

Lecture 9: Deep Generative Models Efstratios Gavves

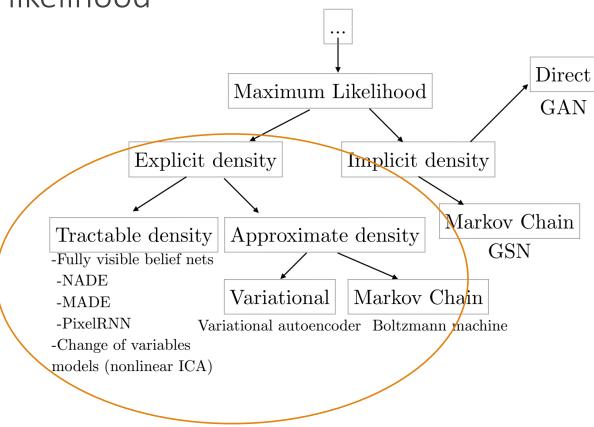
UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

- o Early Generative Models
- Restricted Boltzmann Machines
- o Deep Boltzmann Machines
- O Deep Belief Network
- Ocontrastive Divergence
- o Gentle intro to Bayesian Modelling and Variational Inference
- Variational Autoencoders
- Normalizing Flows

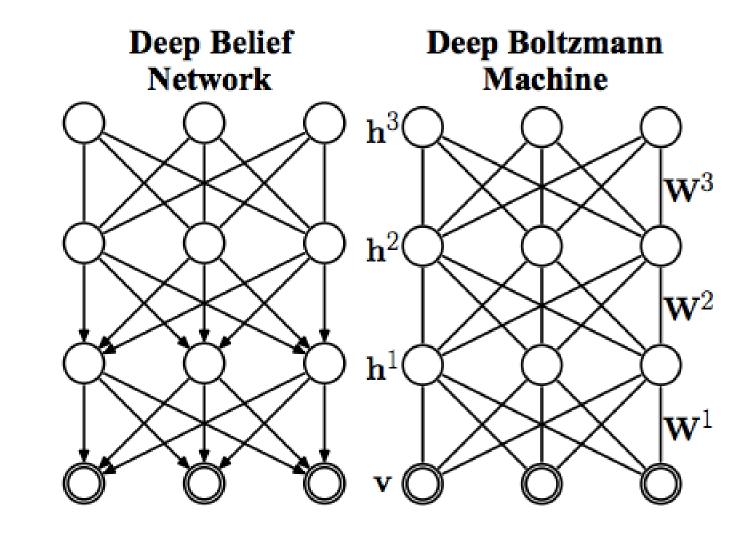
Plug in the model density function to likelihood
 Then maximize the likelihood

Problems

- Design complex enough model that meets data complexity
- At the same time, make sure model is computationally tractable
- More details in the next lecture



Restricted Boltzmann Machines Deep Boltzmann Machines Deep Belief Nets



• We can define an explicit density function over all possible relations ψ_c between the input variables x_c

$$p(x) = \prod_{c} \psi_{c} \left(x_{c} \right)$$

• Quite inefficient \rightarrow think of all possible relations between $256 \times 256 = 65K$ input variables

• Not just pairwise

• Solution: Define an energy function to model these relations

• First, define an energy function -E(x) that models the joint distribution

$$p(x) = \frac{1}{Z} \exp(-E(x))$$

 $\circ Z$ is a normalizing constant that makes sure p(x) is a pdf: $\int p(x) = 1$

$$Z = \sum_{x} \exp(-E(x))$$

• Well understood in physics, mathematics and mechanics

• A Boltzmann distribution (also called Gibbs distribution) is a probability distribution, probability measure, or frequency distribution of particles in a system over various possible states

• The distribution is expressed in the form

$$F(state) \propto \exp(-\frac{E}{kT})$$

 $\circ E$ is the state energy, k is the Boltzmann constant, T is the thermodynamic temperature

https://en.wikipedia.org/wiki/Boltzmann_distribution

Problem with Boltzmann Distribution?

• Assuming binary variables x the normalizing constant has very high computational complexity

• For *n*-dimensional x we must enumerate all possible 2^n operations for Z

• Clearly, gets out of hand for any decent *n*

• Solution: Consider only pairwise relations

• The energy function becomes

$$E(x) = -x^T W x - b^T x$$

 $\circ x$ is considered binary

 $\circ x^T W x$ captures correlations between input variables

$o b^T x$ captures the model prior

• The energy that each of the input variable contributes itself

Problem with Boltzmann Machines?

• Still too complex and high-dimensional

- o If x has $256 \times 256 = 65536$ dimensions
- \circ The pairwise relations need a huge W: 4.2 billion dimensions

<u>Just for connecting two layers!</u>

• Solution: Consider latent variables for model correlations

• Restrict the model energy function further to a bottleneck over latents h

$$E(x) = -x^T W h - b^T x - c^T h$$

$$\mathbf{O}E(x) = -x^T W h - b^T x - c^T h$$

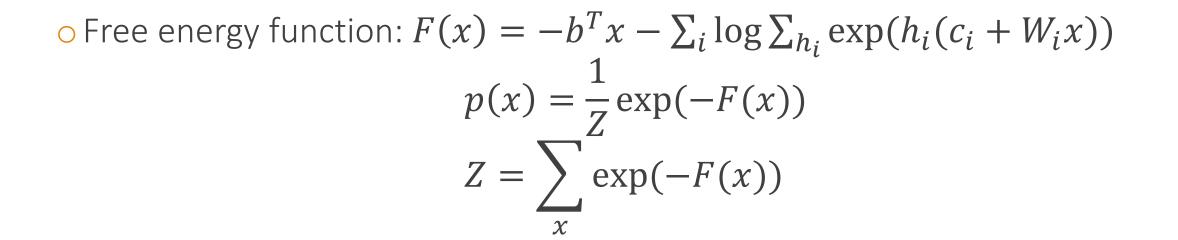
• The $x^T W h$ models correlations between x and the latent activations via the parameter matrix W

• The $b^T x$, $c^T h$ model the priors

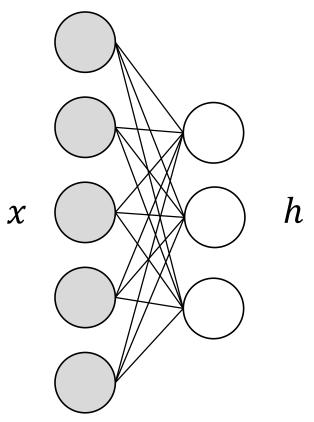
• Restricted Boltzmann Machines (RBM) assume x, h to be binary

• Energy function:
$$E(x) = -x^T W h - b^T x - c^T h$$

 $p(x) = \frac{1}{Z} \sum_{h} \exp(-E(x,h))$
• Not in the form $\propto \exp(x)/Z$ because of the Σ



• The F(x) defines a bipartite graph with undirected connections • Information flows forward and backward

