

Lecture overview

o Early Generative Models

o Restricted Boltzmann Machines

o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Gentle intro to Bayesian Modelling and Variational Inference
o Variational Autoencoders

o Normalizing Flows

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 2

Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

v Direct
Maximum Likelihood
/ \ / GAN
?\

Problems Explicit density Tmplicit density

<N\ O

k hai
Tractable density Approximate density \Mar ov Chain

Fully visible belief nets \ GSN
-NADE / \.
_MADE Variational | Markov Cthn

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

o Design complex enough model
that meets data complexity

o At the same time, make sure model
is computationally tractable

models (nonlinear ICA)

o More details in the next lecture

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 3

Restricted Boltzmann
WY ETSIES

Deep Boltzmann
Machines

Deep Belief Nets

Deep Belief Deep Boltzmann
Network Machine

How to define a generative model?

o We can define an explicit density function over all possible relations
W .between the input variables x,

pe) = | [we 6o

o Quite inefficient = think of all possible relations between 256 X 256 =
65K input variables

> Not just pairwise

o Solution: Define an energy function to model these relations

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 5

Boltzmann Distribution

o First, define an energy function —E (x) that models the joint distribution

1
p(x) = Eexp(—E(x))

o Z is a normalizing constant that makes sure p(x) is a pdf: [p(x) = 1

Z=) exp(~E(x))

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 6

Why Boltzmann?

o Well understood in physics, mathematics and mechanics

o A Boltzmann distribution (also called Gibbs distribution) is a probability
distribution, probability measure, or frequency distribution of particles in a
system over various possible states

o The distribution is expressed in the form

E
F(state) < exp(— T

o E is the state energy, k is the Boltzmann constant, T is the thermodynamic
temperature

https://en.wikipedia.org/wiki/Boltzmmann distribution

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS -7

https://en.wikipedia.org/wiki/Boltzmann_distribution

Problem with Boltzmann Distribution?

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 8

Problem with Boltzmann Distribution?

o Assuming binary variables x the normalizing constant has very high
computational complexity

o For n-dimensional x we must enumerate all possible 2™ operations for Z
o Clearly, gets out of hand for any decentn

o Solution: Consider only pairwise relations

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS -9

Boltzmann Machines

o The energy function becomes

E(x) = —x"Wx —b"x

o x is considered binary
o xT"Wx captures correlations between input variables

o b x captures the model prior
°The energy that each of the input variable contributes itself

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 10

Problem with Boltzmann Machines?

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 11

Problem with Boltzmann Machines?

o Still too complex and high-dimensional
olf x has 256 X 256 = 65536 dimensions

o The pairwise relations need a huge W: 4.2 billion dimensions

o Just for connecting two layers!

o Solution: Consider latent variables for model correlations

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 12

Restricted Boltzmann Machines

o Restrict the model energy function further to a bottleneck over latents h

E(x)=—x"Wh—-b"x—c"h

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 13

Restricted Boltzmann Machines

oE(x) = —x"Wh—-b"x—c"h

o The xTWh models correlations between x and the latent activations via the
parameter matrix W

oThe bTx, c" h model the priors

o Restricted Boltzmann Machines (RBM) assume X, h to be binary

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 14

Restricted Boltzmann Machines

o Energy function: E(x) = —x"Wh —bTx —c'h
1
p(x) = Ez exp(—E(x, h))
n

°Not in the form & exp(x)/Z because of the)

o Free energy function: F(x) = —b"x — ¥;log ¥, exp(h; (¢; + W;x))
1
p(x) = - exp(—F(x))
Z=) exp(~F(x))

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 15

Restricted Boltzmann Machines

o The F(x) defines a bipartite graph with undirected connections
°|nformation flows forward and backward

