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Lecture 7: Generative Adversarial Networks
Efstratios Gavves
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oGentle intro to generative models

oGenerative Adversarial Networks

oVariants of Generative Adversarial Networks

Lecture overview



Generative models
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oGenerative modelling
◦Learn the joint pdf: 𝑝(𝑥, 𝑦)

◦Model the world  Perform tasks, e.g. use Bayes rule to classify: 𝑝(𝑦|𝑥)

◦Naïve Bayes, Variational Autoencoders, GANs

oDiscriminative modelling
◦Learn the conditional pdf: 𝑝(𝑦|𝑥)

◦Task-oriented

◦E.g., Logistic Regression, SVM

Types of Learning
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oWhat to pick?
◦V. Vapnik: “One should solve the [classification] problem directly and never solve a more 
general [and harder] problem as an intermediate step.”

oTypically, discriminative models are selected to do the job

oGenerative models give us more theoretical guarantees that the model is 
going to work as intended
◦Better generalization

◦Less overfitting

◦Better modelling of causal relationships

Types of Learning
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Applications of generative modeling?
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oAct as a regularizer in discriminative learning
◦Discriminative learning often too goal-oriented

◦Overfitting to the observations

oSemi-supervised learning
◦Missing data

oSimulating “possible futures” for Reinforcement Learning

oData-driven generation/sampling/simulation

Applications of generative modeling?
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Applications: Image Generation
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Applications: Super-resolution
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Applications: Cross-model translation
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A map of generative models
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Explicit density models

oPlug in the model density function to likelihood

oThen maximize the likelihood

Problems

oModes must be complex enough
to match data complexity

oAlso, model must be
computationally tractable

oMore details in the next lectures
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o Density estimation

Generative modeling: Case I

Train set Fitted model
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Implicit density models

oNo explicit probability density function (pdf) needed

o Instead, a sampling mechanism to draw samples
from the pdf without knowing the pdf
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Implicit density models: GANs

oSample data in parallel

oFew restrictions on generator model

oNo Markov Chains needed

oNo variational bounds

oBetter qualitative examples
◦Weak but true
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o Sample Generation

Generative modeling: Case II

Train examples
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o Sample Generation

Generative modeling: Case II

Train examples New samples (ideally)
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oGenerative
◦You can sample novel input samples

◦E.g., you can literally “create” images that never existed

oAdversarial
◦Our generative model 𝐺 learns adversarially, by fooling an discriminative oracle model D

oNetwork
◦ Implemented typically as a (deep) neural network

◦Easy to incorporate new modules

◦Easy to learn via backpropagation

What is a GAN?
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oAssume you have two parties
◦Police: wants to recognize fake money as reliably as possible

◦Counterfeiter: wants to make as realistic fake money as possible

oThe police forces the counterfeiter to get better (and vice versa)

oSolution relates to Nash equilibrium

GAN: Intuition
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GAN: Pipeline
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oMust be differentiable

oNo invertibility requirement

oTrainable for any size of z

oCan make conditionally Gaussian given z, but no strict requirement

Generator network 𝑥 = 𝐺(𝑧; 𝜃(G))

𝑧 𝑥
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oThe discriminator is just a standard neural network

oThe generator looks like an inverse discriminator

Generator & Discriminator: Implementation
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oMinimax

oMaximin

oHeuristic, non-saturating game

oMax likelihood game

Training definitions
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o 𝐽(𝐷) = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧~𝑝𝑧 log(1 − 𝐷(𝐺(𝑧))

o𝐷 𝑥 = 1 → The discriminator believes that 𝑥 is a true image

o𝐷 𝐺(𝑧) = 1 → The discriminator believes that 𝐺(𝑧) is a true image

oEquilibrium is a saddle point of the discriminator loss

oResembles Jensen-Shannon divergence

oGenerator minimizes the log-probability of the discriminator being correct

Minimax Game

NIPS 2016 Tutorial: Generative Adversarial Networks

https://arxiv.org/pdf/1701.00160
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A reasonable loss for the generator?
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oFor the simple case of zero-sum game
𝐽(𝐺) = −𝐽(𝐷)

oSo, we can summarize game by

𝑉 𝜃 D , 𝜃 G = −𝐽 𝐷 (𝜃 D , 𝜃 G )

oEasier theoretical analysis

o In practice not used  when the discriminator starts to recognize fake 
samples, then …