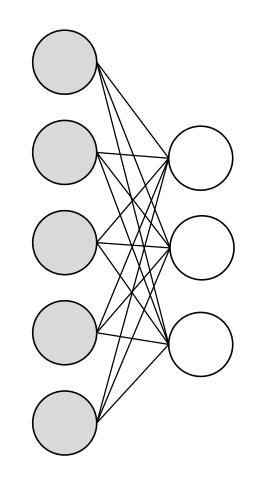


o The hidden units h_j are independent to each other conditioned on the visible units

$$p(h|x) = \prod_{j} p(h_{j}|x,\theta)$$

• The hidden units x_i are independent to each other conditioned on the visible units

$$p(x|h) = \prod_{i} p(x_i|h,\theta)$$



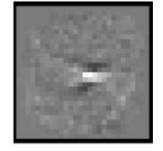
Training RBMs

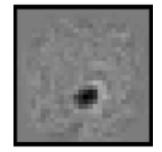
• The conditional probabilities are defined as sigmoids $p(h_j | x, \theta) = \sigma(W_{\cdot j} x + b_j)$ $p(x_i | h, \theta) = \sigma(W_{\cdot i} x + c_i)$

o Maximize log-likelihood

$$p(x) = \frac{1}{Z} \exp(-F(x))$$

 $\mathcal{L}(\theta) = \frac{1}{N} \sum \log p(x_n | \theta)$

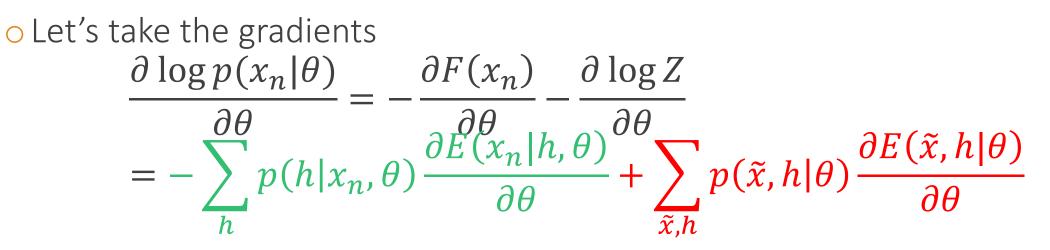




• Let's take the gradients

$$\frac{\partial \log p(x_n|\theta)}{\partial \theta} = -\frac{\partial F(x_n)}{\partial \theta} - \frac{\partial \log Z}{\partial \theta} \\ = -\sum_{h}^{\partial \theta} p(h|x_n, \theta) \frac{\partial E(x_n|h, \theta)}{\partial \theta} + \sum_{\tilde{x}, h}^{\partial \theta} p(\tilde{x}, h|\theta) \frac{\partial E(\tilde{x}, h|\theta)}{\partial \theta}$$

Hidden unit (features)



Easy because we just substitute in the definitions the x_n and sum over h
 Hard because you need to sum over both x̃, h which can be huge
 It requires approximate inference, e.g., MCMC

• Approximate the gradient with Contrastive Divergence

• Specifically, apply Gibbs sampler for k steps and approximate the gradient $\partial \log p(x_n|\theta) \qquad \partial E(x_n, h_0|\theta) \quad \partial E(x_k, h_k|\theta)$ $\partial \theta$ $\partial \theta$ $\partial \theta$ $\mathbf{h}_0 \sim \mathbf{P}(\mathbf{h}|\mathbf{x})$ $\mathbf{h}_1 \sim \mathbf{P}(\mathbf{h}|\mathbf{x}_1)$ Observations Reconstructions $\mathbf{x}_1 \sim \mathbf{P}(\mathbf{x}|\mathbf{h})$ Х

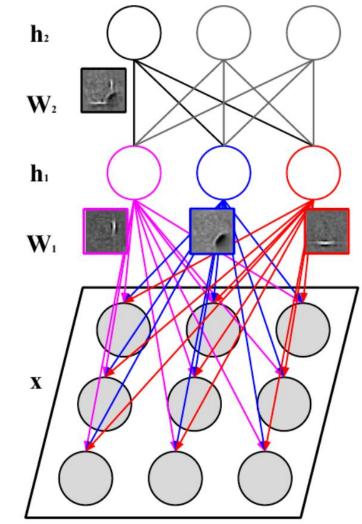
Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002

o RBMs are just one layer

• Use RBM as a building block

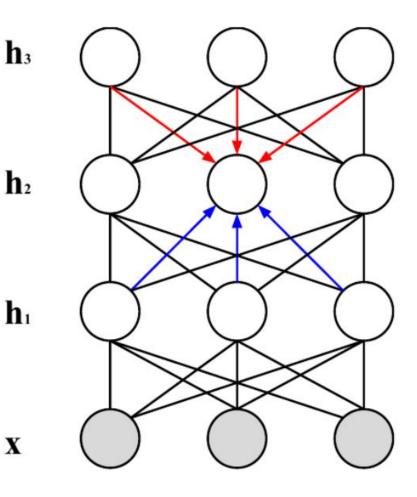
• Stack multiple RBMs one on top of the other $p(x, h_1, h_2) = p(x|h_1) \cdot p(h_1|h_2)$

- Deep Belief Networks (DBN) are directed models
 - The layers are densely connected and have a single forward flow
 - This is because the RBM is directional, $p(x_i|h, \theta) = \sigma(W_i x + c_i)$, namely the input argument has only variable only from below



- Stacking layers again, but now with connection from the above and from the below layers
- Since it's a Boltzmann machine, we need an energy function

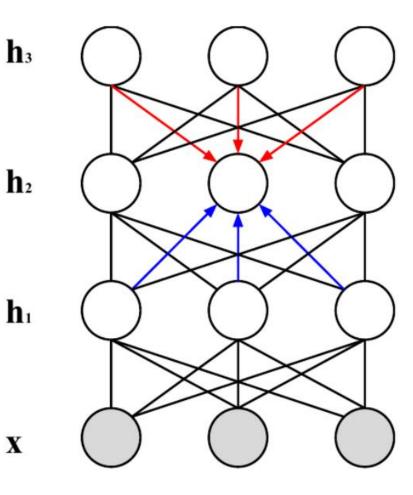
$$E(x, h_1, h_2 | \theta) = x^T W_1 h_1 + h_1^T W_2 h_2 + h_2^T W_3 h_3$$
$$p(h_2^k | h_1, h_3) = \sigma(\sum_j W_1^{jk} h_1^j + \sum_l W_3^{kl} h_3^k)$$



• Schematically similar to Deep Belief Networks

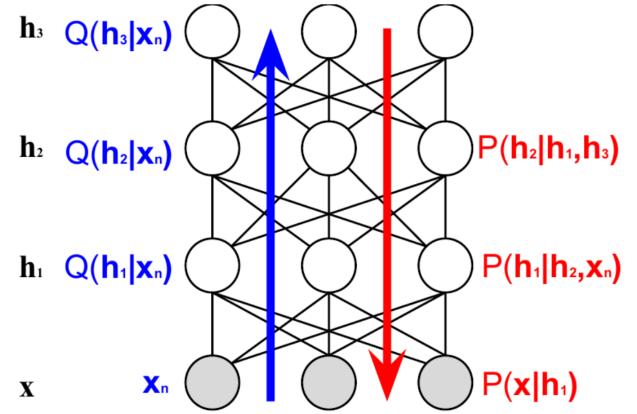
- But, Deep Boltzmann Machines (DBM) are undirected models
 - Belong to the Markov Random Field family
- So, two types of relationships: bottom-up and upbottom

$$p(h_2^k | h_1, h_3) = \sigma(\sum_j W_1^{jk} h_1^j + \sum_l W_3^{kl} h_3^k) \quad \mathbf{I}$$

