

Lecture 6: Recurrent & Graph Neural Networks Efstratios Gavves

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

- o Sequential data
- Recurrent Neural Networks
- Backpropagation through time
- Exploding and vanishing gradients
- o LSTMs and variants
- o Encoder-Decoder Architectures
- o Graph Neural Networks

Sequence data

Sequence applications

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 3

o Videos

 \circ Other?

o Videos

\circ Other?

• Time series data

- Stock exchange
- Biological measurements
- Climate measurements
- Market analysis
- o Speech/Music
- User behavior in websites

0

- Machine translation
- o Image captioning
- Ouestion answering
- Video generation
- Speech synthesis
- Speech recognition

 \circ Sequence \rightarrow Chain rule of probabilities

$$p(x) = \prod_{i} p(x_i | x_1, \dots, x_{i-1})$$

o For instance, let's model that "This is the best course!"

<mark>0</mark>???

Sequences might be of arbitrary or even infinite lengths
 Infinite parameters?

Sequences might be of arbitrary or even infinite lengths
 Infinite parameters?

• No, better share and reuse parameters

 \circ RecurrentModel(I think, therefore, I am. | θ)

can be reused also for

RecurrentModel(Everything is repeated in circles. History is a Master because it teaches that it doesn't exist. It is the permutations that matter $\mid \theta \,)$

For a ConvNet that is not straightforward
Why?

Sequences might be of arbitrary or even infinite lengths
 Infinite parameters?

• No, better share and reuse parameters

 \circ RecurrentModel(I think, therefore, I am. | θ)

can be reused also for

RecurrentModel(Everything is repeated in circles. History is a Master because it teaches that it doesn't exist. It is the permutations that matter $| \ \theta \)$

• For a ConvNet that is not straightforward

• Why? Fixed dimensionalities

Some properties of sequences?

• Data inside a sequence are non identically, independently distributed (IID)

- The next "word" depends on the previous "words"
- Ideally on all of them

• We need context, and we need memory!

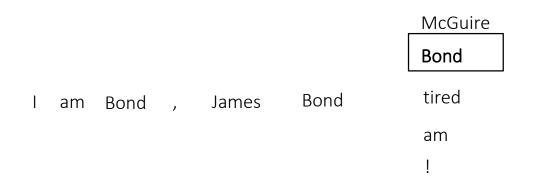
• **Big question:** How to model context and memory ?

• Data inside a sequence are non identically, independently distributed (IID)

- The next "word" depends on the previous "words"
- Ideally on all of them

• We need context, and we need memory!

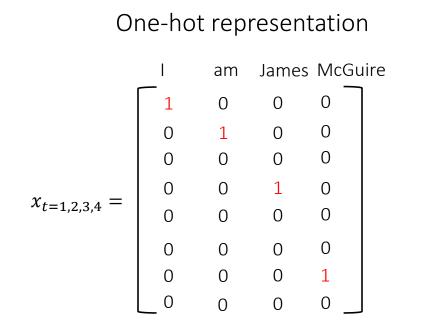
• **Big question:** How to model context and memory ?



○ A vector with all zeros except for the active dimension
○ 12 words in a sequence → 12 One-hot vectors
○ After the one-hot vectors apply an embedding
○ Word2Vec, GloVE

Vocabulary	One-hot vectors							
I	I	1		0		0		0
am	am	0	am	1	am	0	am	0
Bond	Bond	0	Bond	0	Bond	1	Bond	0
James	James	0	James	0	James	0	James	1
tired	tired	0	tired	0	tired	0	tired	0
,	,	0	1	0	1	0	1	0
McGuire	McGuire	0	McGuire	0	McGuire	0	McGuire	0
!	!	0	!	0	!	0	!	0

Why not indices instead of one-hot vectors?



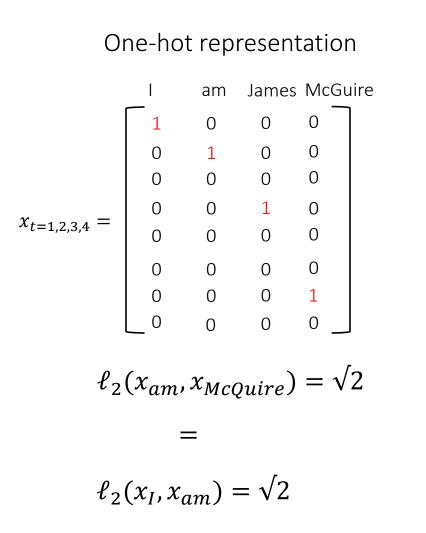
Index representation

OR?

I am James McGuire

$$x_{"I"} = 1$$
$$x_{"am"} = 2$$
$$x_{"James"} = 4$$
$$x_{"McGuire"} = 7$$

Why not indices instead of one-hot vectors?



Index representation

OR?

I am James McGuire

$$x_{"I"} = 1$$
$$x_{"am"} = 2$$
$$x_{"James"} = 4$$
$$x_{"McGuire"} = 7$$

$$\ell_{2}(x_{am}, x_{McQuire}) = (7 - 2)^{2} = 5$$

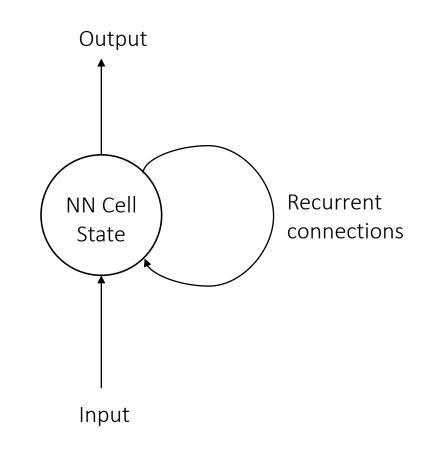
$$\neq$$

$$\ell_{2}(x_{I}, x_{am}) = (2 - 1)^{2} = 1$$

Recurrent Neural Networks

Backprop through time

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 18

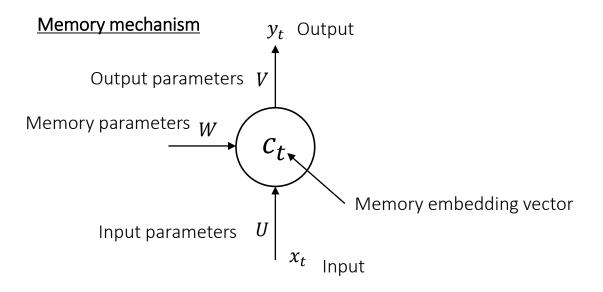


- o Memory is a mechanism that learns a representation of the past
- At timestep t project all previous information 1, ..., t onto a latent space c_t • Memory controlled by a neural network h_{θ} with shared parameters θ
- o Then, at timestep t+1 re-use the parameters θ and the previous c_t $c_{t+1} = h_\theta(x_{t+1},c_t)$