Minimax Game
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oFor the simple case of zero-sum game
𝐽(𝐺) = −𝐽(𝐷)

oSo, we can summarize game by

𝑉 𝜃 D , 𝜃 G = −𝐽 𝐷 (𝜃 D , 𝜃 G )

oEasier theoretical analysis

o In practice not used  when the discriminator starts to recognize fake 
samples, the generator gradients vanish

Minimax Game
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o 𝐽(𝐷) = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧~𝑝𝑧 log(1 − 𝐷(𝐺(𝑧))

o 𝐽(𝐺) = −
1

2
𝔼𝑧~𝑝𝑧 log(𝐷(𝐺(𝑧))

oEquilibrium not any more describable by single loss

oGenerator maximizes the log-probability of the discriminator being mistaken
◦Good 𝐺(𝑧)  D 𝐺 𝑧 = 1  𝐽(𝐺) is maximized

oHeuristically motivated; generator can still learn even when discriminator 
successfully rejects all generator samples

Heuristic non-saturating game
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DCGAN Architecture
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Examples
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Even vector space arithmetics …

Man 

with 

glasses

Man Woman

Woman with 

glasses
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o 𝐽(𝐷) = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log(1 − 𝐷(𝐺(𝑧))

o 𝐽(𝐺) = −
1

2
𝔼𝑧 log(𝜎

−1(𝐷 𝐺 𝑧 )

oWhen discriminator is optimal, the generator gradient matches that of 
maximum likelihood

Modifying GANs for Max-Likelihood

On distinguishability criteria for estimating generative models

https://arxiv.org/abs/1412.6515
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Comparison of Generator Losses

When sample is likely fake, the 
non-saturating heuristic and the 
ML cost are flat
 no gradients in early steps

The ML cost variant generates 
gradients mostly from the 
“good generations”
 all gradients from few 
samples
 high variance
 Variance reduction?



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    GENERATIVE ADVERSARIAL NETWORKS - 36

oOptimal 𝐷(𝑥) for any 𝑝𝑑𝑎𝑡𝑎 𝑥 and 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥 is always

𝐷 𝑥 =
𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥

oEstimating this ratio with supervised learning (discriminator) is the key

Optimal discriminator

Discriminator Data

Model 

distribution
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o𝐿 𝐷, 𝐺 = 𝑥׬ 𝑝𝑟 𝑥 log𝐷 𝑥 +𝑝𝑔(𝑥) log 1 − 𝐷 𝑥 𝑑𝑥

◦Minimize 𝐿 𝐷, 𝐺 w.r.t. 𝐷
𝑑𝐿

𝑑𝐷
= 0 and ignore the integral (we sample over all 𝑥)

◦The function 𝑥 → 𝑎 log 𝑥 + 𝑏 log(1 − 𝑥) attains max in [0, 1] at 𝑎

𝑎+𝑏

oThe optimal discriminator

𝐷∗ 𝑥 =
𝑝𝑟(𝑥)

𝑝𝑟 𝑥 + 𝑝𝑔(𝑥)
◦And at optimality 𝑝𝑔 𝑥 → 𝑝𝑟 𝑥 , thus

𝐷∗ 𝑥 =
1

2
𝐿 𝐺∗, 𝐷∗ = −2 log 2

Why is this the optimal discriminator?
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oBy expanding the Jensen-Shannon divergence, we have

𝐷𝐽𝑆(𝑝𝑟||𝑝𝑔) =
1

2
𝐷𝐾𝐿(𝑝𝑟||

𝑝𝑟 + 𝑝𝑔

2
) +

1

2
𝐷𝐾𝐿(𝑝𝑔||

𝑝𝑟 + 𝑝𝑔

2
)