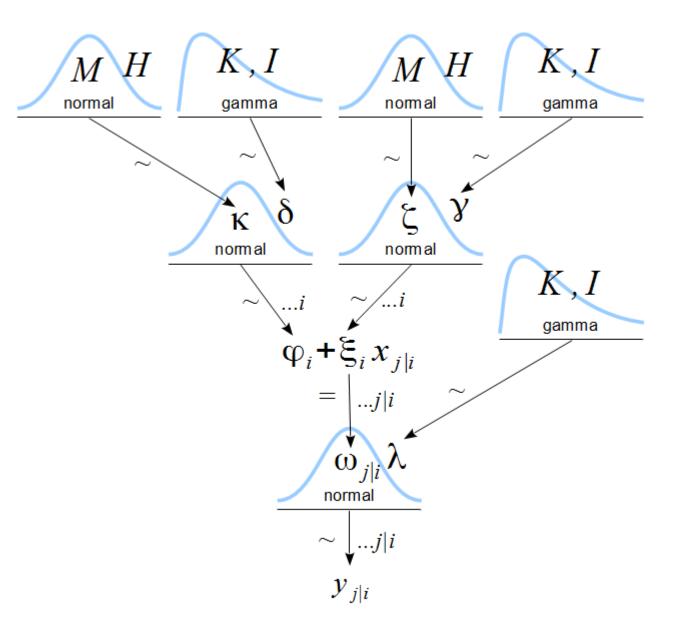


• Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used



Variational Inference

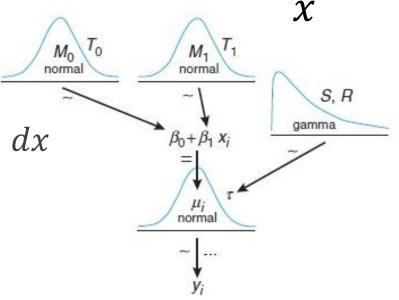


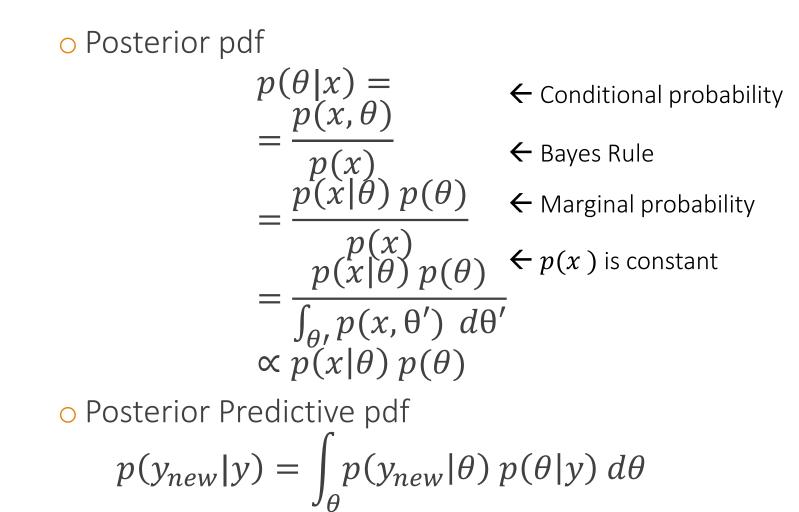
Some (Bayesian) Terminology

- \circ Observed variables x
- $_{
 m o}$ Latent variables heta
- Both unobservable model parameters w and unobservable model activations z

 $\circ \theta = \{w, z\}$

- Joint probability density function (pdf): $p(x, \theta)$
- Marginal pdf: $p(x) = \int_{\theta} p(x, \theta) d\theta$
- Prior pdf \rightarrow marginal over input: $p(\theta) = \int_x p(x, \theta) dx$
- Usually a user defined pdf
- Posterior pdf: $p(\theta|x)$
- o Likelihood pdf: $p(x|\theta)$





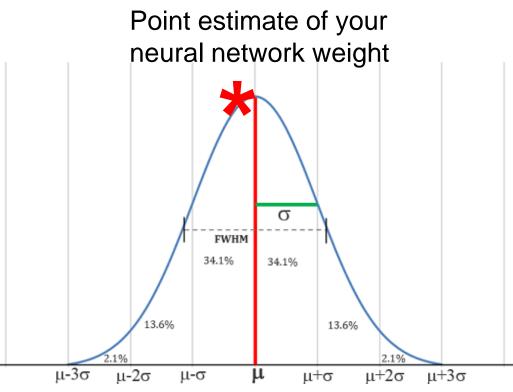
• Conjugate priors

 when posterior and prior belong to the same family, so the joint pdf is easy to compute

- Point estimate approximations of latent variables
 - instead of computing a distribution over all possible values for the variable
 - compute one point only
 - e.g. the most likely (maximum likelihood or max a posteriori estimate)

 $\theta^* = \arg_{\theta} \max p(x|\theta)p(\theta) (MAP)$ $\theta^* = \arg_{\theta} \max p(x|\theta) (MLE)$

 Quite good when the posterior distribution is peaky (low variance)



• Estimate the posterior density p(θ|x) for your training data x
• To do so, need to define the prior p(θ) and likelihood p(x|θ) distributions
• Once the p(θ|x) density is estimated, Bayesian Inference is possible
• p(θ|x) is a (density) function, not just a single number (point estimate)

• But how to estimate the posterior density?

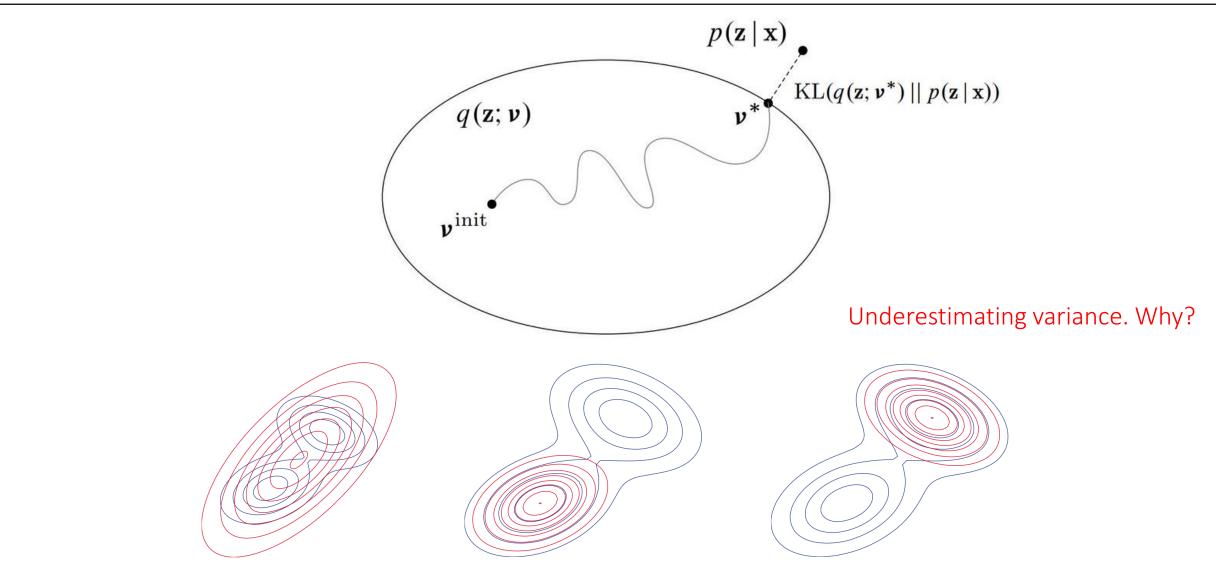
- Markov Chain Monte Carlo (MCMC) \rightarrow Simulation-like estimation
- $^{\circ}$ Variational Inference \rightarrow Turn estimation to optimization