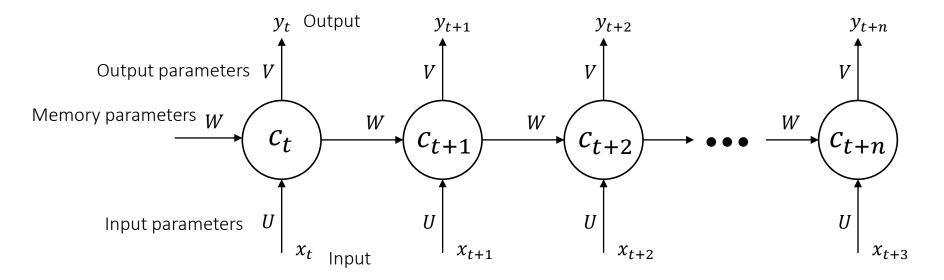
$$c_{t+1} = h_{\theta}(x_{t+1}, h_{\theta}(x_t, h_{\theta}(x_{t-1}, \dots h_{\theta}(x_1, c_0))))$$

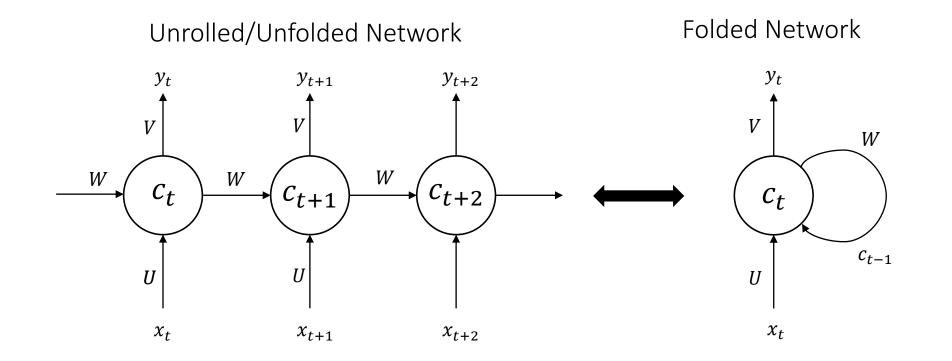
. . .

In the simplest case, what are the Inputs/Outputs of our system
Sequence inputs → we model them with parameters U
Sequence outputs → we model them with parameters V
Memory I/O → we model it with parameters W



In the simplest case, what are the Inputs/Outputs of our system
Sequence inputs → we model them with parameters U
Sequence outputs → we model them with parameters V
Memory I/O → we model it with parameters W



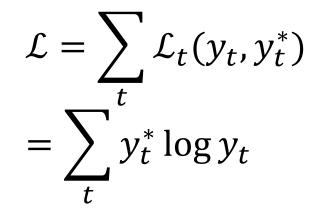


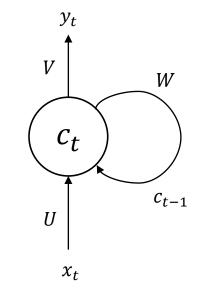
• Basically, two equations

$$c_t = \tanh(U x_t + W c_{t-1})$$

$$y_t = \operatorname{softmax}(V c_t)$$

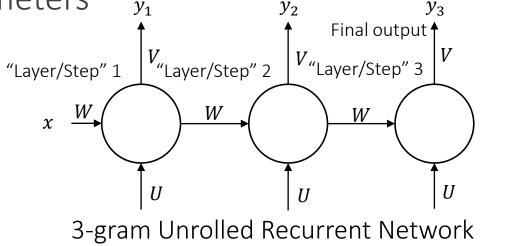
• And a loss function

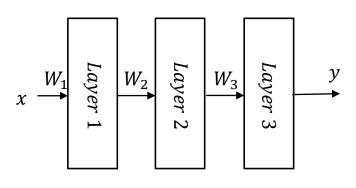




assuming the cross-entropy loss function

- o Is there a big difference?
- $_{\circ}$ Instead of layers \rightarrow Steps
- $_{\odot}$ Outputs at every step \rightarrow MLP outputs in every layer possible
- Main difference: Instead of layer-specific parameters \rightarrow Layer-shared parameters y_1 y_2 y_3





3-layer Neural Network

• How is the training done? Does Backprop remain the same?

• How is the training done? Does Backprop remain the same?

- Basically, chain rule
- So, again the same concept

• Yet, a bit more tricky this time, as the gradients survive over time

Backpropagation through time

$$c_{t} = \tanh(U x_{t} + W c_{t-1})$$

$$y_{t} = \operatorname{softmax}(V c_{t})$$

$$\mathcal{L} = \sum_{t} y_{t}^{*} \log y_{t}$$

• Let's say we focus on the third timestep loss

$$\frac{\partial \mathcal{L}}{\partial V} = \cdots$$
$$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \cdots$$
$$\frac{\partial \mathcal{W}}{\partial \mathcal{L}} = \cdots$$

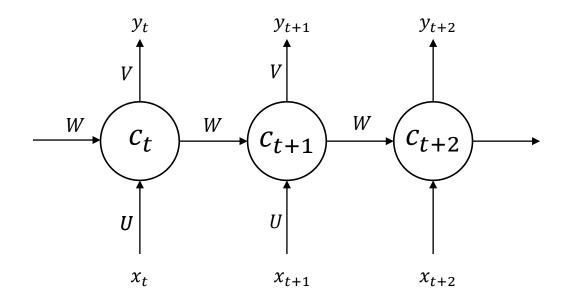
Backpropagation through time: $\partial \mathcal{L}_t / \partial V$

o Expanding the chain rule

$$\frac{\partial \mathcal{L}_{t}}{\partial V} = \frac{\partial \mathcal{L}_{t}}{\partial y_{t_{k}}} \frac{\partial y_{t_{k}}}{\partial c_{t_{l}}} \frac{\partial c_{t_{l}}}{\partial V_{ij}} = \cdots$$
$$= (y_{t} - y_{t}^{*}) \otimes c_{t}$$