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 16

Restricted Boltzmann Machines

o The hidden units h; are independent to each other
conditioned on the visible units

p(h|x) = Hp(hj‘x, 9)
J

o The hidden units x; are independent to each other
conditioned on the visible units

plh) = | [pCuln 0)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 17

Training RBMs

o The conditional probabilities are defined as sigmoids
p(hy|x,0) = o(W.jx + by)
p(x;lh,0) = c(W;x + ¢;)

o Maximize log-likelihood

1
£(6) =) logp(x,|6)

and

1
p(x) = - exp(~F (x))

Hidden unit (features)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP GENERATIVE MODELS - 18

Training RBMs

o Let’s take the gradients

0logp(x,|0) 0F (x,,) ~ OlogZ

ol7, Ea 20
| OB Gl 6 | E hlo
=~ p(hlx,,6) &' : zpu S
h

Hidden unit (features)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 19

Training RBMs

o Let’s take the gradients
dlogp(x,|0) 6F(xn) dlogZ

006 Ea 006
a _|h, 8 aE h|6
= — E p(hx,, 6) (Hx ') 4 E p(%, h (x 9)

o Easy because we just substitute in the deflmtlons the x,, and sum over h

o Hard because you need to sum over both X, h which can be huge
°|t requires approximate inference, e.qg., MCMC

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 20

Training RBMs with Contrastive Divergence

o Approximate the gradient with Contrastive Divergence

o Specifically, apply Gibbs sampler for k steps and approximate the gradient
dlogp(xn|0) OE(xy, hol0) OE(xy, hy|6)

96 - 96 a 96
he ~ P(hlx) h: ~ P(h|x:)

OO

/v \ _
OO0 OO0

Observatlons Reconstructions
xi ~ P(x|h)

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 21

Deep Belief Network

o RBMs are just one layer

o Use RBM as a building block

‘ .49%(‘/5%'.{;

Il",ﬁ',"'/};."\
e

W W/,sf,/

o Stack multiple RBMs one on top of the other
p(x, hy, hy) = p(x|hy) - p(hy|hy)

o Deep Belief Networks (DBN) are directed models
°The layers are densely connected and have a single forward flow X

°This is because the RBM is directional, p(x;|h, 8) = a(W.;x + c;),
namely the input argument has only variable only from below

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 22

Deep Boltzmann Machines

o Stacking layers again, but now with connection
from the above and from the below layers h.

o Since it’s a Boltzmann machine, we need an
energy function

p(hS|hs, hs) = o) W R+ > withk)
j l

1

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 23

Deep Boltzmann Machines

o Schematically similar to Deep Belief Networks

. h;
o But, Deep Boltzmann Machines (DBM) are
undirected models
°Belong to the Markov Random Field family h
o So, two types of relationships: bottom-up and up-

bottom
p(hs|hs, hs) = () W/*R] + > WiRE) b
i l

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 24

Training Deep Boltzmann Machines

o Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 25

Variational Inference

Some (Bayesian) Terminology

o Observed variables x

o Latent variables 6

°Both unobservable model parameters w and
unobservable model activations z

o0 = {w, z}
o Joint probability density function (pdf): p(x, 8)

Y
T

3 Mo

normal

o Marginal pdf: p(x) = fgp(x, 0) do \ \

o Prior pdf = marginal over input: p(8) = J_p(x,) dx
o Usually a user defined pdf

/ '\
)
/ L i "\

7 normal

o Posterior pdf: p(8]x) -
o Likelihood pdf: p(x|6) i

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 27

Bayesian Terminology

o Posterior pdf

Ii(g |(§3 3:) < Conditional probability
- < Bayes Rule

p(x
_ p(xlg) p(0) « Marginal probability

'p(alg |(g)) p(g) € Px)isconstant

B Jo,p(x,8") do’
o p(x|6) p(6)

o Posterior Predictive pdf
P Vnewly) = fp(Ynewle) p(Bly) db
6

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 28

Bayesian Terminology

o Conjugate priors
°cwhen posterior and prior belong to the same family, so
the joint pdf is easy to compute

o Point estimate approximations of Point estimate of your
latent variables neural network weight

