


Lecture overview

o Popular Convolutional Neural Networks architectures

o Go deeper on what makes them tick
o> what makes them different
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ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
VGG net conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
MODERN CONVNETS - 3

Table 2: Number of parameters (in millions).
Network ALA-LRN B C D E
Number of parameters 133 133 | 134 | 138 | 144
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https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Characteristics

o Inputsize: 224 X 224
o Filter sizes: 3 X 3

o Convolution stride: 1
> Spatial resolution preserved

o Padding: 1

o Max pooling: 2 X 2 with a stride of 2
o RelU activations

o No fancy input normalizations

> No Local Response Normalizations

o Although deeper, number of weights is not exploding
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Why 3 X 3 filters?
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Why 3 X 3 filters?

o The smallest possible filter to captures the “up”, “down”, “left”, “right”

o Two 3 X 3 filters have the receptive field of one 5 X 5
o Three 3 X 3 filters have the receptive field of ...

Picture credit; Arden Dertat

5x5 receptive field 3x3 receptive field
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https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Why 3 X 3 filters?

o The smallest possible filter to captures the “up”, “down”, “left”, “right”

o Two 3 X 3 filters have the receptive field of one 5 X 5
o Three 3 X 3 filters have the receptive field of one 7 X 7
o 1 large filter can be replaced by a deeper stack of successive smaller filters

o Benefit?

s
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Why 3 X 3 filters?

The smallest possible filter to captures the “up”, “down”, “left”, “right”

Two 3 X 3 filters have the receptive field of one 5 X 5

Three 3 X 3 filters have the receptive field of one 7 X 7

1 large filter can be replaced by a deeper stack of successive smaller filters
Benefit?

Three more nonlinearities for the same “size” of pattern learning

o O O O O O O

Also fewer parameters and regularization
(3X3XC)xXx3=27-C,7X7XCx1=49-C

o Conclusion: 1 large filter can be replaced by a deeper, potentially more powerful,
stack of successive smaller filters
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Even smaller filters?

o Also 1x1 filters are used
o Followed by a nonlinearity
o Why?

Feature map

—

Feature map height

<
<

Feature map with

No. of input channels C
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Even smaller filters?

o Also 1x1 filters are used

o Followed by a nonlinearity
o Why? -

o Increasing nonlinearities without
affecting receptive field sizes
° Linear transformation of the input channels

Feature map

—

Feature map height
No. of input channels C

<
<

Feature map with
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raining

o Batch size: 256

o SGD with momentum=0.9

o Weight decayA =5-10"*

o Dropout on first two fully connected layers

o Learning rate ny = 1074, then decreased by factor of 10 when validation
accuracy stopped improving
> Three times this learning rate decrease

o Faster training
> Smaller filters 2
> Depth also serves as regularization
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Inception
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type pa:t:lhii:ize/ ou;g:t depth #F#1lx1 ii:cf #3x3 ii;:f #5x5 :zj params ops

convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 xX56x64 0

convolution 3x3/1 56 x56x192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 1414 %512 2 192 96 208 16 48 64 364K T3M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 1414 %528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TXTx1024 2 384 192 384 48 128 128 1388K TIM
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM

softmax 1x1x1000 0

Table 1: GoogLeNet incarnation of the Inception architecture




Basic idea

o Problem?

Picture credit;: Bharath Raj
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https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Basic idea

o Salient parts have great variation in sizes
o Hence, the receptive fields should vary in size accordingly
o Naively stacking convolutional operations is expensive

o Very deep nets are prone to overfitting

Picture credit;: Bharath Raj
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https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Inception module

o Multiple kernel filters of different sizes (1 X 1,3 X 3,5 X 5)

o Nalve version

o Problem?

1x1 convolutions

5x5 convolutions

3x3 max pooling

Previous layer

(a) Inception module, naive version

Picture credit: Bharath Raj
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https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Inception module

o Multiple kernel filters of different sizes (1 X 1,3 X 3,5 X 5)
> Naive version

o Problem?
> Very expensive!

o Add intermediate 1 X 1 convolutions

Filter
Filter concatenation
concatenation

/ \ 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling 1x1 convolutions T T T
\: | 1x1 convolutions 1x1 convolutions 3x3 max pooling
Previous layer T/
Picture credit: Bharath Raj (a) Inception module, naive version (b) Inception module with dimension reductions
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https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Architecture

o 9 Inception Modules
o 22 layers deep (27 with the pooling layers)
o Global average pooling at the end of last Inception Module

o0 6.67% Imagenet error, compared to 18.2% of Alexnet

-4

g

Picture credit: Bharath Raj
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Houston, we have a problem




Problem: Vanishing gradients

o The network was too deep (at the time)

o Roughly speaking, backprop is lots of matrix multiplications
oL oL Jdal da'? da

awl  dal dal-1 aaL-Z' ol

o Many of intermediate terms < 1 = the flnal gets extremely small

o Extremely small gradient 2 ?