- All terms depend only on the current timestep *t*
- Then, we should sum up all the gradients for all time steps

$$\frac{\partial \mathcal{L}}{\partial V} = \sum_{t} \frac{\partial \mathcal{L}_{t}}{\partial V}$$



Backpropagation through time: $\partial \mathcal{L}_t / \partial W$

- Expanding with the chain rule
 - $\frac{\partial \mathcal{L}_t}{\partial W} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial W}$
- However, c_t itself depends on $c_{t-1} \rightarrow \frac{\partial c_t}{\partial W}$ depends also on $c_{t-1} \rightarrow$ The current dependency of c_t to W is recurrent
 - And continuing till we reach $c_{-1} = [0]$
- o So, in the end we have

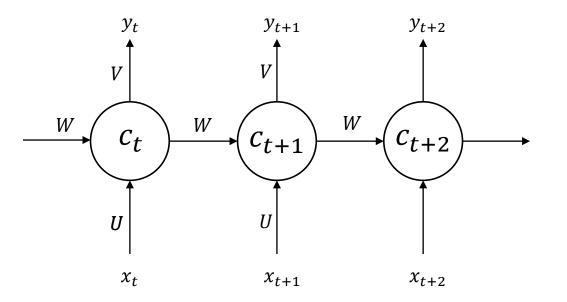
$$\frac{\partial \mathcal{L}_t}{\partial W} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_k} \frac{\partial c_k}{\partial W}$$

• The gradient $\frac{\partial c_t}{\partial c_k}$ itself is subject to the chain rule

$$\frac{\partial c_t}{\partial c_k} = \frac{\partial c_t}{\partial c_{t-1}} \frac{\partial c_{t-1}}{\partial c_{t-2}} \dots \frac{\partial c_{k+1}}{\partial c_k} = \prod_{j=k+1}^t \frac{\partial c_j}{\partial c_{j-1}}$$

• Then, we should sum up all the gradients for all time steps

 $c_t = \tanh(U x_t + W c_{t-1})$ $y_t = \operatorname{softmax}(V c_t)$

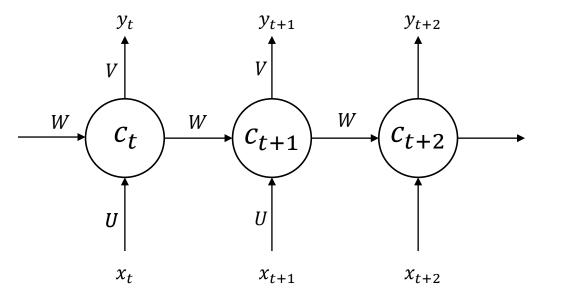


Backpropagation through time: $\partial \mathcal{L}_t / \partial U$

 \circ For parameter matrix U a similar process

$$\frac{\partial \mathcal{L}_t}{\partial W} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_k} \frac{\partial c_k}{\partial W}$$

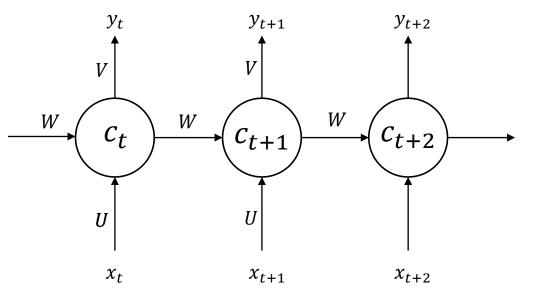
 $c_t = \tanh(U x_t + W c_{t-1})$ $y_t = \operatorname{softmax}(V c_t)$



Trading off Weight Update Frequency & Gradient Accuracy

- At time t we use current weights w_t to compute states c_t and outputs y_t
- $_{\rm O}$ Then, we use the states and outputs to backprop and get w_{t+1}
- $_{\rm o}$ Then, at t+1 we use w_{t+1} and the current state c_t to y_{t+1} and c_{t+1}
- Then we update the weights again with y_{t+1} .
- The problem is y_{t+1} was computed with c_t in mind, which in turns depends on the old weights w_t , not the current ones w_{t+1} . So, the new gradients are only an estimate
- Getting worse and worse, the more we backprop through time

 $c_t = \tanh(U x_t + W c_{t-1})$ $y_t = \operatorname{softmax}(V c_t)$



- Do fewer updates
- That might slow down training

 We can also make sure we do not backprop through more steps than our frequency of updates

- But then we do not compute the full gradients
- $^{\circ}$ Bias again \rightarrow not really gaining much

Vanishing gradients Exploding gradients Truncated backprop

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 33

Decay of information through time



• Easier for mathematical analysis, and doesn't change the mechanics of the recurrent neural network

$$c_{t} = W \cdot \tanh(c_{t-1}) + U \cdot x_{t} + b$$
$$\mathcal{L} = \sum_{t} \mathcal{L}_{t}(c_{t})$$
$$\theta = \{W, U, b\}$$

• As we just saw, the gradient $\frac{\partial c_t}{\partial c_k}$ itself is subject to the chain rule

$$\frac{\partial c_t}{\partial c_k} = \frac{\partial c_t}{\partial c_{t-1}} \frac{\partial c_{t-1}}{\partial c_{t-2}} \dots \frac{\partial c_{k+1}}{\partial c_k} = \prod_{\substack{j=k+1}}^t \frac{\partial c_j}{\partial c_{j-1}}$$

• Product of ever expanding Jacobians

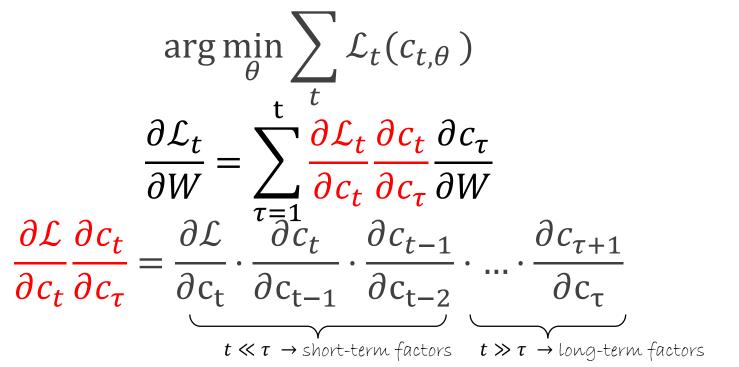
• Ever expanding because we multiply more and more for longer dependencies