°instead of computing a distribution over all possible
values for the variable

°ccompute one point only

°e.g. the most likely (maximum likelihood or max a
posteriori estimate)

0" = argg maxp(x|0)p(8) (MAP)
0" = argg maxp(x|0) (MLE)

> Quite good when the posterior distribution is peaky
(low variance)

1% 2.1%
n-3¢ p-2c p-G 1) Thas] ut2c pt3c

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 29

Bayesian Modelling

o Estimate the posterior density p(8]|x) for your training data x
o To do so, need to define the prior p(6) and likelihood p(x|@) distributions

o Once the p(08]x) density is estimated, Bayesian Inference is possible
°p(8]x) is a (density) function, not just a single number (point estimate)

o But how to estimate the posterior density?
>Markov Chain Monte Carlo (MCMC) = Simulation-like estimation
°Variational Inference = Turn estimation to optimization

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 31

Variational Inference

o Estimating the true posterior p(@]x)is not always possible
cespecially for complicated models like neural networks

o Variational Inference assumes another function g(6|@) with
which we want to approximate the true posterior p(6]x)
°q(@|¢) is the approximate posterior

> Note that the approximate posterior does not depend on the observable
variables x

o We approximate by minimizing the reverse KL-divergence w.rt. @
¢" = argmin KL(q(6|9)||p(0]x))

o Turn inference into optimization

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 32

Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 33

Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 34

Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? /

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 35

Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? Forward KL /

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 36

Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables 8 and the approximate posterior

q,(0) = q(0]p)

o What about the log marginal log p(x)?

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 38

Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables 8 and the approximate posterior

q,(0) = q(0]p)

o We want to maximize the marginal p(x) (or the log marginal log p(x)

p(x,0)
qy(6)

logp(x) = Eq,6) llog

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 39

Evidence Lower Bound (ELBO): Derivations

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 40

Evidence Lower Bound (ELBO): Derivations

o Given latent variables 8 and the approximate posterior
q(0) = q(0]¢p)
o The log marginal is

logp(x) = logfp(x 6) do A
O —

=lo f (x, 0) g

g HP 8(0)

— log [Eq<p(9) [p((3)) Jensen Inequality
{” + o(E(xD) < Elp()]

> for convex ¢

> Bqy@ |08, q(p(e)_ . logis convave

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 41

https://en.wikipedia.org/wiki/Jensen's_inequality

ELBO: A second derivation

— (L q(Z) log p(;({%)z) = L q9(Z) lﬂgp(X))
- /Z a(Z)log 2 (quf) + log p(X) /;7 q9(Z)
= —L + log p(X)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 42

ELBO: Formulation 1

p(x,0)
> E |
= g, (0) _ 08 q(p(g)

= Eq,0)[logp(x|0)] + E, (o)llogp(0)] — E, 0)|log q,(6)]
= Eq,(9)[logp(x[6)] — KL(q,(8)]|p(6))
— ELBOg o, (%)

o Maximize reconstruction accuracy IEq¢(9)[logp(x|0)]

o While minimizing the KL distance between the prior p(0) and the
approximate posterior ¢, (6)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 44

ELBO: Formulation 2

p(x,0)
> [E lo
qp(0) | & q(p(@)
= Eq, 0 [logp(x,0)] — g)|l0g g, (0)]
= Eq,(9)llogp(x, 6)] + H(6)

= ELBOg ,,(X)

o Maximize something like negative Boltzmann energy E; (g) llogp(x, 0)]

o While maximizing the entropy the approximate posterior q,,(6)
> Avoid collapsing latents 6 to a single value (like for MAP estimates)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 45

ELBO vs. Marginal

o It is easy to see that the ELBO is directly related to the marginal
logp(x) = ELBOg ¢ (x) + KL(q,(8)]|p(6]x))

o You can also see ELBOg (,(x) as Variational Free Energy

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 46

ELBO vs. Marginal: Derivations

o It is easy to see that the ELBO is directly related to the marginal
ELBOG,(p(x) =