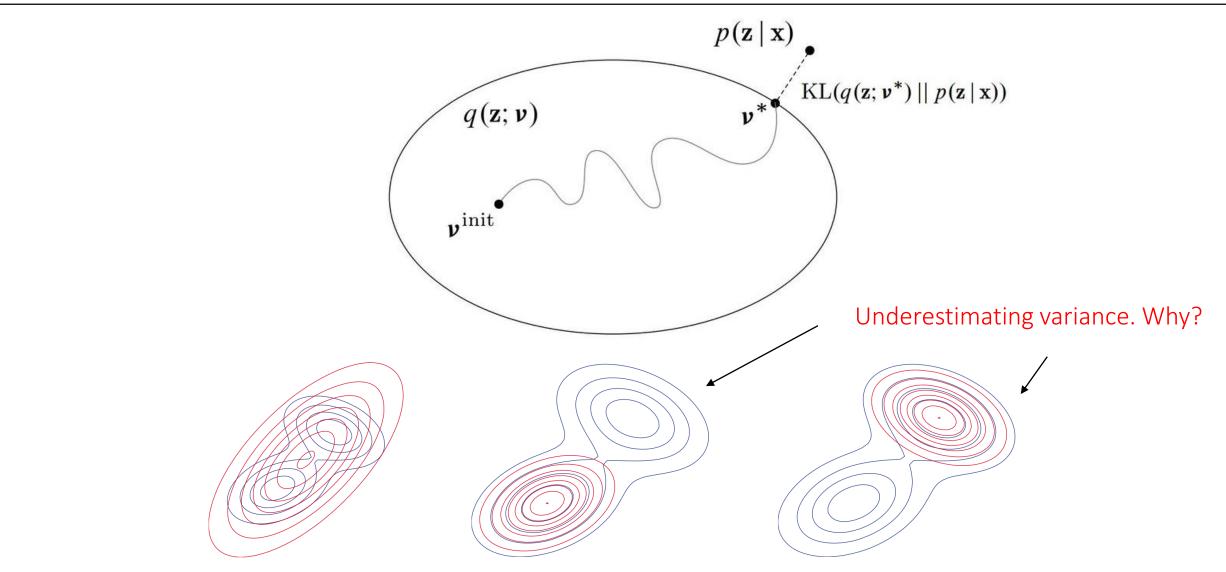
• Estimating the true posterior $p(\theta|x)$ is not always possible • especially for complicated models like neural networks

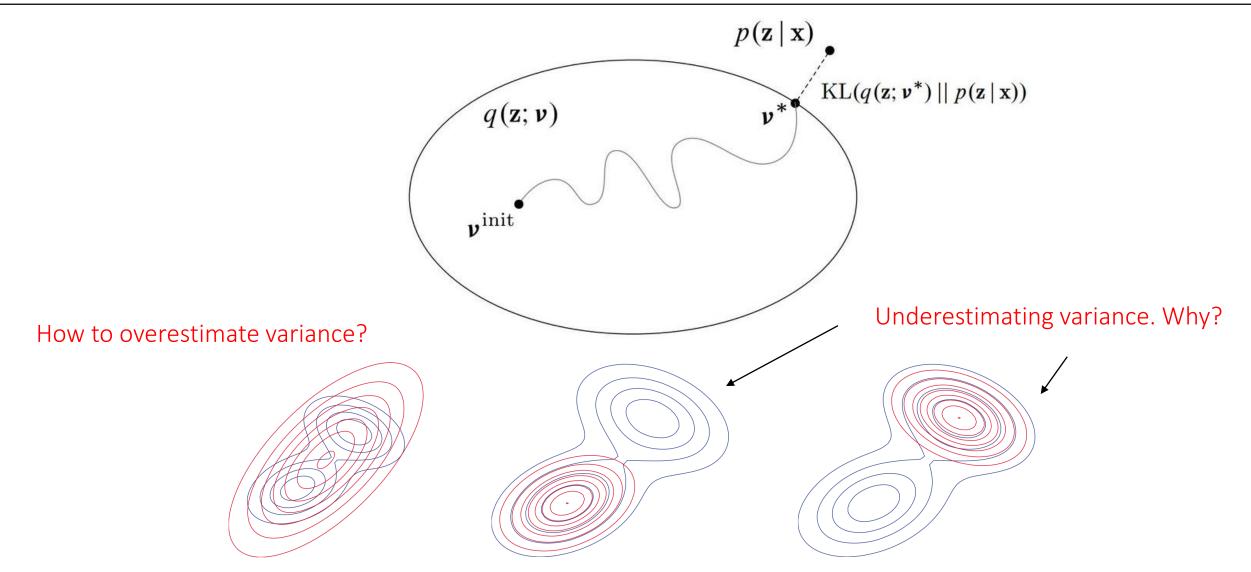
- Variational Inference assumes another function $q(\theta|\varphi)$ with which we want to approximate the true posterior $p(\theta|x)$
 - $\circ q(\theta|\varphi)$ is the approximate posterior
 - $^{\rm o}$ Note that the approximate posterior does not depend on the observable variables x

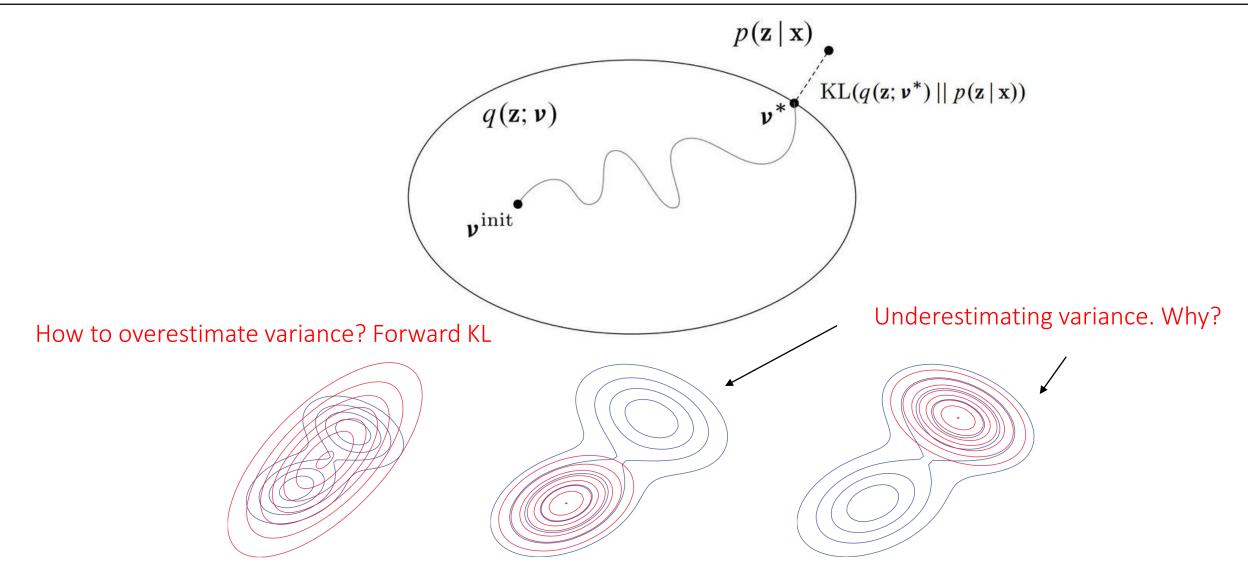
• We approximate by minimizing the **reverse** KL-divergence w.r.t. $\varphi^* = \arg\min_{\varphi} KL(q(\theta|\varphi)||p(\theta|x))$

• Turn inference into optimization









Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables θ and the approximate posterior

$$q_{\varphi}(\theta) = q(\theta|\varphi)$$

• What about the log marginal $\log p(x)$?