Picture credit: Anish Singh Walia

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES MODERN CONVNETS - 20



https://medium.com/@anishsingh20/the-vanishing-gradient-problem-48ae7f501257

Problem: Vanishing gradients (more details later)

o The network was too deep (at the time)

o Roughly speaking, backprop is lots of matrix multiplications
oL oL Jdal da'? da

awl  dal dal-1 aaL-Z' ol

o Many of intermediate terms < 1 =2 the flnal

awl gets extremely small

o Extremely small gradient = Extremely slow learning

Picture credit: Anish Singh Walia

s
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https://medium.com/@anishsingh20/the-vanishing-gradient-problem-48ae7f501257

Architecture

o 9 Inception Modules

o 22 layers deep (27 with the pooling layers)

o Global average pooling at the end of last Inception Module
o Because of the increased depth = Vanishing gradients

o Inception solution to vanishing gradients: intermediate classifiers
° Intermediate classifiers removed after training

(-

>

pee

5 4 Y s

Picture credit: Bharath Raj
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Inceptions v2, v3, v4, ....

o Factorize 5 X 5 in two 3 X 3 filters
o Factorizen X nintwon X 1and 1 X n filters (quite a lot cheaper)
o Make nets wider

o RMSprop, BatchNormes, ...

Filter Concat

Filter Concat
Filter Concat

3x3
i
3x3 3x3 1x1
f f T 3x3 1x3 3x1 1x1
1x1 1x1 Pool 1x1 i N t
T~ S R el R Rl I [

. M’/ . .

ase Base Base Picture credit: Bharath Raj
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ResNets
DenseNets =
HighwayNets

weight layer
F(x) l relu

weight layer

X
identity

F(x) + x

A residual block
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Some facts

o The first truly Deep Network, going deeper than 1,000 layers

o More importantly, the first Deep Architecture that proposed a novel
concept on how to gracefully go deeper than a few dozen layers
> Not simply getting more GPUs, more training time, etc

o Smashed Imagenet, with a 3.57% error (in ensembles)

o Won all object classification, detection, segmentation, etc. challenges
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Hypothesis

o Hypothesis: Is it possible to have a very deep network at least as accurate
as averagely deep networks?

o Thought experiment: Let’s assume two Convnets A, B. They are almost
identical, in that B is the same as A, with extra “identity” layers. Since

identity layers pass the information unchanged, the errors of the two
networks should ...

:[,A
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Hypothesis

o Hypothesis: Is it possible to have a very deep network at least as accurate
as averagely deep networks?

o Thought experiment: Let’s assume two Convnets A, B. They are almost
identical, in that B is the same as A, with extra “identity” layers. Since
identity layers pass the information unchanged, the errors of the two
networks should be similar. Thus, there is a Convnet B, which is at least as
good as Convnet A w.r.t. training error
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Quiz: What looks weird?

¥

20r

\ V\V\\W’
S ~
'”g \«\ﬂ S 56-layer
E 10 \'\ E 1ok 20—13}’&1‘
2 56-layer 2
B wm:;cr

Og i 7 3 r s 5 % i 3 3 q 5 5
iter. (1ed) iter. (1e4)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network

has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.
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esting hypothesis

o Adding identity layers increases training error!!
° Training error, not testing error

o Performance degradation not caused by overfitting
o Just the optimization task is harder

o Assuming optimizers are doing their job fine, it appears that not all
networks are the same as easy to optimize

Lzrain < Lgrain! I

:[,A
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What is the problem?