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 47

ELBO vs. Marginal: Derivations

o It is easy to see that the ELBO is directly related to the marginal
ELBOg (p(x) =
= Eq,(0) | logp(x,60)] — Eq ,6) [log q,(8)]
= Eq, 0 [logp(6]x)] + IEq(p@ [log p(x)] = Eq,,0)[log g, (6)]
= Eq, o) llogp(x)] — KL(q,(0)[|p(0]x))

log p(x) LK L(q,(8)||p(0]x)) logp(x) does not depend on g, ()
= Eq,0)[1]=1

logp(x) = ELBOg,¢ (%) + KL(q,(0)|Ip(0]x))
o You can also see ELBOg (,(x) as Variational Free Energy

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 48

ELBO interpretations

ologp(x) = ELBOg,,(x) + KL(q,(8)|[p(6]x))
o The log-likelihood log p(x) constant > does not depend on any parameter

o Also, ELBOg ,(x) > 0 and KL(q,(8)||p(8]x)) > 0

1. The higher the Variational Lower Bound ELBOg (,(x), the smaller the
difference between the approximate posterior q,, (@) and the true
posterior p(6|x) = better latent representation

2. The Variational Lower Bound ELBOg (%) approaches the log-likelihood
- better density model

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 49

Amortized Inference

o The variational distribution g(8]¢) does not depend directly on data
°Only indirectly, via minimizing its distance to the true posterior KL(q(8|¢@)||p(8]x))

o So, with q(8|@) we have a major optimization problem

o The approximate posterior must approximate the whole dataset x =
|x1, X5, ..., Xy] jOintly

o Different neural network weights for each data point x;

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 50

Amortized Inference

o Better share weights and “amortize” optimization between individual data
points

q(0]p) = q,(0]x)
o Predict model parameters 8 using a @-parameterized model of the input x

o Use amortization for data-dependent parameters that depend on data
°E.g., the latent activations that are the output of a neural network layer: z~q, (z|x)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 51

Amortized Inference (Intuitively)

o The original view on Variational Inference is that g(8|¢) describes the
approximate posterior of the dataset as a whole

o Imagine you don’t want to make a practical model that returns latent
activations for a specific input

o Instead, you want to optimally approximate the true posterior of the
unknown weights with an model with latent parameters

o It doesn’t matter if these parameters are “latent activations” z or “model
variables” w

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 52

Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — [Eq(p(e) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

Opg(x|z) instead of p(x|0)

o l.e., the likelihood model pgy(x|z) has weights parameterized by 6

o Conditioned on latent model activations parameterized by z

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 54

Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — [Eq(p(e) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

o Py (z) instead of p(0)

ol.e., a A-parameterized prior only on the latent activations z

o Not on model weights

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 55

Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — [Eq(p(e) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

©q,(z|x) instead of q(8]¢)

o The model g, (z|x) approximates the posterior density of the latents z

o The model weights are parameterized by @

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 56

Variational Autoencoders

0 ELBOg () = Ey (7 llogpe (x[2)] — KL(q, (z]|x)]|pa(2))
o How to model py (x|z) and q,,(z|x)?

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 58

Variational Autoencoders

0 ELBOg () = Ey (7 llogpe (x[2)] — KL(q, (z]|x)]|pa(2))
o How to model py (x|z) and q,,(z|x)?

o What about modelling them as neural networks

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 59

Variational Autoencoders

_
o The approximate posterior q,, (z|x) is a CovnNet (or MLP)
°lnput x is an image Decoder/Genetrato|r pg (x|2)
°Given input the output is a feature map from a latent variable z e
°Also known as encoder or inference or recognition network, because it

infers/recognizes the latent codes |
L | . pr2) WA 2
o The likelihood density py (x|z) is an inverted ConvNet (or MLP)
°Given the latent z as input, it reconstructs the input X
°Also known as decoder or generator network

qy(2]x)

o If we ignore the distribution of the latents z, p,(z)), then we
get the Vanilla Autoencoder

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 60

Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(Q, 90) — II-::qcp(zpc) [108 Peo (XlZ)] T KL(Qcp(le)”p?\(Z))
o How to we optimize the ELBO?