Variational Inference - Evidence Lower Bound (ELBO)

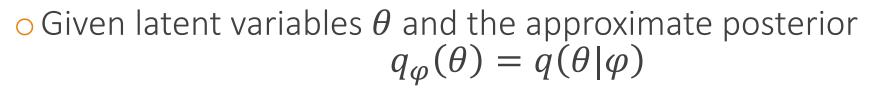
 \circ Given latent variables heta and the approximate posterior

$$q_{\varphi}(\theta) = q(\theta|\varphi)$$

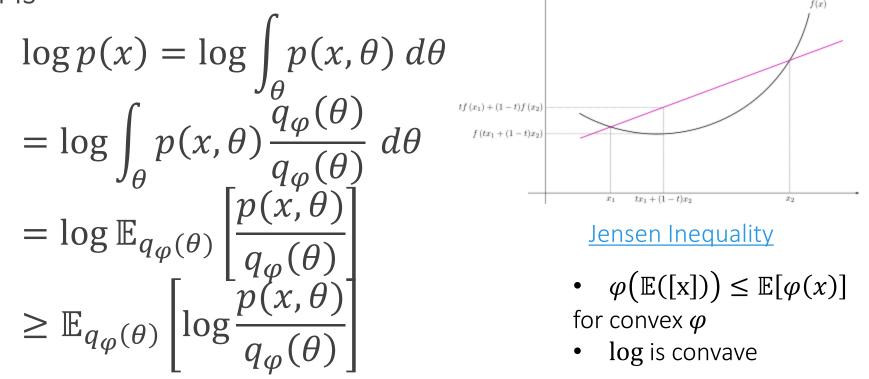
• We want to maximize the marginal p(x) (or the log marginal $\log p(x)$

$$\log p(x) \ge \mathbb{E}_{q_{\varphi}(\theta)} \left[\log \frac{p(x, \theta)}{q_{\varphi}(\theta)} \right]$$

Evidence Lower Bound (ELBO): Derivations



• The log marginal is



$$\begin{split} KL\left[q(Z)\||p(Z|X)\right] &= \int_{Z} q(Z)\log\frac{q(Z)}{p(Z|X)} \\ &= -\int_{Z} q(Z)\log\frac{p(Z|X)}{q(Z)} \\ &= -\left(\int_{Z} q(Z)\log\frac{p(X,Z)}{q(Z)} - \int_{Z} q(Z)\log p(X)\right) \\ &= -\int_{Z} q(Z)\log\frac{p(X,Z)}{q(Z)} + \log p(X)\int_{Z} q(Z) \\ &= -L + \log p(X) \end{split}$$

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

$$\geq \mathbb{E}_{q_{\varphi}(\theta)} \left[\log \frac{p(x,\theta)}{q_{\varphi}(\theta)} \right]$$

$$= \mathbb{E}_{q_{\varphi}(\theta)} [\log p(x|\theta)] + \mathbb{E}_{q_{\varphi}(\theta)} [\log p(\theta)] - \mathbb{E}_{q_{\varphi}(\theta)} [\log q_{\varphi}(\theta)]$$

$$= \mathbb{E}_{q_{\varphi}(\theta)} [\log p(x|\theta)] - \mathrm{KL}(q_{\varphi}(\theta)||p(\theta))$$

$$= \mathrm{ELBO}_{\theta,\varphi}(x)$$

o Maximize reconstruction accuracy $\mathbb{E}_{q_{\varphi}(\theta)}[\log p(x|\theta)]$

• While minimizing the KL distance between the prior $p(\theta)$ and the approximate posterior $q_{\varphi}(\theta)$

ELBO: Formulation 2

$$\geq \mathbb{E}_{q_{\varphi}(\theta)} \left[\log \frac{p(x,\theta)}{q_{\varphi}(\theta)} \right]$$

= $\mathbb{E}_{q_{\varphi}(\theta)} [\log p(x,\theta)] - \mathbb{E}_{q_{\varphi}(\theta)} [\log q_{\varphi}(\theta)]$
= $\mathbb{E}_{q_{\varphi}(\theta)} [\log p(x,\theta)] + H(\theta)$
= $\mathrm{ELBO}_{\theta,\varphi}(x)$

• Maximize something like negative Boltzmann energy $\mathbb{E}_{q_{\varphi}(\theta)}[\log p(x, \theta)]$ • While maximizing the entropy the approximate posterior $q_{\varphi}(\theta)$ • Avoid collapsing latents θ to a single value (like for MAP estimates) o It is easy to see that the ELBO is directly related to the marginal

$$\log p(x) = \text{ELBO}_{\theta,\varphi}(x) + KL(q_{\varphi}(\theta)||p(\theta|x))$$

 \circ You can also see $ELBO_{\theta,\phi}(x)$ as Variational Free Energy

o It is easy to see that the ELBO is directly related to the marginal $ELBO_{\theta,\phi}(x) =$

o It is easy to see that the ELBO is directly related to the marginal $ELBO_{\theta,\omega}(x) =$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x,\theta)] - \mathbb{E}_{q_{\varphi}(\theta)}[\log q_{\varphi}(\theta)]$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(\theta|x)] + \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x)] - \mathbb{E}_{q_{\varphi}(\theta)}[\log q_{\varphi}(\theta)]$ $= \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x)] - KL(q_{\varphi}(\theta)||p(\theta|x))$ $= \log p(x) - KL(q_{\varphi}(\theta) || p(\theta | x))$ $\log p(x)$ does not depend on $q_{arphi}(heta)$ $\mathbb{E}_{q_{\varphi}(\theta)}[1]=1$ \Rightarrow $\log p(x) = \text{ELBO}_{\theta, \varphi}(x) + KL(q_{\varphi}(\theta)||p(\theta|x))$ • You can also see $ELBO_{\theta, \omega}(x)$ as Variational Free Energy

 $o \log p(x) = \text{ELBO}_{\theta,\varphi}(x) + KL(q_{\varphi}(\theta)||p(\theta|x))$

• The log-likelihood $\log p(x)$ constant \rightarrow does not depend on any parameter • Also, $\text{ELBO}_{\theta,\varphi}(x) > 0$ and $KL(q_{\varphi}(\theta)||p(\theta|x)) > 0$

- 1. The higher the Variational Lower Bound $\text{ELBO}_{\theta,\varphi}(\mathbf{x})$, the smaller the difference between the approximate posterior $q_{\varphi}(\theta)$ and the true posterior $p(\theta|\mathbf{x}) \rightarrow$ better latent representation
- 2. The Variational Lower Bound $ELBO_{\theta,\varphi}(x)$ approaches the log-likelihood \rightarrow better density model

- The variational distribution $q(\theta|\varphi)$ does not depend directly on data • Only indirectly, via minimizing its distance to the true posterior $KL(q(\theta|\varphi)||p(\theta|x))$
- \circ So, with $q(\theta|\varphi)$ we have a major optimization problem
- The approximate posterior must approximate the whole dataset $x = [x_1, x_2, ..., x_N]$ jointly
- \circ Different neural network weights for each data point x_i

 Better share weights and "amortize" optimization between individual data points

$$q(\theta|\varphi) = q_{\varphi}(\theta|x)$$

 \circ Predict model parameters heta using a arphi-parameterized model of the input x

- Use amortization for data-dependent parameters that depend on data
- E.g., the latent activations that are the output of a neural network layer: $z \sim q_{\varphi}(z|x)$

- The original view on Variational Inference is that $q(\theta|\varphi)$ describes the approximate posterior of the dataset as a whole
- Imagine you don't want to make a practical model that returns latent activations for a specific input
- Instead, you want to optimally approximate the true posterior of the unknown weights with an model with latent parameters
- $_{\rm O}$ It doesn't matter if these parameters are "latent activations" z or "model variables" w

• Let's rewrite the ELBO a bit more explicitly $ELBO_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x|\theta)] - KL(q_{\varphi}(\theta)||p(\theta))$ $= \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - KL(q_{\varphi}(z|x)||p_{\lambda}(z))$

$\circ p_{\theta}(x|z)$ instead of $p(x|\theta)$

o I.e., the likelihood model $p_{\theta}(x|z)$ has weights parameterized by θ o Conditioned on latent model activations parameterized by z

• Let's rewrite the ELBO a bit more explicitly $ELBO_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x|\theta)] - KL(q_{\varphi}(\theta)||p(\theta))$ $= \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - KL(q_{\varphi}(z|x)||p_{\lambda}(z))$

$\circ p_{\lambda}(z)$ instead of $p(\theta)$

o I.e., a λ -parameterized prior only on the latent activations zo <u>Not on model weights</u>

• Let's rewrite the ELBO a bit more explicitly $ELBO_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(\theta)}[\log p(x|\theta)] - KL(q_{\varphi}(\theta)||p(\theta))$ $= \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - KL(q_{\varphi}(z|x)||p_{\lambda}(z))$