=
1

2
ቆlog 2 + න

𝑥

𝑝𝑟 𝑥 log
𝑝𝑟 𝑥

𝑝𝑟 𝑥 + 𝑝𝑔 𝑥
𝑑𝑥 + log 2

GANs and Jensen-Shannon divergence
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o By expanding the Jensen-Shannon divergence, we have

𝐷𝐽𝑆(𝑝𝑟||𝑝𝑔) =
1

2
𝐷𝐾𝐿(𝑝𝑟||

𝑝𝑟 + 𝑝𝑔

2
) +

1

2
𝐷𝐾𝐿(𝑝𝑔||

𝑝𝑟 + 𝑝𝑔

2
)

=
1

2
ቆlog 2 + න

𝑥

𝑝𝑟 𝑥 log
𝑝𝑟 𝑥

𝑝𝑟 𝑥 + 𝑝𝑔 𝑥
𝑑𝑥 + log 2

GANs and Jensen-Shannon divergence

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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oDoes the divergence make a difference?

o Is there a difference between KL-divergence, Jensen-Shannon divergence, …

𝐷𝐾𝐿(𝑝𝑟| 𝑝𝑔 = න
𝑥

𝑝𝑟 log
𝑝𝑟
𝑝𝑔

𝑑𝑥

𝐷𝐽𝑆(𝑝𝑟||𝑝𝑔) =
1

2
𝐷𝐾𝐿(𝑝𝑟||

𝑝𝑟 + 𝑝𝑔

2
) +

1

2
𝐷𝐾𝐿(𝑝𝑔||

𝑝𝑟 + 𝑝𝑔

2
)

oLet’s check the KL-divergence

Is the divergence important?
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oForward KL divergence: 𝐷𝐾𝐿(𝑝(𝑥)| 𝑞
∗(𝑥) 

high probability everywhere that the data occurs

oBackward KL divergence: 𝐷𝐾𝐿(𝑞
∗(𝑥)||𝑝(𝑥))

low probability wherever the data does not occur

oWhich version makes the model “conservative”?

Is the divergence important?

𝐷𝐾𝐿(𝑝𝑟| 𝑝𝑔 = න
𝑥

𝑝𝑟 log
𝑝𝑟
𝑝𝑔

𝑑𝑥

𝑝𝑟 is what we get and 
cannot change
𝑝𝑔 is what we make through 

our model and (through 
training) change
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o𝐷𝐾𝐿(𝑝(𝑥)||𝑞
∗(𝑥)) high probability everywhere that the data occurs

o𝐷𝐾𝐿(𝑞
∗(𝑥)||𝑝(𝑥)) low probability wherever the data does not occur

oWhich version makes the model “conservative”?

o𝐷𝐾𝐿(𝑞
∗(𝑥)||𝑝 𝑥 ) = ׬ 𝑞∗(𝑥)log𝑞

∗ 𝑥

𝑝 𝑥

◦Avoid areas where 𝑝 𝑥 → 0

oZero-forcing
◦𝑞∗ 𝑥 → 0 in areas when approximation
𝑞∗ 𝑥

𝑝 𝑥
cannot be good

Is the divergence important?
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o JS is symmetric, KL is not

KL vs JS
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oGANs is a mini-max optimization
◦Non-cooperative game with a tied objective

o Training is not always easy
When optimizing one player/network, 
we might hurt the other one
 oscillations

o Assume two players 𝑓 𝑥 = 𝑥𝑦
We optimize one step at a time
◦Player 1 minimizes: min

x
𝑓1 𝑥 = 𝑥𝑦 ⇒

𝑑𝑓1

𝑑𝑥
= 𝑦

⇒ 𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝑦

◦Player 2 minimizes: min
y

𝑓2 𝑥 = −𝑥𝑦 ⇒
𝑑𝑓2

𝑑𝑥
= −𝑥

⇒ 𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝑥

GAN Problems: Reaching Nash equilibrium causes instabilities

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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𝐽(𝐷) = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 −

1

2
𝔼𝑧 log(1 − 𝐷(𝐺(𝑧))