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 61

Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(@, (P) — [Eq(p(Z|x) [log Pe (X|Z)] _ KL(qcp (le)”p?\(z))
_ CIgo(le)
. j 4 (21%) log po (x|2) dz — f 4o (21%) log dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
So, we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 62

Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(H; 90) — II5:q<p(Z|x) [108P9(X|Z)] _ KL(Q(p(le)”p?\(Z))
B qp(Z|x)
= [ap (1) ogpo (xl2) dz = [4 (z1) log e d

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral is hard
to compute analytically

o So, we need to sample from the pdf instead
o VAE is a stochastic model
o The second term is the KL divergence between two distributions that we know

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 64

Training Variational Autoencoders

o J q,(z]x)logpg(x|2) dz

o The first term is an integral (expectation) that we cannot solve analytically.

*When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

o As we cannot compute analytically, we sample from the pdf instead
>Using the density g, (z[x) to draw samples
>Usually one sample is enough = stochasticity reduces overfitting

o VAE is a stochastic model

o The second term is the KL divergence between two distributions that we
know

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 65

Training Variational Autoencoders

Q(p(zlx) d
pa(2)
o The second term is the KL divergence between two distributions that we
know

oJ q,(z|x)log Z

o E.g., compute the KL divergence between a centered N(0, 1) and a non-
centered N (u, o) gaussian

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 66

Typical VAE

o We set the prior py(z) to be the unit Gaussian
p(z)~ N(0,1)

o We set the likelihood to be a Bernoulli for binary
data

p(x|z)~Bernoulli(m)

o We set q,(z|x) to be a neural network (MLP,
ConvNet), which maps an input x to the Gaussian
distribution, specifically it’s mean and variance

Uz, Oz ~ Chp(ZlX)
°The neural network has two outputs, one is the mean u, and

the other the a,, which corresponds to the covariance of the
Gaussian

O-Z'
HZ\ _
o

nuZ VA

qy(z]x)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

DEEP GENERATIVE MODELS - 68

Typical VAE -

9z,
Hz —
o We set pg (X|z) to be an inverse neural network,
which maps Z to the Bernoulli distribution if our
(0]

outputs binary (e.g. Binary MNIST)
auZ VA

o Good exercise: Derive the ELBO for the standard VAE

qy(2]x)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 69

in the latent space

10N

Interpolati

VAE

round 65536: train in latent space

JITTITITOOCLAAAAONNNDNNNN
TITITITITCOOCAANANNNNNNN
FTITTITIITCTOAAANAANNNNNNN-
FITTTTITOCSANNNNNNN
FOTTTTITooo~nnNNNNNNN
FrrorooorroeeanananNNNNAN
T oo NN NNNN -~ -~
DO PPPPPCr T ™RIRNNNN - = —
QOO OEPCEPIPIRANS == —
DO OO MO0 n 00 0 Oy - — — —
AaddaNNmmy s S~~~~~~
Aadddadagagageseyh s SNS~N~~~
AddAdAAI IV VNN L NN N NN NN
Ad339999VVOUVVUNNNNNN
35999999V OOVUYVY U NNNNYN]
D99V VVOOQQVUVV L NN\
D999V V00O QQAUQVVTUNNN
QIAIJ9I999900000QQQAQ Q0 TN\
9399999000000 QQQQQQ QU™
0000000000000000000d4

N

O - N M<T IN O™ 0O

DEEP GENERATIVE MODELS - 70

(%]
L
S
<<
(L)
(%)
Q
<
o
=
wv
L
L
I
L
(%]
o
2
@]
)
O
=
=z
o
<
L
—
[a
L
L
O
<
>
)

Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 71

Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO? Backpropagation?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 72