 $\circ q_{\varphi}(z|x)$ instead of $q(\theta|\varphi)$

o The model $q_{\varphi}(z|x)$ approximates the posterior density of the latents zo The model weights are parameterized by φ • ELBO_{θ,φ} $(x) = \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \text{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$ • How to model $p_{\theta}(x|z)$ and $q_{\varphi}(z|x)$? $\circ \text{ELBO}_{\theta,\varphi}(x) = \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \text{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$ $\circ \text{How to model } p_{\theta}(x|z) \text{ and } q_{\varphi}(z|x)?$

• What about modelling them as neural networks

- Variational Autoencoders \circ The approximate posterior $q_{\varphi}(z|x)$ is a CovnNet (or MLP)
 - Input x is an image
 - $^{\circ}$ Given input the output is a feature map from a latent variable z
 - Also known as encoder or inference or recognition network, because it infers/recognizes the latent codes
 - The likelihood density $p_{\theta}(x|z)$ is an inverted ConvNet (or MLP) $p_{\lambda}(z)$
 - $^{
 m o}$ Given the latent z as input, it reconstructs the input \widetilde{x}
 - Also known as decoder or generator network
 - o If we ignore the distribution of the latents z, $p_{\lambda}(z)$), then we network get the Vanilla Autoencoder

 $q_{\varphi}(z|x)$

 $p_{\theta}(x|z)$

Decoder/Generator

network

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

 $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$

 \odot How to we optimize the ELBO?

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}(Z|x)}[\log p_{\theta}(x|Z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$$
$$= \int_{Z} q_{\varphi}(z|x) \log p_{\theta}(x|z) \, dz - \int_{Z} q_{\varphi}(z|x) \log \frac{q_{\varphi}(z|x)}{p_{\lambda}(z)} \, dz$$

 \circ Forward propagation \rightarrow compute the two terms

- The first term is an integral (expectation) that we cannot solve analytically. So, we need to sample from the pdf instead
 - When $p_{\theta}(x|z)$ contains even a few nonlinearities, like in a neural network, the integral is hard to compute analytically

• Maximize the Evidence Lower Bound (ELBO)

• Or minimize the negative ELBO

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}(Z|x)}[\log p_{\theta}(x|Z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$$
$$= \int_{Z} q_{\varphi}(z|x) \log p_{\theta}(x|z) \, dz - \int_{Z} q_{\varphi}(z|x) \log \frac{q_{\varphi}(z|x)}{p_{\lambda}(z)} \, dz$$

 \circ Forward propagation \rightarrow compute the two terms

- The first term is an integral (expectation) that we cannot solve analytically.
- When $p_{\theta}(x|z)$ contains even a few nonlinearities, like in a neural network, the integral is hard to compute analytically
- So, we need to sample from the pdf instead
- VAE is a stochastic model
- The second term is the KL divergence between two distributions that we know

$\circ \int_{z} q_{\varphi}(z|x) \log p_{\theta}(x|z) \, dz$

- The first term is an integral (expectation) that we cannot solve analytically.
- When $p_{\theta}(x|z)$ contains even a few nonlinearities, like in a neural network, the integral is hard to compute analytically
- As we cannot compute analytically, we sample from the pdf instead
 - Using the density $q_{\varphi}(z|x)$ to draw samples
 - $^{\circ}$ Usually one sample is enough ightarrow stochasticity reduces overfitting
- VAE is a stochastic model
- The second term is the KL divergence between two distributions that we know

$$\circ \int_{z} q_{\varphi}(z|x) \log \frac{q_{\varphi}(z|x)}{p_{\lambda}(z)} dz$$

- The second term is the KL divergence between two distributions that we know
- \circ E.g., compute the KL divergence between a centered N(0,1) and a noncentered $N(\mu,\sigma)$ gaussian

• We set the prior $p_{\lambda}(z)$ to be the unit Gaussian $p(z) \sim N(0, 1)$

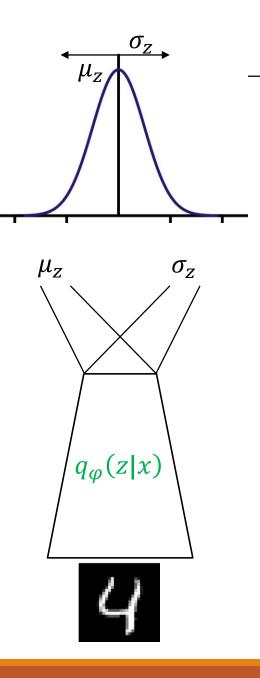
We set the likelihood to be a Bernoulli for binary data

$p(x|z) \sim Bernoulli(\pi)$

 $_{\rm O}$ We set $q_{\varphi}({\bf z}|{\bf x})$ to be a neural network (MLP, ConvNet), which maps an input ${\bf x}$ to the Gaussian distribution, specifically it's mean and variance

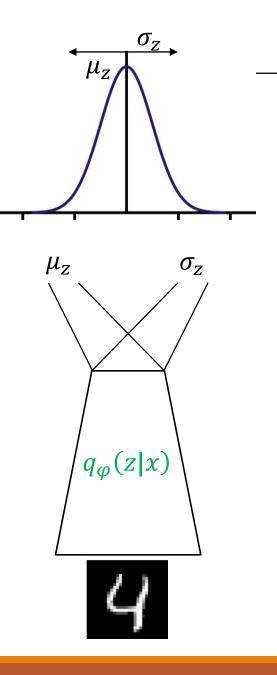
$$^{\circ}\mu_{z}$$
, $\sigma_{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})$

 $^{\circ}$ The neural network has two outputs, one is the mean μ_{χ} and the other the $\sigma_{\chi},$ which corresponds to the covariance of the Gaussian

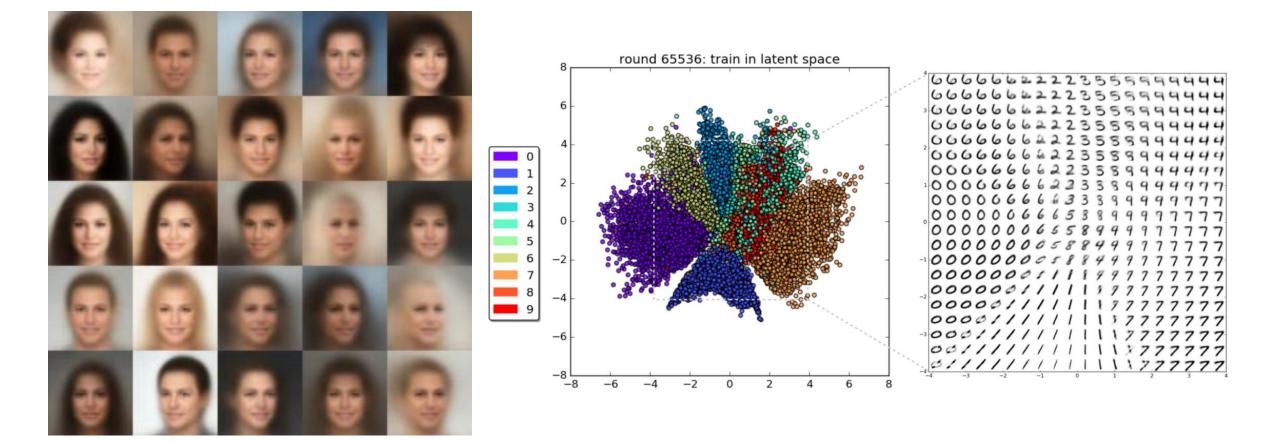


• We set $p_{\theta}(\mathbf{x}|\mathbf{z})$ to be an inverse neural network, which maps Z to the Bernoulli distribution if our outputs binary (e.g. Binary MNIST)

• Good exercise: Derive the ELBO for the standard VAE



VAE: Interpolation in the latent space



• Sample z from the approximate posterior density $z \sim q_{\varphi}(Z|x)$

- $^{\rm o}$ As q_{φ} is a neural network that outputs values from a specific and known parametric pdf, e.g. a Gaussian, sampling from it is rather easy
- Often even a single draw is enough
- Second, compute the $\log p_{\theta}(x|Z)$
- $^{\rm o}$ As p_{θ} is a a neural network that outputs values from a specific and known parametric pdf, e.g. a Bernoulli for white/black pixels, computing the log-prob is easy
- Computing the ELBO is rather straightforward in the standard case
- \odot How should we optimize the ELBO?