Let's look again the gradients

• Minimize the total loss over all time steps

$$\arg\min_{\theta} \sum_{t} \mathcal{L}_{t}(c_{t,\theta})$$
$$\frac{\partial \mathcal{L}_{t}}{\partial W}^{t} = \cdots$$

• Minimize the total loss over all time steps



• Minimize the total loss over all time steps

$$\arg\min_{\theta} \sum_{t} \mathcal{L}_{t}(c_{t,\theta})$$
$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\substack{\tau=1\\\tau=1\\ \partial c_{t}}}^{t} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$
$$\frac{\partial \mathcal{L}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} = \frac{\partial \mathcal{L}}{\partial c_{t}} \cdot \frac{\partial c_{t}}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_{\tau}}$$
$$\left\| \frac{\partial c_{t+1}}{\partial c_{t}} \right\| \leq \|W^{T}\| \cdot \|diag(\sigma'(c_{t}))\|$$

$$\left\| \frac{\partial c_{t+1}}{\partial c_{t}} \right\| \leq \| W^{T} \| \cdot \| diag(\sigma'(c_{t})) \|$$

 \circ If we assume that the norm of the weight W is bounded

• Spectral radius (max eigenvalue) is smaller than an arbitrary small number $\lambda_1 < \frac{1}{\nu}$

 $_{\rm O}$ And if we assume that the non linearity is bounded $\|diag(\sigma'(c_t))\| < \gamma$

$$\left\| \frac{\partial c_{t+1}}{\partial c_t} \right\| < \frac{1}{\gamma} \gamma < 1$$

• Minimize the total loss over all time steps

$$\arg\min_{\theta} \sum_{t} \mathcal{L}_{t}(c_{t,\theta})$$

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}} \frac{\partial c_{\tau}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} = \frac{\partial \mathcal{L}}{\frac{\partial c_{t}}{\partial c_{t}}} \cdot \frac{\partial c_{t}}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_{\tau}} \leq \eta^{t-\tau} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}}$$
NN gradients expanding product of $\frac{\partial c_{t}}{\partial c_{t-1}}$

o With $\eta < 1$ long-term factors ightarrow 0 exponentially fast

Pascanu, Mikolov, Bengio, On the difficulty of training recurrent neural networks, JMLR 2013

 $\circ R$

• Let's assume we have 10 time steps and $\frac{\partial c_t}{\partial c_{t-1}} > 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 1.5$ • What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial W}$? • Let's assume we have 100 time steps and $\frac{\partial c_t}{\partial c_{t-1}} > 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 1.5$ • What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial W}$? $\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 1.5^{10} = 4.06 \cdot 10^{17}$

• Let's assume now that
$$\frac{\partial c_t}{\partial c_{t-1}} < 1$$
, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$
• What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial W}$?

• Let's assume now that
$$\frac{\partial c_t}{\partial c_{t-1}} < 1$$
, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$
• What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$?
 $\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 0.5^{10} = 9.7 \cdot 10^{-5}$

• Do you think our optimizers like these kind of gradients?

• Let's assume now that
$$\frac{\partial c_t}{\partial c_{t-1}} < 1$$
, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$
• What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$?
 $\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 0.5^{10} = 9.7 \cdot 10^{-5}$

○ Do you think our optimizers like these kind of gradients?
○ Too large → unstable training, oscillations, divergence
○ Too small → very slow training, has it converged?

o In recurrent networks, and in very deep networks in general (an RNN is not very different from an MLP), gradients are much affected by depth

$$\frac{\partial \mathcal{L}}{\partial c_{t}} = \frac{\partial \mathcal{L}}{\partial c_{T}} \cdot \frac{\partial c_{T}}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdot \dots \cdot \frac{\partial c_{t+1}}{\partial c_{c_{t}}} \text{ and } \frac{\partial c_{t+1}}{\partial c_{t}} < 1 \Rightarrow \frac{\partial \mathcal{L}}{\partial W} \ll 1 \Rightarrow \text{Vanishing gradient}$$
$$\frac{\partial \mathcal{L}}{\partial c_{t}} = \frac{\partial \mathcal{L}}{\partial c_{T}} \cdot \frac{\partial c_{T}}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdot \dots \cdot \frac{\partial c_{t+1}}{\partial c_{c_{t}}} \text{ and } \frac{\partial c_{t+1}}{\partial c_{t}} > 1 \Rightarrow \frac{\partial \mathcal{L}}{\partial W} \gg 1 \Rightarrow \text{Exploding gradient}$$

• Vanishing gradients are particularly a problem for long sequences
 • Why?

• Vanishing gradients are particularly a problem for long sequences
 • Why?

• Exponential decay

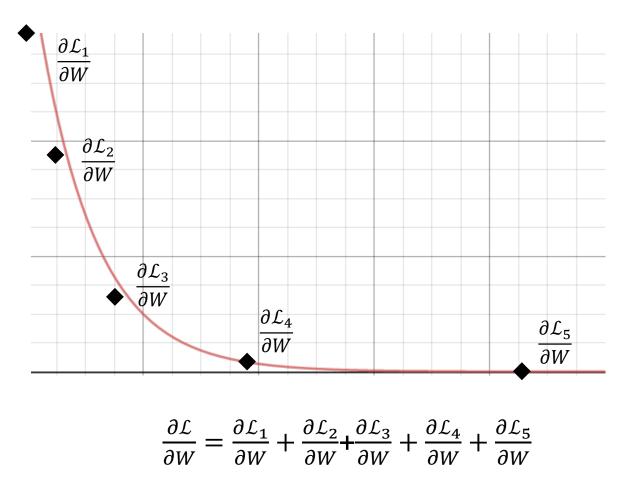
$$\frac{\partial \mathcal{L}}{\partial c_t} = \prod_{k \ge \tau} \frac{\partial c_k}{\partial c_{k-1}} = \prod_{k \ge \tau} W \cdot \partial \tanh(c_{k-1})$$

 The further back we look (long-term dependencies), the smaller the weights automatically become

• exponentially smaller weights

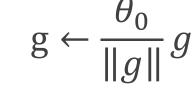
Why are vanishing gradients bad?