Backward propagation in VAE

o Backpropagation = compute the gradients of

L6, 9) = E;q,z10logpe(x|2)] — KL(q4,(Z]|x)||pa(Z))
o We must take the gradients with respect to the trainable parameters
o The generator network parameters 6

o The inference network/approximate posterior parameters ¢

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 73

Monte Carlo Integration

o Let’s try to compute the following integral
E(f) = fp(x)f(X)

where p(x) is a probability density funttion for x
> Often complex if p(x) and f(x) is slightly complicated

o Instead, we can approximate the mtegral 8S a summation
5 = [pef) = NZﬂxo x~p(x) = f

o The estimator is unbiased: E(f) = IE{f) and its variance

Var(f) = ZE[(f — E(F)]

o S0, if we have an easy to sample from probability density function in the integral
we can do Monte Carlo integration to approximate the integral

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 74

Gradients w.r.t. the generator parameters 6

o Backpropagation = compute the gradients of
L, ¢) = E;q,z10logpe(x]2)] — KL(q4, (Z]|x)||pa(Z))

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 75

Gradients w.r.t. the generator parameters 6

o Backpropagation = compute the gradients of
L0,) = Ezvq, (210108 o (x|2)] = KL(q,, (z]x)[[pa(2))
with respect to 8 and ¢
oVoL =, 4, (2x)|Ve logpe (x|2)]
o The expectation and sampling in IEZ~q(p(Z|x)do not depend on 6

o Also, the KL does not depend on 6, so no gradient from over there!

© S0, no problem = Just Monte-Carlo integration using samples z drawn
from q,,(z|x)

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 76

Gradients w.r.t. the recognition parameters @

o Backpropagation = compute the gradients of
L,) =E, ;0 llogpe(x|z)] — KL(q,(z|x)||pa(z))
o Our latent variable z is a Gaussian (in standard VAE) represented by u,, o,
o So, we can train by sampling randomly from that Gaussian z~N (u;, 07)
o Problem?

o Sampling z~q,, (z|x) is not differentiable
°And after sampling z, it’s a fixed value (not a function), so we cannot backprop

o Not differentiable = no gradients
o No gradients = No backprop = No training!

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 78

Solution: Monte Carlo Differentiation?

O chIEz~q<p(z|x) [log pg (x]2)] = 0 JFZ o (z|x) log pg (x|z)dz
= f Volay (2]x)]logpg (x|2)dz

Z

o Problem: Monte Carlo integration not possible anymore
°No density function inside the integral
°Only the gradient of a density function

o Similar to Monte Carlo integration, we want to have an expression where
there is a density function inside the summation

o That way we can express it again as Monte Carlo integration

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 79

Solution: Monte Carlo Differentiation?

OVoE, g, (210 [logpe(x|2)] =V, | q,(2|x) logpg (x|2)dz
Volay(z|x)]logpe (x|2)dz

VA

o [Vypla,(z|x)]logpg (x|2)dz =
qy(z|x)
- | 7,[1, (7] log pe (x|2)dz

240 (Z|x) :
NOTE: V,log f(x) _f() ()
= qu)(zlx)\zp[i 0g 1, (z|x)|log pg (x|2)dz
— IIEzqu(p(zpc) [Vgo :lOg o (le) log pg (x|2)]

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 80

Solution: Monte Carlo Differentiation == REINFORCE

O chIEvaq(p(le) [log pg(x|2)] = Ez~q¢(z|x) [V(p [log dy (Z|x)] log pg (X|Z)]
— z V(P [lOg q(p (lex)] lOg Po (XlZi) , ZiNq(p (Z x)
i

o Also known as REINFORCE or score-function estimator
*log pg (x|z) is called score function
°Used to approximate gradients of non-differentiable function
°Highly popular in Reinforcement Learning, where we also sample from policies

o Problem: Typically high-variance gradients =

o =2 Slow and not very effective learning

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 81

To sum up

0 So, our latent variable z is a Gaussian (in the standard VAE) represented by
the mean and variance u,, g, which are the output of a neural net