o Very deep networks stop learning after a bit Shallow Network Deeper Network

° An accuracy is reached, then the network saturates B ﬂ
and starts unlearning

M layer neural M layer neural
E network network

ﬂ y=Flx
Extra
Layer

G

o Signal gets lost through so many layers

o Thought experiment: take a trained shallow
network and just stack a few identity layers
ca =I(x) >a=x

o What should happen? ?
Miy)

y=F(GIM[x))
G and M act as ldentity Functions. Both the

Metworks Give same output

Picture credit: Prakash Jay
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What is the problem?

o Very deep networks stop learning after a bit Shallow Network Deeper Network

° An accuracy is reached, then the network saturates B ﬂ
and starts unlearning

M layer neural M layer neural
E network network

ﬂ y=F(x)
Extra
Layer

G

o Signal gets lost through so many layers

o Thought experiment: take a trained shallow
network and just stack a few identity layers
ca =I(x) >a=x

o The network should in principle just keep its ?
existing knowledge My

yw=F(G{MIx))

o Surprisingly, they start failing o o o
Metworks Give same output

Picture credit: Prakash Jay
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https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-art-image-cf51669e1624

Basic idea

o Let’s say we have the neural network nonlinearity a = F(x)

o Easier to learn a function a = F(x) to model differences a~8y than to
model absolutes a~y
> Think of it like in input normalization = you normalize around O
> Think of it like in regression = you model differences around the mean value

o So, ask the neural network to explicitly model difference mapping
F(x)=H(x)—x=>H(x) =F(x) +x

o F(x) are the stacked nonlinearities

o x is the input to the nonlinear layer

s
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ResNet block

o Hx) =F(x) +x

o If dimensions don’t match
o Either zero padding
o Or a projection layer to match dimensions

Plain Block Residual Block
' @ ’ @
X
woi ght |E|"||' or . Stacked neural c Stacked neural .
network layers network layers
F(x) Lrelu
X
weight layer . .
ght lay identity
_F{]{} +Xx y=Fix) y=Flx)+x
. . . oy oy Hard to get Fix)=x and make y=x Easy to get F{x)=0 and make y=x
Figure 2. Residual learning: a building block. get Fl=x and make y Y to get Fl neeey
an identity mapping an identity mapping

MODERN CONVNETS - 33
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No degradation anymore

o Without residual connections deeper networks are untrainable

8 5
5 5
i 0 - - - - — -
~—plain-18 '8-layer ~—~ResNet-18
—plain-34 —ResNet-34 34-layer
200 10 20 30 40 50

200 10 20 30 40 50
iter. (1e4)

iter. (le4)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

s
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ResNet breaks records

o Ridiculously low error in ImageNet

o Up to 1000 layers ResNets trained
o Previous deepest network ~30-40 layers on simple datasets

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogleNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReL.U-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.
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ResNet architectures & ResNeXt ResNeXt

X X; Xy X; X 4 ’
v 1 b 1L~ahai ‘thhxi 256, 1x1, 64 256, 1x1,4 256, 1x1, 4 total 32 256,1x1,4
_ _ _ - - - paths -
ReLU oN 64,525, 64 o304 || 504 || 4304
i * + + —
BN BN BN  weight | RelU
l i ¢ 64, 1x1, 256 4,1x1, 256 4,1x1, 256 4,1x1, 256

RelU RelU RelU BN

RelU 256-d out

BN 256-d out
o Figure 1. Left: A block of ResNet [14]. Right: A block of
addition BN ResNeXt with cardinality = 32, with roughly the same complex-
RelU addition ity. A layer is shown as (# in channels, filter size, # out channels).
v
g - | setting I top-1 err (%) | top-5 err (%)
. . (b) BN after (c) ReLU before (d) ReLU-only . . 1'% complexity references:
(a) original addition addition pre-activation (¢) full pre-activation ResNet-101 I x 64d 220 6.0
ResNeXt-101 32 = 4d 212 5.6
case Fig ResNet-110 | ResNet-164 2x complexity models follow:
. ResNet-200 [15] | 1 = 64d 217 5.8
original Residual Unit [1] | Fig. 4(a) 6.61 5.93 ResNet 101, wider | 1 x 100d |  21.3 >
— - — ResNeXt-101 2= 64d 207 5.5
BN after addition Fig. 4(b) 8.17 6.50 ResNeXt-101 64> 4d | 204 5.3
ReLU before addition Flg ‘1{{:} 7.84 6.14 Table 4. Comparisons on ImageNet-1K when the number of
. . . . FLOPs is increased to 2x of ResNet-101"s. The error rate is evalu-
ReLU-on 1}. pI‘E—Ei.Etl"i.-'El.t 1011 Flg‘ 4{{:1} 6.71 2.91 ated on the single crop of 224 = 224 pixels. The highlighted factors
full pre-activation Fig. 4(e) 6.37 5.46 are the factors that increase complexity.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES MODERN CONVNETS - 36