- The weight changes of earlier time steps become exponentially smaller
- Bad, even if we train the model exponentially longer
- The weights will quickly learn to "model" short-term transitions and ignore long-term transitions
- At best, even after longer training, they will try "fine-tune" the whatever bad "modelling" of long-term transitions
- But, as the short-term transitions are inherently more prevalent, they will dominate the learning and gradients

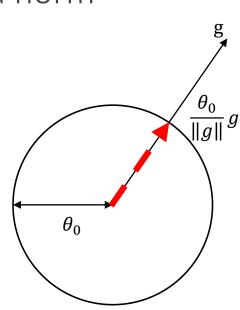


Quick fix for exploding gradients: Rescaling!

- First, get the gradient $g \leftarrow \frac{\partial \mathcal{L}}{\partial W}$
- $_{
 m O}$ Check if the norm is larger than a threshold $heta_{
 m 0}$
- o If it is, rescale it to have same direction and threshold norm



• Simple, but works!



oNo!

• The nature of the problem is different

- $_{\odot}$ Exploding gradients ightarrow you might have bouncing and unstable optimization
- Vanishing gradients → you simply do not have a gradient to begin with
 Rescaling of what exactly?
- In any case, even with re-scaling we would still focus on the short-term gradients
 - Long-term dependencies would still be ignored

• Backpropagating all the way till infinity is unrealistic

- We would backprop forever (or simply it would be computationally very expensive)
- And in case, the gradients would be inaccurate because of intermediate updates

• What about truncating backprop to the last K steps

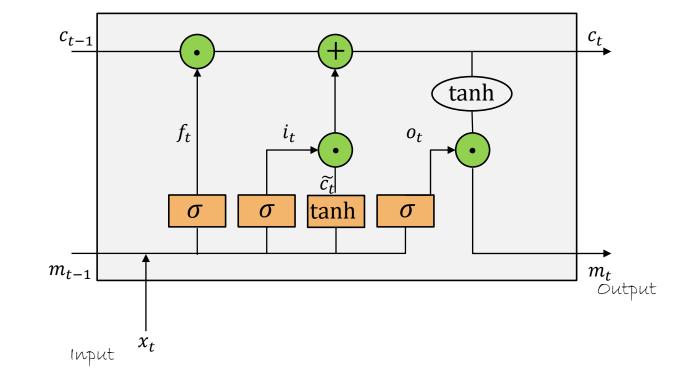
$$\tilde{g}_{t+1} \propto \frac{\partial \mathcal{L}}{\partial w} \Big|_{t=0}^{t=k}$$

• Unfortunately, this leads to biased gradients

$$g_{t+1} = \frac{\partial \mathcal{L}}{\partial w} \Big|_{t=0}^{t=\infty} \neq \tilde{g}_{t+1}$$

Other algorithms exist but they are not as successful
 We will visit them later

LSTM and variants



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 53 • Error signal over time must have not too large, not too small norm

o Let's have a look at the loss function

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{r}}{\partial y_{t}} \frac{\partial y_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$
$$\frac{\partial c_{t}}{\partial c_{\tau}} = \prod_{t \ge k \ge \tau} \frac{\partial c_{k}}{\partial c_{k-1}}$$

o How to make the product roughly the same no matter the length?

• Error signal over time must have not too large, not too small norm

o Let's have a look at the loss function

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{r}}{\partial y_{t}} \frac{\partial y_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$
$$\frac{\partial c_{t}}{\partial c_{\tau}} = \prod_{t \ge k \ge \tau} \frac{\partial c_{k}}{\partial c_{k-1}}$$

• How to make the product roughly the same no matter the length?

O Use the identity function with gradient of 1

• Over time the state change is $c_{t+1} = c_t + \Delta c_{t+1}$

• This constant over-writing over long time steps leads to chaotic behavior

o Input weight conflict

• Are all inputs important enough to write them down?

Output conflict

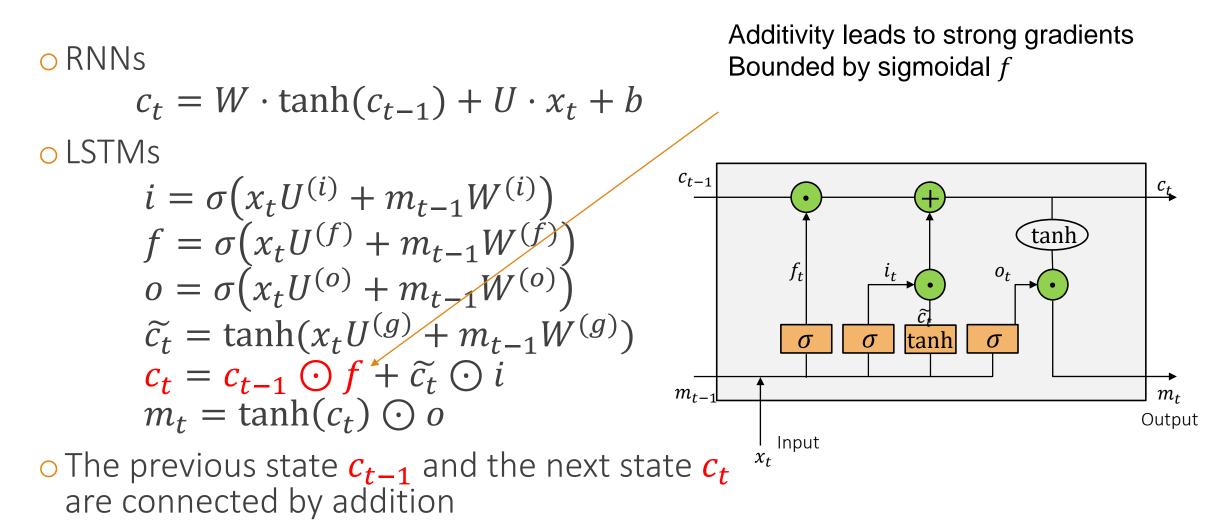
• Are all outputs important enough to be read?

• Forget conflict

• Is all information important enough to be remembered over time?