0 So, we can train by sampling randomly from that Gaussian
z~N(Uz, 07)

o Once we have that z, however, it’s a fixed value (not a function), so we
cannot backprop

o We can use REINFORCE algorithm to compute an approximation to the
gradient
>High-variance gradients =2 slow and not very effective learning

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 82

Solution: Reparameterization trick

o Remember, we have a Gaussian output z~N (uz, g;)

o For certain pdfs, including the Gaussian, we can rewrite their random
variable z as deterministic transformations of an auxiliary and simpler
random variable €

z~N(u,0) & z=u+¢-o, e~N(0,1)

o i, o are deterministic (not random) values

o Long story short:
o We can model u, o by our NN encoder/recognition

o And & comes externally

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 83

What do we gain?

o Change of variables
z = g(€)
p(z)dz = p(e)de

° Intuitively, think that the probability mass must be invariant after the transformation

o In our case
e~q(e) =N(0,1),z = g,(&) = pyp + € 0,

O VoL, g, 212 llog pe (x]2)] =V, fz 74 (z|x) logpg (x|z)dz
= Vo jq(‘g) 10gp9 (xl.ugo; Op, E)dé'
&

= Jq(e)V(p log pg (x|,u(p,0(p,e)de
&

O V(pIEZ~q¢(Z|x) [lOg Pe (XlZ)] ~ Zi V(p lOg Pe (x|ﬂ<p; Op) gi) ’ giNN(O' 1)

> The Monte Carlo integration does not depend on the parameter of interest ¢ anymore

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 84

Solution: Reparameterization trick

o Sampling directly from e~N(0,1) leads to low-variance estimates
compared to sampling directly from z~N (u,, o)
°Why low variance? Exercise for the interested reader

o Remember: since we are sampling for z, we are also sampling gradients
oStochastic gradient estimator

o More distributions beyond Gaussian possible: Laplace, Student-t, Logistic,
Cauchy, Rayleight, Pareto

High-variance
gradient

Low-variance
gradient

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 85

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Once more: what is random in the reparameterization trick?

o Again, the latent variable is z = u, + € - g,
O Uy and g, are deterministic functions (via the neural network encoder)

o & is a random variable, which comes externally

o The z as a result is itself a random variable, because of ¢

o However, now the randomness is not associated with the neural network
and its parameters that we have to learn
°The randomness instead comes from the external €
°The gradients flow through u, and g,

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 86

Reparameterization Trick (graphically)

Original form Reparameterised form

Backprop \;/

0f/9z; 2, = 9PXE)

v/

of/0g B X/ ~ p(€)

—

o 3L/3(pi N
L T e A
«_ : Deterministic node [Kingma, 2013]
4 [Bengio, 2013]
: [Kingma and Welling 2014]
. - Random node [Rezende et al 2014]

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 87

Variational Autoencoders

R nstr
Input «---------oo o Ideally they are identical. ---------------------- oo structed
/ input
X ~X
Probabilistic Encoder
q¢(2(|x)
Mean Sampled /
K latent vector

Probabilistic
X |—» ..—> Decoder > X’
Po(x|z)
o
Std. dev \

_ An compressed low dimensional
z=p+o0OE€ representation of the input.

e ~N(0,I)

https://lilianweng.qithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 88

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

VAE Training Pseudocode

Data:
D: Dataset
d¢(z|x): Inference model
pe(x,z): Generative model
Result:
0, ¢: Learned parameters

(6, ¢) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

e ~ p(e) (Random noise for every datapoint in M)

Compute Lg 4 (M, €) and its gradients Vg ¢£9 4,(./\/1 €)

Update 0 and ¢ using SGD optimizer

end " The ELBO’s gradients

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 89

VAE for NLP

“ i want to talk to you . ”

“ want to be with you . ”

“ do n’t want to be with you .
© do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sen-
tences, from [Bowman et al., 2015]. The intermediate sentences are gram-
matically correct, and the topic and syntactic structure are typically locally
consistent.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 90

VAE for Image Resynthesis

Smile vector:
mean smiling faces -
mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 91

VAE for desighing chemical compounds

clceeecl

Discrete Structure ~ ENCODER CONTINUOUSMOLECULAR DECODER ~ Discrete Structure

SMILES Neural Network REPRESENTATION Neural Network SMILES Mol S
Latent Space Most Probable Decoding -

argmax p(*lz)

Figure 2.D.1: Example application of a VAE in [Gémez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f(z).