Some observations

o BatchNorms absolutely necessary because of vanishing gradients

o Networks with skip connections (like ResNets) converge faster than the
same network without skip connections

o ldentity shortcuts cheaper and almost equal to project shortcuts

o Hopefully, more on Neural Network dynamics later

s
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HighwayNet

o Similar to ResNets, only introducing a gate with learnable parameters on
the importance of each skip connection

y=HQ,Wy) T, W) +x-(1—=T(x,Wp))

o Similar to ...

s
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HighwayNet

o Similar to ResNets, only introducing a gate with learnable parameters on
the importance of each skip connection

y=HQ,Wy) T, W) +x-(1—=T(x,Wp))

o Similar to ... LSTMs as we will say later

s
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DenseNet

o Add skip connections to multiple forward
layers

y =h(x;, X1, s X1—5)
o Why?
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DenseNet

o Add skip connections to multiple forward
layers

y = h(x;, x;_q, e, X1—3)

o Assume layer 1 captures edges, while
layer 5 captures faces (and other stuff)

o Why not have a layer that combines
both faces and edges (e.g. to model a
scarred face)

o Standard ConvNets do not allow for this
° Layer 6 combines only layer 5 patterns, not lower

s
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Neural Architecture Search

o Itis also possible to learn the neural architecture

o Problem?

s
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Neural Architecture Search

o Itis also possible to learn the neural architecture

o Problem?

o Architectures/graphs are discrete structures = Backprop?

o Still, some very interesting workarounds have been proposed in practice

o Will it work for you? If you are Facebook or Google, yes!
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Evolutionary Search for NAS

DARTS: Differentiable S —

Architecture Search, Liu et B @===
d | . 2018 Algorithm 1 Evolutionary search algorithm | \ ™)™

function SEARCH

Efficient Neural Architecture Randomly initialize the population, P
Sea rCh Vi 3 Pa ram ete r Evaluate each individual in P

for i < number of evolutionary rounds do —

Sharing/ Pham et al-, 2018 S = random sample of 25 individuals m M T’:T:mjs
parent = the most fit individual in S
Evolving Space-Time Neural child—=paren

: _ for max([d — £],1) do
Architectures for Videos, ehild = utate(child)

Piergiovanni et al. 2018 S

evaluate child and add to population
remove least fit individual from population

Regularized Evolution for end for
Image Classifier Architecture __end function
Search, Real et al., 2019

Figure 5. Example mutations applied to a module, including (a)
layer type change, (b) filter length change, and (c) layer addition.
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State-of-the-Art

NASNet-A-Large
SE-ResNeXt-101(32x4d) ,
* Inception-ResNet-v2
80 9 o 2 ‘spﬁo on-v4 SENet-154
SE-ResNeXt-50(32x4d) Xception IPathNet-9: IPathNet-131
SE-ResNet-&, esNet-152 eXt-101(64x4d)
SE-ResNet ’ incgion3 Xt-101(32x esNet-152
DenseNet-201) Wensenet. 161 hes et 101 B e 15
®  Oresnetso @RCaffe-ResNet-101 VGG-19_BN
75 DualPathNet-68 DenseNet-169 VGG-16_BN
DenseNet-121
Y @ NASNet-A-Mobile
£, ® ResNet-34 VGG-13_BN
3‘ BN-Inception . =
g @ MobileNet-v2 VEG-11_BN
Q
& VGG-19
- (0 .ResNet-18 VGG-16
1
Q MobileNet-v1
(o]
[t
P ShuffleNet
.GoogLeNet
/ /
/) 72/
88/ /]
M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0
‘ AlexNet
55 T T T T
0 5 10 15 20 25

Operations [G-FLOPs]
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R-CNNs

Fully Convolutional
Siamese Nets for
Tracking

UVA DEEP LEARNING COURSE
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1. Input
image

R-CNN: Regions with CNN features

A [ . | \ Dad
2. Extract region
proposals (~2k)

____________________

--------------------

3. Compute
CNN features

P aeroplane? no.
' -

= person? yes.

tvmonitor? no.