• Sample z from the approximate posterior density $z \sim q_{\varphi}(Z|x)$

- $^{\rm o}$ As q_{φ} is a neural network that outputs values from a specific and known parametric pdf, e.g. a Gaussian, sampling from it is rather easy
- Often even a single draw is enough
- Second, compute the $\log p_{\theta}(x|Z)$
- As p_{θ} is a a neural network that outputs values from a specific and known parametric pdf, e.g. a Bernoulli for white/black pixels, computing the log-prob is easy
- Computing the ELBO is rather straightforward in the standard case
- How should we optimize the ELBO? Backpropagation?

• Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$

 \circ We must take the gradients with respect to the trainable parameters \circ The generator network parameters θ

 $_{\odot}$ The inference network/approximate posterior parameters arphi

• Let's try to compute the following integral $\mathbb{E}(f) = \int p(x)f(x)$ where p(x) is a probability density function for x• Often complex if p(x) and f(x) is slightly complicated o Instead, we can approximate the integral **a**s a summation o The estimator is unbiased: $\mathbb{E}(f) = \int_{x} p(x)f(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i), x_i \sim p(x) = \hat{f}$ o The estimator is unbiased: $\mathbb{E}(f) = \mathbb{E}(\hat{f})$ and its variance $Var(\hat{f}) = \frac{1}{N} \mathbb{E}[(f - \mathbb{E}(\hat{f}))]$

 So, if we have an easy to sample from probability density function in the integral we can do Monte Carlo integration to approximate the integral

• Backpropagation
$$\rightarrow$$
 compute the gradients of
 $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(Z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(Z|x)||p_{\lambda}(Z))$

• Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$

with respect to heta and arphi

$$\circ \nabla_{\boldsymbol{\theta}} \mathcal{L} = \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(x|z)]$$

o The expectation and sampling in $\mathbb{E}_{z \sim q_{\varphi}(z|x)}$ do not depend on θ

- \circ Also, the KL does not depend on θ , so no gradient from over there!
- So, no problem → Just Monte-Carlo integration using samples z drawn from $q_{\varphi}(z|x)$

• Backpropagation \rightarrow compute the gradients of $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p_{\lambda}(z))$

• Our latent variable z is a Gaussian (in standard VAE) represented by μ_z, σ_z • So, we can train by sampling randomly from that Gaussian $z \sim N(\mu_z, \sigma_z)$ • Problem?

• Sampling $z \sim q_{\varphi}(z|x)$ is not differentiable

• And after sampling z, it's a fixed value (not a function), so we cannot backprop

 $_{\odot}$ Not differentiable \rightarrow no gradients

 \circ No gradients \rightarrow No backprop \rightarrow No training!

$$\circ \nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\log p_{\theta}(x|z)] = \nabla_{\varphi} \int_{z} q_{\varphi}(z|x) \log p_{\theta}(x|z) dz$$
$$= \int_{z} \nabla_{\varphi} [q_{\varphi}(z|x)] \log p_{\theta}(x|z) dz$$

- Problem: Monte Carlo integration not possible anymore
 - No density function inside the integral
 - Only the gradient of a density function
- Similar to Monte Carlo integration, we want to have an expression where there is a density function inside the summation
- That way we can express it again as Monte Carlo integration

$$\nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\log p_{\theta}(x|z)] = \nabla_{\varphi} \int_{z} q_{\varphi}(z|x) \log p_{\theta}(x|z) dz$$

$$= \int_{z} \nabla_{\varphi} [q_{\varphi}(z|x)] \log p_{\theta}(x|z) dz =$$

$$= \int_{z} \frac{q_{\varphi}(z|x)}{q_{\varphi}(z|x)} \nabla_{\varphi} [q_{\varphi}(z|x)] \log p_{\theta}(x|z) dz$$

$$\text{NOTE: } \nabla_{x} \log f(x) = \frac{1}{f(x)} \nabla_{x} f(x)$$

$$= \int_{z} q_{\varphi}(z|x) \nabla_{\varphi} [\log q_{\varphi}(z|x)] \log p_{\theta}(x|z) dz$$

$$= \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\nabla_{\varphi} [\log q_{\varphi}(z|x)] \log p_{\theta}(x|z)]$$

$$\circ \nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\log p_{\theta}(x|z)] = \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\nabla_{\varphi} [\log q_{\varphi}(z|x)] \log p_{\theta}(x|z)]$$
$$= \sum_{i} \nabla_{\varphi} [\log q_{\varphi}(z_{i}|x)] \log p_{\theta}(x|z_{i}), z_{i} \sim q_{\varphi}(z|x)$$

- Also known as REINFORCE or score-function estimator
 - $\circ \log p_{\theta}\left(x|z\right)$ is called score function
 - Used to approximate gradients of non-differentiable function
 - Highly popular in Reinforcement Learning, where we also sample from policies
- $_{\circ}$ Problem: Typically high-variance gradients ightarrow
- ho
 ightarrow Slow and not very effective learning

o So, our latent variable z is a Gaussian (in the standard VAE) represented by the mean and variance μ_z , σ_z , which are the output of a neural net

• So, we can train by sampling randomly from that Gaussian

$z \sim N(\mu_Z, \sigma_Z)$

- Once we have that *z*, however, it's a fixed value (not a function), so we cannot backprop
- We can use REINFORCE algorithm to compute an approximation to the gradient
 - $^{\circ}$ High-variance gradients \rightarrow slow and not very effective learning

 \circ Remember, we have a Gaussian output $z \sim N(\mu_Z, \sigma_Z)$

 $_{\rm O}$ For certain pdfs, including the Gaussian, we can rewrite their random variable z as deterministic transformations of an auxiliary and simpler random variable ε

$$z \sim N(\mu, \sigma) \iff z = \mu + \varepsilon \cdot \sigma, \qquad \varepsilon \sim N(0, 1)$$

 $\circ \mu$, σ are deterministic (<u>not random</u>) values

O Long story short:

 $_{\odot}$ We can model μ , σ by our NN encoder/recognition

 \circ And ε comes externally

• Change of variables

$$\begin{aligned} z &= g(\varepsilon) \\ \mathbf{p}(z)dz &= p(\varepsilon)d\varepsilon \end{aligned}$$

Intuitively, think that the probability mass must be invariant after the transformation
 In our case

$$\varepsilon \sim q(\varepsilon) = N(0, 1), z = g_{\varphi}(\varepsilon) = \mu_{\varphi} + \varepsilon \cdot \sigma_{\varphi}$$

$$\circ \nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\log p_{\theta}(x|z)] = \nabla_{\varphi} \int_{z} q_{\varphi}(z|x) \log p_{\theta}(x|z) dz$$

$$= \nabla_{\varphi} \int_{\varepsilon} q(\varepsilon) \log p_{\theta}(x|\mu_{\varphi}, \sigma_{\varphi}, \varepsilon) d\varepsilon$$

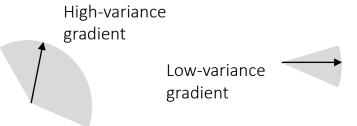
$$= \int_{\varepsilon} q(\varepsilon) \nabla_{\varphi} \log p_{\theta}(x|\mu_{\varphi}, \sigma_{\varphi}, \varepsilon) d\varepsilon$$