LSTMs

ORNNs $c_t = W \cdot \tanh(c_{t-1}) + U \cdot x_t + b$ **o** LSTMs C_{t-1} C_t $i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$ $f = \sigma (x_t U^{(f)} + m_{t-1} W^{(f)})$ $o = \sigma (x_t U^{(o)} + m_{t-1} W^{(o)})$ tanh f_t 0_t $\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$ ltanh σ σ σ $c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$ m_{t-} m_{t} $m_t = \tanh(c_t) \odot o$ Output Input x_t



Nice tutorial: <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Cell state

$$i = \sigma \left(x_t U^{(i)} + m_{t-1} W^{(i)} \right)$$

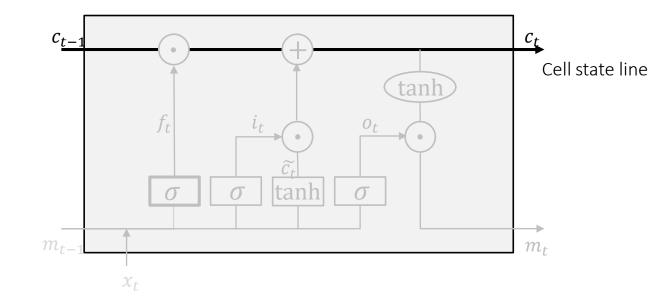
$$f = \sigma \left(x_t U^{(f)} + m_{t-1} W^{(f)} \right)$$

$$o = \sigma \left(x_t U^{(o)} + m_{t-1} W^{(o)} \right)$$

$$\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$$

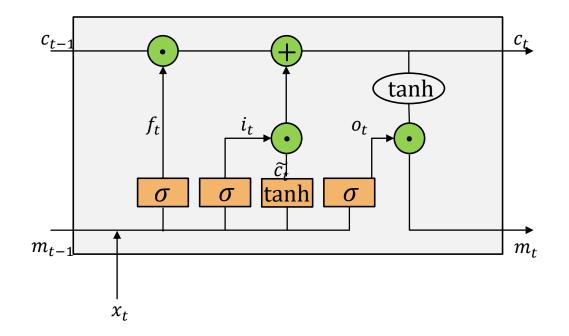
$$c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$$

$$m_t = \tanh(c_t) \odot o$$



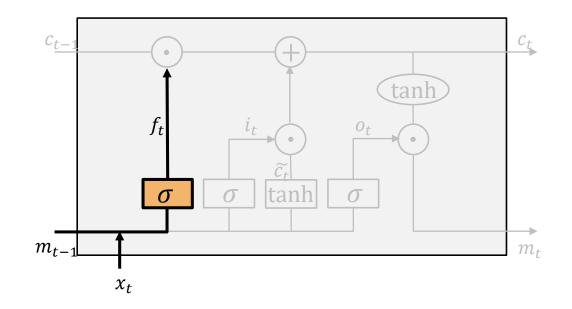
LSTM nonlinearities

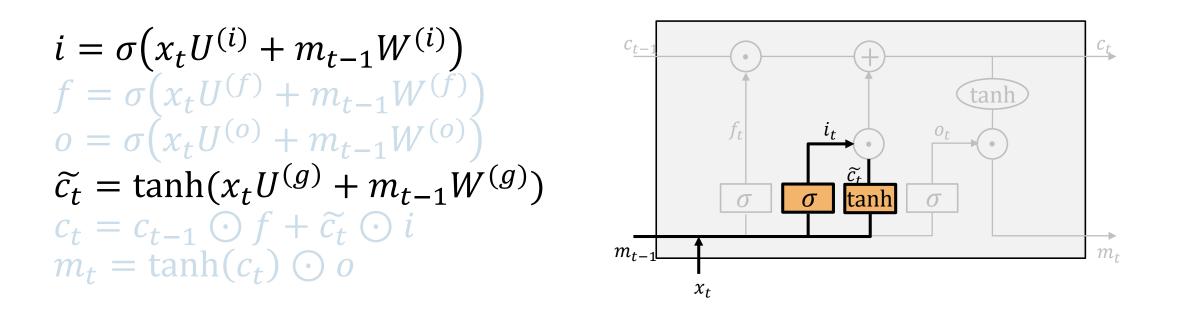
 $i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$ $f = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)})$ $o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})$ $\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$ $c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$ $m_t = \tanh(c_t) \odot o$



 $\circ \sigma \in (0, 1)$: control gate − something like a switch $\circ \tanh \in (-1, 1)$: recurrent nonlinearity

 $i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$ $f = \sigma \left(x_t U^{(f)} + m_{t-1} W^{(f)} \right)$ $o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})$ $\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$ $c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$ $m_t = \tanh(c_t) \odot o$

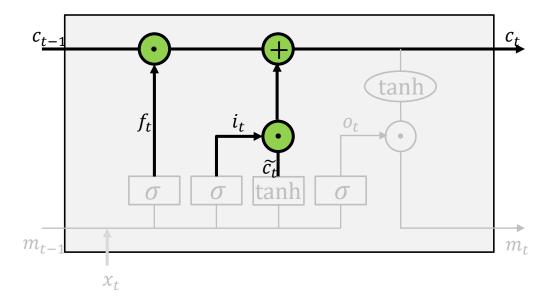




 Decide what new information is relevant from the new input and should be added to the new memory

- Modulate the input i_t
- Generate candidate memories $\widetilde{c_t}$

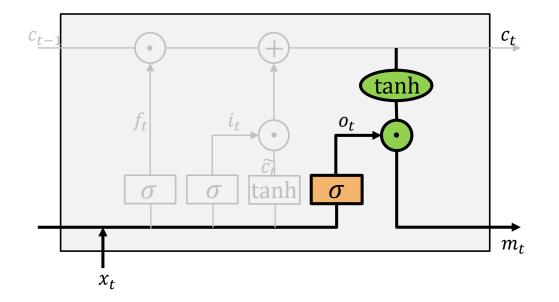
 $i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$ $f = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)})$ $o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})$ $\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$ $c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$ $m_t = \tanh(c_t) \odot o$



 \circ Compute and update the current cell state c_t

- Depends on the previous cell state
- What we decide to forget
- What inputs we allow
- The candidate memories

 $i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$ $f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$ $o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$ $\widetilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$ $c_{t} = c_{t-1} \odot f + \widetilde{c_{t}} \odot i$ $m_{t} = \tanh(c_{t}) \odot o$



Modulate the output

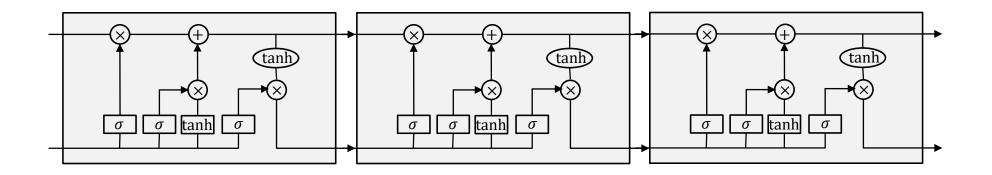
 \circ Does the new cell state relevant? \rightarrow Sigmoid 1