4. Classify
regions



Sliding window on feature maps

o SPPnet [He2014]
o Fast R-CNN [Girshick2015]

Outputs: beX
softmax rlegresscl)
] ro L
||| | pooling
Conv | Rol feature
feature map vector . ... e
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Fast R-CNN: Steps

o Process the whole image up to conv5

Conv 5 feature map
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Fast R-CNN: Steps

o Process the whole image up to conv5

o Compute possible locations for objects

Conv 5 feature map

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

MODERN CONVNETS - 49



Fast R-CNN: Steps

o Process the whole image up to conv5

o Compute possible locations for objects (some correct, most wrong)

Conv 5 feature map
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Fast R-CNN: Steps

o Process the whole image up to conv5

o Compute possible locations for objects

o Given single location =2 ROl pooling module extracts fixed length feature

=

Always 3x3 no
wmatter the size of
Conv 5 feature map candidate Location
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Fast R-CNN: Steps

o Process the whole image up to conv5

o Compute possible locations for objects

o Given single location =2 ROl pooling module extracts fixed length feature

o Connect to two final layers, 1 for c

assification, 1 for box refinement

ROI Pooling Module Car, dog or bicycle?
—)
New box coordinates
Always 3x# wo
matter the size of

Conv 5 feature map candidate Location
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Region-of-Interest (ROI) Pooling Module

o Divide feature map in TxT cells
> The cell size will change depending on the size of the candidate location

-
ALwags 3X3 no
gy e - matter the size of
1 [ - candidate Location
e o == ~
~ - >
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Smart fine-tuning

o Normally samples in a mini-batch completely random

o Instead, organize mini-batches by ROls

o 1 mini-batch = N (images) X % (candidate locations)

o Feature maps shared = training speed-up by a factor of%

o Mini-batch samples might be correlated
° In Fast R-CNN that was not observed

s
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Some results

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES MODERN CONVNETS - 55



Fast-RCNN

o Reuse convolutions for different candidate boxes
o> Compute feature maps only once

o Region-of-Interest pooling
> Define stride relatively = box width divided by predefined number of “poolings” T
° Fixed length vector

o End-to-end training!

o (Very) Accurate object detection

o (Very) Faster
o Less than a second per image

o External box proposals needed
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Faster R-CNN [Girshick2016]

o Fast R-CNN = external candidate locations

classifier
o Faster R-CNN = deep network proposes candidate Iocationw.RI 1-
ol pooling
o Slide the feature map =2 k anchor boxes per slide
propoy
‘ 2k scores | | 4k coordinates | < k anchor boxes 4/

cls layer \ ’ reg layer . Region Proposal Network

feature maps

| 256-d }

intermediate layer

t
=

sliding window:

conv feature map

Figure 2: Faster R-CNN is a single, unified network

Reaion Provosal Networ for object detection. The RPN module serves as the
9 OP ork ‘attention’ of this unified network.
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Going Fully Convolutional [LongCVPR2014]

o Image larger than network input = slide the network

Is this pixet a camel?
B Yes! H No!

s
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o Image larger than network input = slide the network

Is this pixet a camel?
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Going Fully Convolutional [LongCVPR2014]

o Image larger than network input = slide the network

Is this pixet a camel?
B Yes! H No!
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Going Fully Convolutional [LongCVPR2014]

o Image larger than network input = slide the network

Is this pixet a camel?
B Yes! H No!
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Going Fully Convolutional [LongCVPR2014]

o Image larger than network input = slide the network

Is this pixet a camel?
B Yes! H No!

jocm e [

s
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Deconvolutional modules

Output —

Image —

Convolution Upconvolution Upconvolution
No padding, no strides Padding, no strides Padding, strides

More visualizations: https://github.com/vdumoulin/conv_arithmetic
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Coarse = Fine QULPUL  swmaittoss gamerntea L4995 generated Grobatilicy ok

\ higher thawn ground truth)

0 Ground truth pixel labels

. ¥ Pixel label probabilities
08 01 09

Uupconvolution upconvolution
2X 2X

na | - 14x14 man) eee mmm) 224x224
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Siamese Networks for Tracking

o While tracking, the only definitely correct training example is the first

frame
o All others are inferred by the algorithm

o If the “inferred positives” are correct, then the model is already good
enough and no update is needed

o If the “inferred positives” are incorrect, updating the model using
wrong positive examples will eventually destroy the model

o Siamese Instance Search for Tracking, R. Tao, E. Gavves, A. Smeulders,
CVPR 2016

s
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Basic idea

o No model updates through time to avoid model contamination

o Instead, learn invariance model f(dx)
° invariances shared between objects
° reliable, external, rich, category-independent, data

o Assumption
° The appearance variances are shared amongst object and categories
o Learning can accurate enough to identify common appearance variances

o Solution: Use a Siamese Network to compare patches between images

> Then “tracking” equals finding the most similar patch at each frame (no temporal
modelling)
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raining

loss G —

t fCxx)

Marginal Contrastive Loss:

fx) *

1 1
L(xj, Xp, Yjx) = EJ’jkDZ 5 (1 =y )max(0,0 — D?)
CNN CNN D = ”f(xj) - f(xk)llz

f(.) f(.)

Matching function (after learning):

m(xj, %) = f(x) - f )
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raining

loss G ——
Marginal Contrastive Loss:
f(x) t t f(x) 1 1
L(xj,xk,yjk) = Eyjsz + > (1 — yjk)max(O, o — D?)
D= ||f(x;) = fCxu)l,
f(.) f(.)
Matching function (after learning):
P el m(x,xic) = £ (%) - f (i)
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raining

loss G ——
Marginal Contrastive Loss:
f(x) t t f () 1 1
L(xj, X, Vix) = Eyjsz +3 (1 — yjx)max(0,0 — D?)
D = lIFGs) - Fexol
f(.) f(.)
Matching function (after learning):
[ S m(x,xic) = £ (%) - f (i)
Xj xk
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esting

loss

fx) *

t fCxx)

CNN

f(.)

CNN

f(.)

Predicting the next location

1.
2.

3.

Define query xg att =0
Set current target location x;

Measure similarity s, ; = s(xq, %, 1) of xo with

multiple boxes x';,; sampled around x;

. Select next target location with maximum

similarity sk, 4

. Goto 2
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esting

loss

fx) *

t fCxx)

CNN

f(.)

CNN

f(.)

Predicting the next location
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2.

3.
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Define query xg att =0
Set current target location x;
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Network Architecture

o Very few max pooling layers -
improve localization accuracy

o Region-of-interest (ROI) pooling—>
process all boxes in a frame in one
single pass through the network

o Use outputs of multiple layers
(conv4 3, conv5 3, fc6) =2 robust
In various situations

contrastive loss

|12 normalization

|12 normalization & concat

fcé
roi pool
[7x7] roi pool )
[7x7] roi pool
[7x7]

conv5 [3x3,512,1]
(3 sublayers)

conv4 [3x3,512,1] (3 sublayers)

conv3 [3x3,256,1] (3 sublayers)

maxpool2 [2x2,128,2]

conv2 [3x3,128,1] (2 sublayers)

maxpooll [2x2,64,2]

convl [3x3,64,1] (2 sublayers)

t*

rame

*

binary labels

12 normalization

12 normalization & concat

fcé
roi pool
[7x7] roi pool .
[7x7] roi pool
[7x7]

conv5 [3x3,512,1]
(3 sublayers)

conv4 [3x3,512,1] (3 sublayers)

conv3 [3x3,256,1] (3 sublayers)

maxpool2 [2x2,128,2]

conv2 [3x3,128,1] (2 sublayers)

maxpooll [2x2,64,2]

convl [3x3,64,1] (2 sublayers)

*

Irame

The two branches share the parameters.
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hings to remember

o Operate on pairs
o Two patches as input
o Compute similarity

o Function learnt once
o external, rich video dataset

> object box annotations

o Once learned externally applied as is
° to videos of previously unseen targets
° to videos of previously unseen categories
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Spatial
Transformer
Network
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Problem

o ConvNets sometimes are robust enough to input changes

> While pooling gives some invariance, only in deeper layers the pooling receptive field
is large enough for this invariance to be noteworthy

> One way to improve robustness: Data augmentation

o Smarter way: Spatial Transformer Networks

differentiable image sampling

Initial Identity Transformed Interpolated
image (U) meshgrid (G) meshgrid image (V)
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Basic idea

o Define a geometric transformation matrix
0 — [911 012 013

021 02 033
o Four interesting transformations
L 1 0 o0
Identlty,l.e.G—lo 10

) . _10.7 -=0.7 0] o T
Rotation, e.g., ©® = 10.7 07 0 for 459 as cos(4) ~ (.7
. 0.5 0 O] .