𝐽(𝐺) = −
1

2
𝔼𝑧 log(𝐷(𝐺(𝑧))

o If the discriminator is quite bad
 no accurate feedback for generator
 no reasonable generator gradients

oBut, if the discriminator is perfect, 𝐷 𝑥 = 𝐷∗(𝑥)
 gradients go to 0
 no learning anymore

oBad when this happens early in the training
◦Easier to train the discriminator than the generator

GAN Problems: Vanishing Gradients
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oVery low variability

o It is safer for the
generator to produce
samples from the mode 
it knows it approximates well

GAN Problems: Mode collapse
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oData lie in low-dim manifolds

oHowever, the manifold is not known

oDuring training 𝑝𝑔 is not perfect 
either, especially in the start

oSo, the support of 𝑝𝑟 and 𝑝𝑔 is non-
overlapping and disjoint
 not good for KL/JS divergences

oEasy to find a discriminating line

GAN Problems: Low dimensional supports
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o Instead of KL/JS, use Wasserstein (Earth Mover’s) Distance
𝑊 𝑝𝑟 , 𝑝𝑔 = inf

𝛾~Π(pr,pg)
E x,y ~γ|𝑥 − 𝑦|

oEven for non-overlapping supports, the distance is meaningful

Wasserstein GAN
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o Instead of matching image statistics, match feature statistics

𝐽(𝐷) = 𝔼𝑥~𝑝𝑟𝑓 𝑥 − 𝔼𝑧~𝑝𝑧𝑓 𝐺 𝑧
2

2

o𝑓 can be any statistic of the data, like the mean or the median

Feature matching
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oUse SGD-like algorithm of choice
◦Adam Optimizer is a good choice

oUse two mini-batches simultaneously
◦The first mini-batch contains real examples from the training set

◦The second mini-batch contains fake generated examples from the generator

oOptional: run k-steps of one player (e.g. discriminator) for every step of 
the other player (e.g. generator)

Training procedure
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oLearning a conditional model 𝑝(𝑦|𝑥) is often generates better samples
◦Denton et al., 2015

oEven learning 𝑝(𝑥, 𝑦) makes samples look more realistic
◦Salimans et al., 2016

oConditional GANs are a great addition for learning with labels

Use labels if possible
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oDefault discriminator cost:

cross_entropy(1., discriminator(data))
+ cross_entropy(0., discriminator(samples))

oOne-sided label smoothing:

cross_entropy(0.9, discriminator(data))
+ cross_entropy(0., discriminator(samples))

oDo not smooth negative labels:

cross_entropy(1.-alpha, discriminator(data))
+ cross_entropy(beta, discriminator(samples))

One-sided label smoothing
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oMax likelihood often is overconfident
◦Might return accurate prediction, but too high probabilities

oGood regularizer
◦Szegedy et al., 2015

oDoes not reduce classification accuracy, only confidence

oSpecifically for GANs
◦Prevents discriminator from giving very large gradient signals to generator

◦Prevents extrapolating to encourage extreme samples

Benefits of label smoothing
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oGenerally, good practice for neural networks

oGiven inputs 𝑋 = {𝑥 1 , 𝑥 2 , … , 𝑥(𝑚)}

oCompute mean and standard deviation of features of 𝑋: 𝜇𝑏𝑛, 𝜎𝑏𝑛

oNormalize features
◦Subtract mean, divide by standard deviation

Batch normalization
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Batch normalization: Graphically

Layer k
Layer 
k+1

𝑧𝑘 = ℎ(𝑥𝑘−1) 𝑥𝑘+1 = 𝑧𝑘



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    GENERATIVE ADVERSARIAL NETWORKS - 59

Batch normalization: Graphically

Layer k
Layer 
k+1

𝑧𝑘 = ℎ(𝑥𝑘−1)
Batch 
norm
(𝜇𝑏𝑛

(𝑡)
, 𝜎𝑏𝑛

(𝑡)
)

𝑥𝑘+1 =
𝑧𝑘 − 𝜇𝑏𝑛
𝜎𝑏𝑛
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But, can cause strong intra-batch correlation
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oTraining with two mini-batches

oOne fixed reference mini-batch for 
computing mean and standard deviation 

oThe other for doing the training as usual

oProceed as normal, only use the mean 
and standard deviation for the batch 
norm from the fixed reference mini-
batch

oProblem: Overfitting to the reference 
mini-batch

Reference batch normalization

Iteration 1

Iteration 2

Iteration 3

Standard

mini-batch

Reference

mini-batch

𝜇𝑏𝑛, 𝜎𝑏𝑛

𝜇𝑏𝑛, 𝜎𝑏𝑛

𝜇𝑏𝑛, 𝜎𝑏𝑛

𝑑𝐽(1)

𝑑𝜃

𝑑𝐽(2)

𝑑𝜃

𝑑𝐽(3)

𝑑𝜃
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oMini-batch= standard mini-batch + reference/fixed mini-batch

Solution: Virtual batch normalization

Iteration 1

Iteration 2

Iteration 3

Standard

mini-batch

Reference

mini-batch

𝜇𝑏𝑛
𝑅
, 𝜎𝑏𝑛

(𝑅)𝑑𝐽(1)

𝑑𝜃

𝑑𝐽(2)

𝑑𝜃

𝑑𝐽(3)

𝑑𝜃

𝜇𝑏𝑛
𝑅
, 𝜎𝑏𝑛

(𝑅)

𝜇𝑏𝑛
𝑅
, 𝜎𝑏𝑛

(𝑅)
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oUsually the discriminator wins
◦That’s good, in that the theoretical justification assume a perfect discriminator

oUsually the discriminator network is bigger than the generator

oSometimes running discriminator more often than generator works better
◦However, no real consensus

oDo not limit the discriminator to avoid making it too smart
◦Better use non-saturating cost

◦Better use label smoothing

Balancing Generator & Discriminator
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oOptimization is tricky and unstable
◦ finding a saddle point does not imply a global minimum

oAn equilibrium might not even be reached

oMode-collapse is the most severe form of non-convergence

Open Question: Non-convergence
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oDiscriminator converges to the correct distribution

oGenerator however places all mass in the most likely point

Open Question: Mode collapse
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oDiscriminator converges to the correct distribution

oGenerator however places all mass in the most likely point

oProblem: low sample diversity

Open Question: Mode collapse
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oClassify each sample by comparing to other examples in the mini-batch

o If samples are too similar, the model is penalized

Minibatch features

Penalized Not Penalized

Mini-batch

Sample
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oDespite the nice images, who cares?

o It would be nice to quantitatively evaluate the model

oFor GANs it is even hard to estimate the likelihood

Open Question: Evaluation of GANs
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oThe generator must be differentiable

o It cannot be differentiable if outputs are discrete

oE.g., harder to make it work for text

oPossible workarounds
◦REINFORCE [Williams, 1992]

◦Concrete distribution [Maddison et al., 2016]

◦Gumbel softmax [Jang et al., 2016]

◦Train GAN to generate continuous embeddings

Open Question: Discrete outputs
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Open Question: Semi-supervised classification
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o InfoGAN [Chen et al., 2016]

Interpretable latent codes
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oConditional GANs
◦Standard GANs have no encoder!

oActor-Critic
◦Related to Reinforcement Learning

GAN spinoffs

Conditional GAN



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    GENERATIVE ADVERSARIAL NETWORKS - 73

oGANs interpreted as actor-critic [Pfau and Vinyals, 2016]

oGANs as inverse reinforcement learning [Finn et al., 2016]

oGANs for imitation learning [Ho and Ermin 2016]

Connections to Reinforcement Learning
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Application: Image to Image translation
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Application: Style transfer
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ohttps://www.youtube.com/watch?v=XOxxPcy5Gr4

Application: Face generation

https://www.youtube.com/watch?v=XOxxPcy5Gr4
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Summary

oGANs are generative models using supervised 
learning to approximate an intractable cost 
function

oGANs can simulate many cost functions, 
including max likelihood

oFinding Nash equilibria in high-dimensional, 
continuous, non-convex games is an important 
open research problem

oGAN research is in its infancy, most works 
published only in 2016. Not mature enough yet, 
but very compelling results


