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Lecture 7: Generative Adversarial Networks
Efstratios Gavves
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o Gentle intro to generative models

o Generative Adversarial Networks

o Variants of Generative Adversarial Networks

Lecture overview



Generative models
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o Generative modelling
Learn the joint pdf: ὴὼȟώ

Model the world Ą Perform tasks, e.g.use Bayes rule to classify: ὴώȿὼ

Naïve Bayes, VariationalAutoencoders, GANs

o Discriminative modelling
Learn the conditional pdf: ὴώȿὼ

Task-oriented

E.g., Logistic Regression, SVM

Types of Learning
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o What to pick?
V. Vapnik: άhƴŜ ǎƘƻǳƭŘ ǎƻƭǾŜ ǘƘŜ ώŎƭŀǎǎƛŦƛŎŀǘƛƻƴϐ ǇǊƻōƭŜƳ ŘƛǊŜŎǘƭȅ ŀƴŘ ƴŜǾŜǊ ǎƻƭǾŜ ŀ ƳƻǊŜ 
general [and harder] problem as an intermediate stepΦέ

o Typically, discriminative models are selected to do the job

o Generative models give us more theoretical guarantees that the model is 
going to work as intended
Better generalization

Less overfitting

Better modelling of causal relationships

Types of Learning
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Applications of generative modeling?
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o Act as a regularizerin discriminative learning
Discriminative learning often too goal-oriented

Overfitting to the observations

o Semi-supervised learning
Missing data

o{ƛƳǳƭŀǘƛƴƎ άǇƻǎǎƛōƭŜ ŦǳǘǳǊŜǎέ ŦƻǊ wŜƛƴŦƻǊŎŜƳŜƴǘ [ŜŀǊƴƛƴƎ

o Data-driven generation/sampling/simulation

Applications of generative modeling?
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Applications: Image Generation
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Applications: Super-resolution



UVA DEEP LEARNING COURSE ςEFSTRATIOS GAVVES                                                                                    GENERATIVE ADVERSARIAL NETWORKS - 10

Applications: Cross-model translation
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A map of generative models
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Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

Problems

o Modes must be complex enoughĄ
to match data complexity

o Also, model must be
computationally tractable

o More details in the next lectures
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o Density estimation

Generative modeling: Case I

Train set Fitted model
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Implicit density models

o No explicit probability density function (pdf) needed

o Instead, a sampling mechanism to draw samples
from the pdf without knowing the pdf
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Implicit density models: GANs

o Sample data in parallel

o Few restrictions on generator model

o No Markov Chains needed

o No variational bounds

o Better qualitative examples
Weak but true
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o Sample Generation

Generative modeling: Case II

Train examples
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o Sample Generation

Generative modeling: Case II

Train examples New samples (ideally)
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o Generative
You can sample novel input samples

9ΦƎΦΣ ȅƻǳ Ŏŀƴ ƭƛǘŜǊŀƭƭȅ άŎǊŜŀǘŜέ ƛƳŀƎŜǎ ǘƘŀǘ ƴŜǾŜǊ ŜȄƛǎǘŜŘ

o Adversarial
Our generative model Ὃlearns adversarially, by fooling an discriminative oracle model D

o Network
Implemented typically as a (deep) neural network

Easy to incorporate new modules

Easy to learn via backpropagation

What is a GAN?
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o Assume you have two parties
Police: wants to recognize fake money as reliably as possible

Counterfeiter: wants to make as realistic fake money as possible

o The police forces the counterfeiter to get better (and vice versa)

o Solution relates to Nash equilibrium

GAN: Intuition