oomingin, e.g. 0 = 0 05 0 for 2X zooming in

o Zoomingin, e.g. 0 =

2 0 0 .
0 2 O]forZXzoommgout
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Basic idea

o Then, define a mesh grid (x/,y}) on the
original image and apply the geometric S S —

transformations o -
x5 X -W—0—+7:(G)
l
1. 4

o Produce the new image using the | T ol
transformation above and an interpolation
method

o Learn the parameters ® and the meshgrid
from the data

o A localization network learns to predict ®
given a new image
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Inflated Inception-V1 Inception Module (Inc.)

Rec. Field: Rec. Field:
74111 11,2727
Video Inc. J "\
Rec. Field:
23,75,75
Inc. |'— Inc. H Inc. Inc. '—(Inc.
| — — | \
Rec. Field: Rec. Field:
59,219,219 99,539,539

Predictions

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, Rel.u’s and the softmax at the end are not shown. The theoretical
sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y”” — the units are frames and pixels. The
predictions are obtained convolutionally in time and averaged.
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Basic idea

o Replace 2D convolutions
with 3D convolutions

o Train on same domain data

> \ideos

Figure 6. Feature embedding. Feature embedding visualizations
of Imagenet and C3D on UCF101 dataset using t-SNE [43]. C3D
features are semantically separable compared to Imagenet suggest-
ing that it is a better feature for videos. Each clip is visualized as a
point and clips belonging to the same action have the same color.
Best viewed in color.

output

Imagenet

(a) 2D convolution
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(b) 2D convolution on multiple frames

output

(c) 3D convolution




Method Accuracy (%)

Some results fmagenet + Tinear SVM 53
1DT w/ BoW + linear SVM 76.2 -

Deep networks [ 2] 65.4

o Generally, it works pretty nicely pa e netyork [30] 2

TM composite model [39 .

o Not for all temporal tasks though, as Iéin (lcr(:et)pislitlfearogffl\E[ | ;Sﬁ

we will see later on in the course C3D (3 nets) + linear SVM 85.2

iDT w/ Fisher vector [ 1] 87.9

Temporal stream network [36] 83.7

Two-stream networks [36] 88.0

LRCN [6] 32.9

LSTM composite model [39] 84.3

Conv. pooling on long clips [29] 88.2

LSTM on long clips [29] 88.6

Multi-skip feature stacking [25] 89.1

C3D (3 nets) + iDT + linear SVM 90.4

Table 3. Action recognition results on UCF101. C3D compared
with baselines and current state-of-the-art methods. Top: sim-
ple features with linear SVM; Middle: methods taking only RGB
frames as inputs; Bottom: methods using multiple feature combi-
nations.
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I 3 D Inflated Inception-V1 Inception Module (Inc.)

ey Sepibe
Video Aok Inc. ‘ .
o 13D = C3D + Inception Rec. Field
° Plus some neat tricks e e e e L
. . 60,518,210 56 530,250
o Take 2D filters and inflate -

?}ﬂﬂ Predictions

them so that they become
3D filters

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, ReLLu’s and the softmax at the end are not shown. The theoretical

O T h e n u S e t h e m a S sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y”” — the units are frames and pixels. The
/ predictions are obtained convolutionally in time and averaged.

initialization Vet VDB

Kinetics
Architecture RGB | Flow | RGB +Flow [[ RGB [ Flow | RGB + Flow || RGB [ Flow | RGB + Flow
(a) LSTM 81O [ - - 36.0 - 633 | - -
(b) 3D-ConvNet 516 | - - 243 [ - - 561 | - -
(c) Two-Stream 83.6 | 85.6 91.2 432 | 563 583 62.2 | 524 65.6
(d) 3D-Fused 832 | 85.8 89.3 49.2 | 555 56.8 - - 67.2
| () Two-Stream 13D | 84.5 | 90.6 | 934 [ 498 [ 619 | 664 | 71.1 | 634 | 742 |

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;
(right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31]
model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual

RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames
then averages the predictions.
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o Popular Convolutional Neural Networks
architectures

o Go deeper on what makes them tick & what
makes them different

Summary

Reading material

o All the papers from the models presented
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