• If not \rightarrow Sigmoid 0

o Generate the new memory

o Just the same like for RNNs

- The engine is a bit different (more complicated)
 - Because of their gates LSTMs capture long and short term dependencies



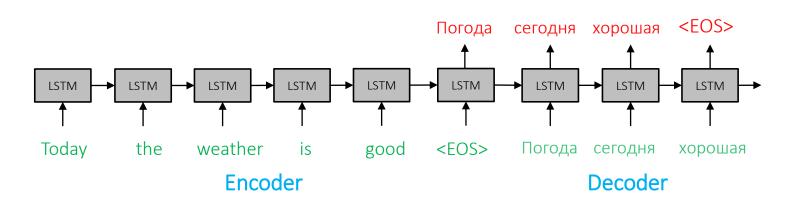
o LSTM with peephole connections

o Gates have access also to the previous cell states $c_{(t-1)}$ (not only memories)

- Bi-directional recurrent networks
- o Gated Recurrent Units (GRU)
- Phased LSTMs
- o Skip LSTMs
- o And many more ...

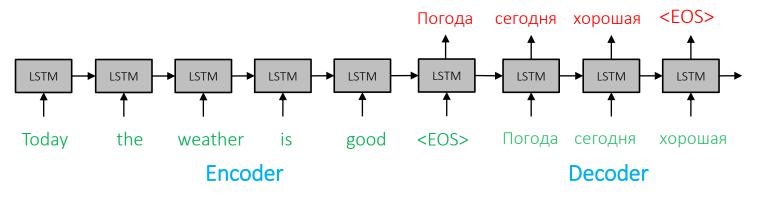
Encoder-Decoder Architectures

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 67



• The phrase in the source language is one sequence

- "Today the weather is good"
- o It is captured by an Encoder LSTM
- The phrase in the target language is also a sequence
 - "Погода сегодня хорошая"
- o It is captured by a Decoder LSTM



• Similar to image translation

• The only difference is that the Encoder LSTM is an image ConvNet • VGG, ResNet, ...

• Keep decoder the same



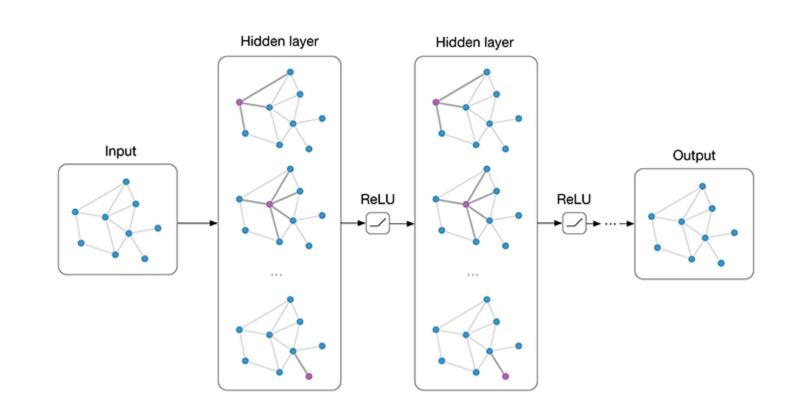
Image captioning demo

<u>Click to go to the video in Youtube</u>

NeuralTalk and Walk, recognition, text description of the image while walking

Graph Neural Networks

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 71

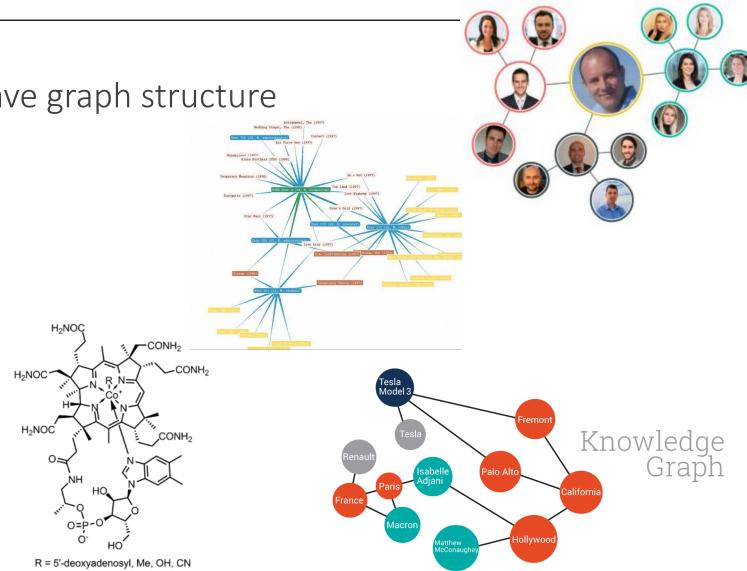


Many domains & data have graph structure Examples?

Why Graphs?

• Many domains & data have graph structure

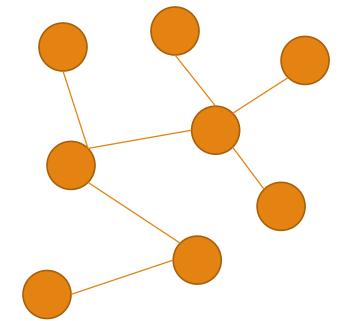
- o Social networks
- Knowledge graphs
- o Recommender systems
- Chemical compounds
 And more



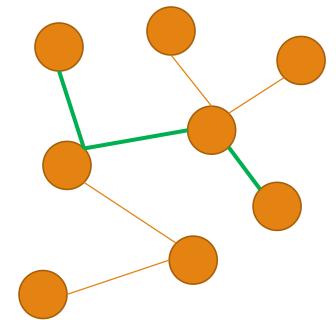
Predictions tasks on graphs?