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 92

Normalizing Flows

o VAE cannot model p(x) directly because of intractable formulation

o Normalizing Flows solves exactly that problem

o It does that by series of invertible transformations that allow for much
more complex latent distributions (beyond Gaussians)

o The loss is the negative log-likelihood (not ELBO and so on)

Discriminator

D(x)

Generator

G(z)

GAN: minimax the
classification error loss.

Decoder
po(x|z)

Encoder
9¢(2]x)

\ 4

A J
"

VAE: maximize ELBO. X

Flow-based |

generative models: - | Flow nverse |,

NI R > —1 X
minimize the negative f(x) . f(=2)

log-likelihood
1

O
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 93

Series of invertible transformations

f1(2zo) fi(Zi—1) fit1(2;)
® OELEAE L @
//’ \\\ ,/’ \\\ - =
/ \ / \
/ \ / \
\

\ > \ | —> \ | >/
\ / \ / \ /
\\ ,// \\ ,// \\\ ,//
zo ~ Po(Zo) z; ~ pi(2;) zg ~ Pk (ZK)

https://lilianwenq.qgithub.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 94

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

o Using simple pdfs, like a Gaussian, for the

approximate posterior limits the p(y)
expressivity of the model

o Better make sure the approximate posterior ~ ~ -_
comes from a class of models that can even 0 y

contain the true posterior

o Use a series of K invertible transformations
to construct the approximate posterior ‘

°Zi = fr © fr-1° f1(20)

°Rule of change for variables

f:RoR, flz)=20+1

X

0 1

Changing from the x variable to y using
the transformationy = f(x) = 2x + 1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 95

https://blog.evjang.com/2018/01/nf1.html
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://arxiv.org/pdf/1505.05770.pdf

Normalizing Flows: Log-likelihood

ox =2k = frofk-1° filz0) = 2z = fi(zi—1)

—1
o Again, change of variables (multi-dimensional): p;(z;) = pi_l(fl-_l(zl-))| det dfz_ |
d
> logp(x) = logmg(z) = logmy—1(z-1) — log | det -
=1 ~) logdet——"
0g 1o (Zo) | 0g |d€ dz,_,
l

o Two requirements
1. f; must be easily invertible

2. The Jacobian of f; must be easy to compute

https://lilianwenq.qgithub.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 96

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

o https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
Normalizi Nng Flows https://blog.eviang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf

Sampling and Entropy

zg = fr o...0 fao fi(zo)
0

Distribution flows through a sequence of invertible transforms

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 97

https://blog.evjang.com/2018/01/nf1.html
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://arxiv.org/pdf/1505.05770.pdf

Normalizing Flows

Unit Gaussian

Uniform

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 98

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds

S« wibudiy

Normalizing
Flows

Probability Density

—

[

Figure 1: Left: Construction of a complex density on S™ by first projecting the manifold to R",
transforming the density and projecting it back to S™. Right: Illustration of transformed (S? — R?)
densities corresponding to an uniform density on the sphere. Blue: empirical density (obtained by
Monte Carlo); Red: Analytical density from equation (@); Green: Density computed ignoring the

intrinsic dimensionality of S™. N
1 T

log gk (zx) = log qo(zg) — 5 E log det |J¢ J¢|
=]

Gemici et al., 2016 : ' _
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

DEEP GENERATIVE MODELS - 99

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds

&
&

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 100

Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES
DEEP GENERATIVE MODELS - 101

o Gentle intro to Bayesian Modelling and
Variational Inference

o Restricted Boltzmann Machines
o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows

