identity Functions. Both the Networks Give same output

- Let's say we have the neural network nonlinearity a = F(x)
- Easier to learn a function a = F(x) to model differences $a \sim \delta y$ than to model absolutes $a \sim y$
 - Think of it like in input normalization \rightarrow you normalize around 0
 - \circ Think of it like in regression ightarrow you model differences around the mean value
- So, ask the neural network to explicitly model difference mapping $F(x) = H(x) x \Rightarrow H(x) = F(x) + x$
- \circ F(x) are the stacked nonlinearities
- $\circ x$ is the input to the nonlinear layer

O H(x) = F(x) + x

- o If dimensions don't match
 - Either zero padding
 - Or a projection layer to match dimensions

No degradation anymore

• Without residual connections deeper networks are untrainable

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet breaks records

• Ridiculously low error in ImageNet

• Up to 1000 layers ResNets trained

• Previous deepest network ~30-40 layers on simple datasets

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

ResNet architectures & ResNeXt

ResNeXt

Fig. 4(e)

6.37

5.46

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

	setting	top-1 err (%)	top-5 err (%)					
1× complexity references:								
ResNet-101	$1 \times 64d$	22.0	6.0					
ResNeXt-101	$32 \times 4d$	21.2	5.6					
2× complexity models follow:								
ResNet-200 [15]	$1 \times 64d$	21.7	5.8					
ResNet-101, wider	$1 \times 100 d$	21.3	5.7					
ResNeXt-101	2 × 64d	20.7	5.5					
ResNeXt-101	64 × 4d	20.4	5.3					

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to $2 \times$ of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

full pre-activation
Some observations

- BatchNorms absolutely necessary because of vanishing gradients
- Networks with skip connections (like ResNets) converge faster than the same network without skip connections
- o Identity shortcuts cheaper and almost equal to project shortcuts
- Hopefully, more on Neural Network dynamics later

• Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

○ Similar to ...

• Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

o Similar to ... LSTMs as we will say later

 Add skip connections to multiple forward layers

$$y = h(x_l, x_{l-1}, ..., x_{l-n})$$

o Why?

Add skip connections to multiple forward layers

 $y = h(x_l, x_{l-1}, ..., x_{l-n})$

- Assume layer 1 captures edges, while layer 5 captures faces (and other stuff)
- Why not have a layer that combines both faces and edges (e.g. to model a scarred face)
- Standard ConvNets do not allow for this
 - Layer 6 combines only layer 5 patterns, not lower

• It is also possible to learn the neural architecture

• Problem?

• It is also possible to learn the neural architecture

• Problem?

• Architectures/graphs are discrete structures \rightarrow Backprop?

• Still, some very interesting workarounds have been proposed in practice

• Will it work for you? If you are Facebook or Google, yes!

Evolutionary Search for NAS

- DARTS: Differentiable Architecture Search, Liu et al., 2018
- Efficient Neural Architecture Search via Parameter Sharing, Pham et al., 2018
- Evolving Space-Time Neural Architectures for Videos, Piergiovanni et al. 2018
- Regularized Evolution for Image Classifier Architecture _____ Search, Real et al., 2019

Figure 5. Example mutations applied to a module, including (a) layer type change, (b) filter length change, and (c) layer addition.

State-of-the-Art

R-CNNs Fully Convolutional Siamese Nets for Tracking

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 46

R-CNN: Regions with CNN features

Sliding window on feature maps

- o SPPnet [He2014]
- Fast R-CNN [Girshick2015]

Fast R-CNN: Steps

• Process the whole image up to conv5

Conv 5 feature map

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects

Conv 5 feature map

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)

Conv 5 feature map

- Process the whole image up to conv5
- Compute possible locations for objects
- \circ Given single location \rightarrow ROI pooling module extracts fixed length feature

- Process the whole image up to conv5
- Compute possible locations for objects
- \circ Given single location \rightarrow ROI pooling module extracts fixed length feature
- Connect to two final layers, 1 for classification, 1 for box refinement

Region-of-Interest (ROI) Pooling Module

- Divide feature map in TxT cells
 - The cell size will change depending on the size of the candidate location

Smart fine-tuning

• Normally samples in a mini-batch completely random

- Instead, organize mini-batches by ROIs
- 1 mini-batch = N (images) $\times \frac{R}{N}$ (candidate locations)
- Feature maps shared \rightarrow training speed-up by a factor of $\frac{R}{N}$
- Mini-batch samples might be correlated
 - In Fast R-CNN that was not observed

Some results

- Reuse convolutions for different candidate boxes
 - Compute feature maps only once
- Region-of-Interest pooling
 - \circ Define stride relatively ightarrow box width divided by predefined number of "poolings" T
 - Fixed length vector
- End-to-end training!
- o (Very) Accurate object detection
- o (Very) Faster
 - Less than a second per image
- External box proposals needed

◦ Fast R-CNN → external candidate locations

- \circ Faster R-CNN \rightarrow deep network proposes candidate locations
- Slide the feature map $\rightarrow k$ anchor boxes per slide

Region Proposal Network

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Deconvolutional modules

More visualizations: https://github.com/vdumoulin/conv_arithmetic

Siamese Networks for Tracking

- While tracking, the only definitely correct training example is the first frame
 - All others are inferred by the algorithm
- If the "inferred positives" are correct, then the model is already good enough and no update is needed
- If the "inferred positives" are incorrect, updating the model using wrong positive examples will eventually destroy the model

• Siamese Instance Search for Tracking, R. Tao, E. Gavves, A. Smeulders, CVPR 2016

- No model updates through time to avoid model contamination
- Instead, learn invariance model f(dx)
 - invariances shared between objects
 - reliable, external, rich, category-independent, data
- Assumption
 - The appearance variances are shared amongst object and categories
 - Learning can accurate enough to identify common appearance variances
- Solution: Use a Siamese Network to compare patches between images
 - Then "tracking" equals finding the most similar patch at each frame (no temporal modelling)

Training

<u>Marginal Contrastive Loss</u>: $L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$ $D = \left\| f(x_j) - f(x_k) \right\|_2$

<u>Matching function (after learning)</u>: $m(x_j, x_k) = f(x_j) \cdot f(x_k)$

Training

<u>Marginal Contrastive Loss</u>: $L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$ $D = \left\| f(x_j) - f(x_k) \right\|_2$

<u>Matching function (after learning)</u>: $m(x_j, x_k) = f(x_j) \cdot f(x_k)$

Training

Marginal Contrastive Loss:

$$L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - D^2)$$

$$D = \left\| f(x_j) - f(x_k) \right\|_2$$

<u>Matching function (after learning)</u>: $m(x_j, x_k) = f(x_j) \cdot f(x_k)$

Testing

Predicting the next location

- 1. Define query x_0 at t = 0
- 2. Set current target location x_t
- 3. Measure similarity $s_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity s_{t+1}^k
 - 5. Go to 2

Testing

Predicting the next location

- 1. Define query x_0 at t = 0
- 2. Set current target location x_t
- 3. Measure similarity $s_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity s^k_{t+1}
 - 5. Go to 2

Testing

Predicting the next location

- 1. Define query x_0 at t = 0
- 2. Set current target location x_t
- 3. Measure similarity $s_{t+1}^k = s(x_0, x_{t+1}^k)$ of x_0 with multiple boxes x'_{t+1} sampled around x_t
- 4. Select next target location with maximum similarity s_{t+1}^k
 - 5. Go to 2
Network Architecture

- o Very few max pooling layers →
 improve localization accuracy
- Region-of-interest (ROI) pooling→ process all boxes in a frame in one single pass through the network
- O Use outputs of multiple layers (conv4_3, conv5_3, fc6) → robust in various situations

The two branches share the parameters.

Things to remember

- Operate on pairs
 - Two patches as input
 - Compute similarity
- Function learnt once
 - external, rich video dataset
 - object box annotations
- Once learned externally applied as is
 - to videos of previously unseen targets
 - to videos of previously unseen categories

Spatial Transformer Network

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 75

batch = 0/200 theta = 1.02 0.02 -0.02 -0.02 1.02 -0.02

- ConvNets sometimes are robust enough to input changes
 - While pooling gives some invariance, only in deeper layers the pooling receptive field is large enough for this invariance to be noteworthy
 - One way to improve robustness: Data augmentation
- Smarter way: Spatial Transformer Networks

• Define a geometric transformation matrix

$$\Theta = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix}$$

• Four interesting transformations

• Identity, i.e.
$$\Theta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Rotation, e.g., $\Theta \approx \begin{bmatrix} 0.7 & -0.7 & 0 \\ 0.7 & 0.7 & 0 \end{bmatrix}$ for 45° , as $\cos(\frac{\pi}{4}) \approx 0.7$
• Zooming in, e.g. $\Theta \approx \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \end{bmatrix}$ for 2X zooming in
• Zooming in, e.g. $\Theta \approx \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ for 2X zooming out

Basic idea

• Then, define a mesh grid (x_i^t, y_i^t) on the original image and apply the geometric transformations

$$\begin{bmatrix} x_i^s \\ y_i^s \end{bmatrix} = \Theta \cdot \begin{bmatrix} x_i^t \\ y_i^t \\ 1 \end{bmatrix}$$

- Produce the new image using the transformation above and an interpolation method
- $\circ\,$ Learn the parameters Θ and the meshgrid from the data
- $\circ\,$ A localization network learns to predict $\Theta\,$ given a new image

C3D i3D

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 79

Inflated Inception-V1

Inception Module (Inc.)

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

Basic idea

- Replace 2D convolutions with 3D convolutions
- Train on same domain data
 Videos

Figure 6. **Feature embedding**. Feature embedding visualizations of Imagenet and C3D on UCF101 dataset using t-SNE [43]. C3D features are semantically separable compared to Imagenet suggesting that it is a better feature for videos. Each clip is visualized as a point and clips belonging to the same action have the same color. Best viewed in color.

Some results

- Generally, it works pretty nicely
- Not for all temporal tasks though, as we will see later on in the course

Method	Accuracy (%)
Imagenet + linear SVM	68.8
iDT w/ BoW + linear SVM	76.2
Deep networks [18]	65.4
Spatial stream network [36]	72.6
LRCN [6]	71.1
LSTM composite model [39]	75.8
C3D (1 net) + linear SVM	82.3
C3D (3 nets) + linear SVM	85.2
iDT w/ Fisher vector [31]	87.9
Temporal stream network [36]	83.7
Two-stream networks [36]	88.0
LRCN [6]	82.9
LSTM composite model [39]	84.3
Conv. pooling on long clips [29]	88.2
LSTM on long clips [29]	88.6
Multi-skip feature stacking [25]	89.1
C3D (3 nets) + iDT + linear SVM	90.4

Table 3. Action recognition results on UCF101. C3D compared with baselines and current state-of-the-art methods. Top: simple features with linear SVM; Middle: methods taking only RGB frames as inputs; Bottom: methods using multiple feature combinations.

Inflated Inception-V1

Inc.

2x2x2

Max-Poo

stride 2

Rec. Field:

59.219.219

Video

Rec. Field:

7,11,11

Inc.

Rec. Field: 23,75,75

3x3x3

Max-Pool

stride 2

2x7x7

Avg-Pool

Rec. Field:

99,539,539

1x3x3

Max-Pool

stride 1.2.2

Inception Module (Inc.)

 \circ i3D = C3D + Inception

- Plus some neat tricks
- Take 2D filters and inflate them so that they become 3D filters
- Then, use them as initialization

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

Predictions

Rec. Field:

11,27,27

Inc.

1x3x3

lax-Pool

tride 1,2,2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;
(right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31]
model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual
RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames
then averages the predictions.

Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES MODERN CONVNETS - 83

- Popular Convolutional Neural Networks architectures
- Go deeper on what makes them tick & what makes them different

Reading material

• All the papers from the models presented