- Node classification
- Filling out missing edges
- Filling out missing nodes
- Novel graph generation

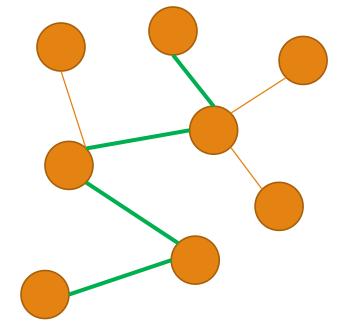
1. Perform random walks on the graph to generate node sequences



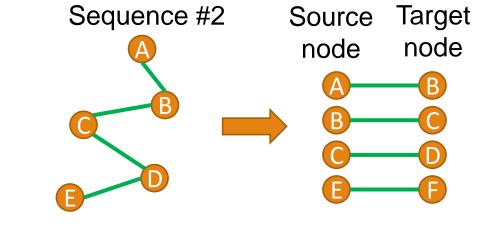
- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn the node embedding



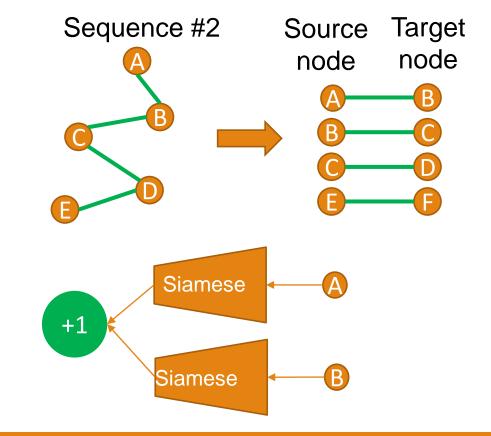
1. Perform random walks on the graph to generate node sequences



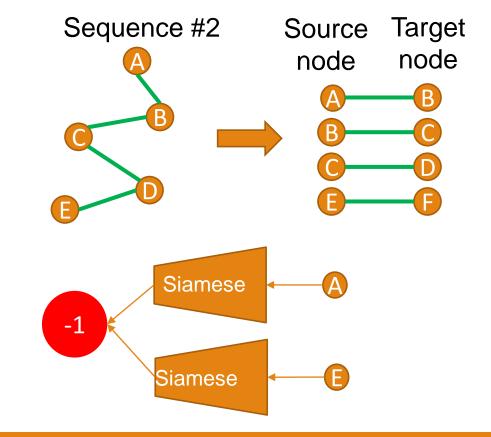
- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



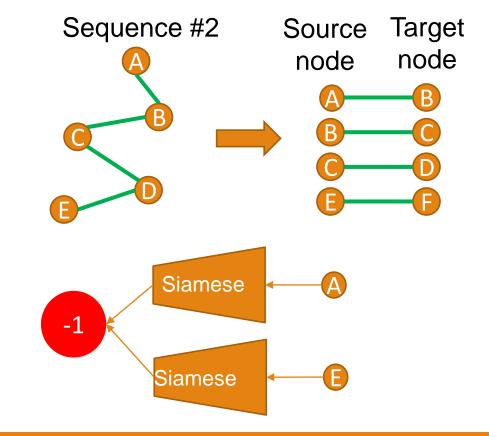
- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



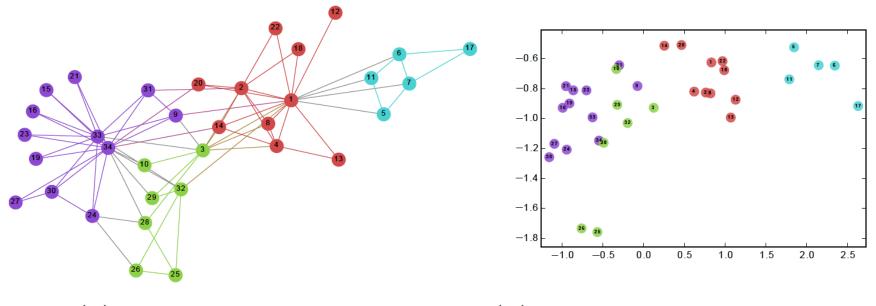
- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



DeepWalk: Results



(a) Input: Karate Graph

(b) Output: Representation

• The method is transductive

• Whenever a new node is added to the graph, the model must be retrained

• This is not useful for dynamic graphs

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions AGGREGATE_k, $\forall k \in \{1, ..., K\}$; neighborhood function $\mathcal{N}: v \to 2^{\mathcal{V}}$ **Output :** Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$ 1 $\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};$ **2** for k = 1...K do for $v \in \mathcal{V}$ do 3 $\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\});$ 4 $\mathbf{h}_{v}^{k} \leftarrow \sigma \left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k}) \right)$ 5 end 6 7 | $\mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V}$ 8 end 9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

• Mean aggregation $\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{MEAN}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\})$

o LSTM aggregation

• Pooling aggregation $\operatorname{AGGREGATE}_{k}^{\operatorname{pool}} = \max(\{\sigma \left(\mathbf{W}_{\operatorname{pool}} \mathbf{h}_{u_{i}}^{k} + \mathbf{b} \right), \forall u_{i} \in \mathcal{N}(v)\})$

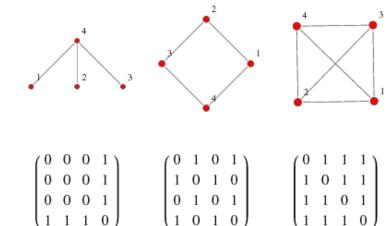
$$O LOSS \qquad J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

• Assuming a graph $G = (\mathcal{V}, \mathcal{E})$

• A node has a description x_i , all stored in a $N \times D$ matrix $X = [..., x_i, ...]$

• The graph structure is encoded by the adjacency matrix A

• A neural network on this graph then is $H^{(l+1)} = h(H^{(l)}, A)$



 $\circ h(H^{(l)}, A) = \sigma(AH^{(l)}W^{(l)})$

o Two problems

- $^{\rm o}$ Given a node, the adjacency matrix A considers neighboring nodes but not the node itself \rightarrow Aggregation does not use the node itself
- A node might have different numbers of neighbors and change the scale of the multiplication
- Add the identity matrix to A
- Left multiply by $D^{-1}A$: D is the degree matrix

 \circ Combining all, we have the following module

$$h(H^{(l)}, A) = \sigma \left(D^{-\frac{1}{2}} \hat{A} D^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)^{3} \Phi^{4}$$

$$D = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}_{19}$$

Degree matrix

 $D_{ij} = \left\{ \right.$

Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 89

- o Sequential data
- o Recurrent Neural Networks
- Backpropagation through time
- Exploding and vanishing gradients
- o LSTMs and variants
- o Encoder-Decoder Architectures
- o Graph Neural Networks