• $\nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] \approx \sum_{i} \nabla_{\varphi} \log p_{\theta}(x|\mu_{\varphi}, \sigma_{\varphi}, \varepsilon_{i}), \varepsilon_{i} \sim N(0, 1)$ • The Monte Carlo integration does not depend on the parameter of interest φ anymore o Sampling directly from $\varepsilon \sim N(0,1)$ leads to low-variance estimates compared to sampling directly from $z \sim N(\mu_z, \sigma_z)$

• Why low variance? Exercise for the interested reader

Remember: since we are sampling for *z*, we are also sampling gradients
 Stochastic gradient estimator

 More distributions beyond Gaussian possible: Laplace, Student-t, Logistic, Cauchy, Rayleight, Pareto

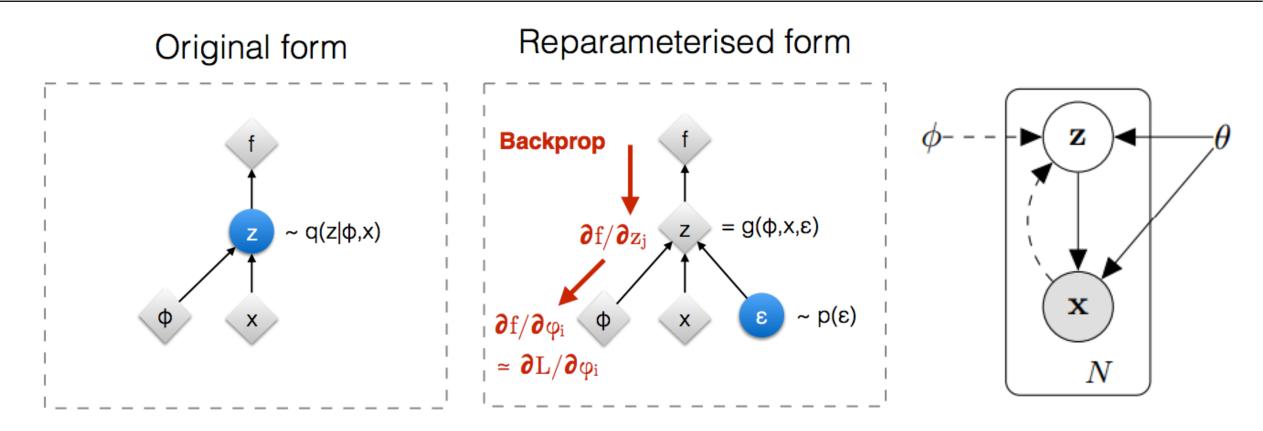


http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

• Again, the latent variable is $z = \mu_{\varphi} + \varepsilon \cdot \sigma_{\varphi}$

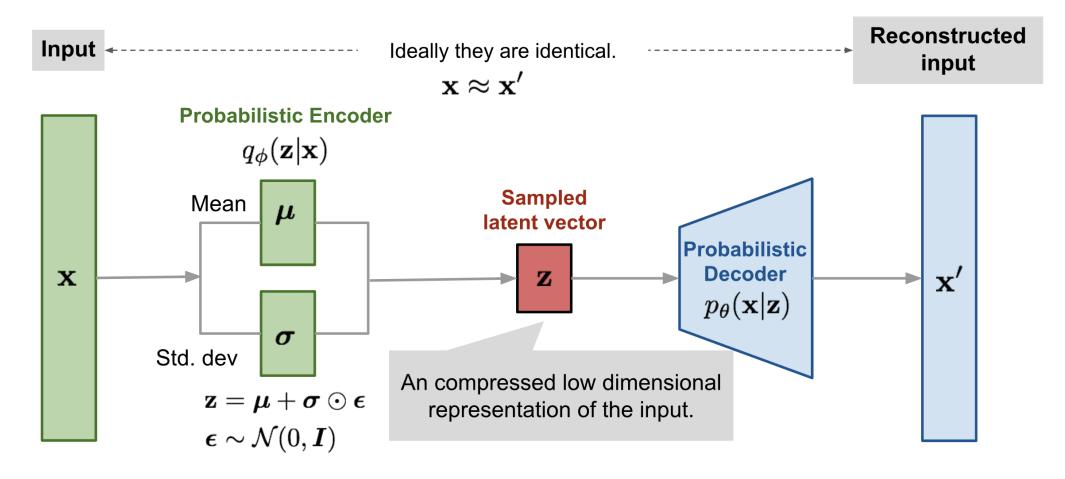
- $\circ \mu_{\varphi}$ and σ_{φ} are deterministic functions (via the neural network encoder) $\circ \varepsilon$ is a random variable, which comes **externally**
- $_{\odot}$ The z as a result is itself a random variable, because of arepsilon
- However, now the randomness is <u>not associated</u> with the neural network and its parameters that we have to learn
 - $^{\circ}$ The randomness instead comes from the external arepsilon
 - $\,^{\circ}$ The gradients flow through μ_{arphi} and σ_{arphi}

Reparameterization Trick (graphically)



- : Deterministic node
- : Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]



https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

VAE Training Pseudocode

Data:

D: Dataset $q_{\phi}(\mathbf{z}|\mathbf{x})$: Inference model $p_{\theta}(\mathbf{x}, \mathbf{z})$: Generative model **Result**: θ, ϕ : Learned parameters $(\theta, \phi) \leftarrow$ Initialize parameters while SGD not converged do $\mathcal{M} \sim \mathcal{D}$ (Random minibatch of data) $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$ (Random noise for every datapoint in \mathcal{M}) Compute $\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ and its gradients $\nabla_{\theta,\phi}\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ Update θ and ϕ using SGD optimizer The ELBO's gradients end

" i want to talk to you . "
"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .
she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sentences, from [Bowman et al., 2015]. The intermediate sentences are grammatically correct, and the topic and syntactic structure are typically locally consistent.

VAE for Image Resynthesis



Smile vector: mean smiling faces – mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by White [2016], an original image (left) is modified in a latent space in the direction of a *smile vector*, producing a range of versions of the original, from smiling to sadness. Notice how changing the image along a single vector in latent space, modifies the image in many subtle and less-subtle ways in pixel space.

VAE for designing chemical compounds

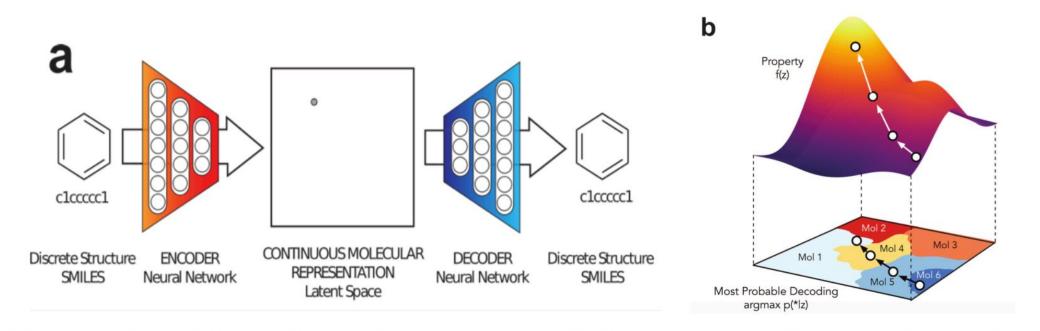
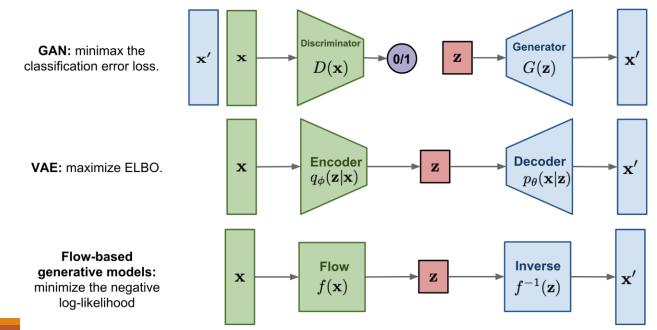
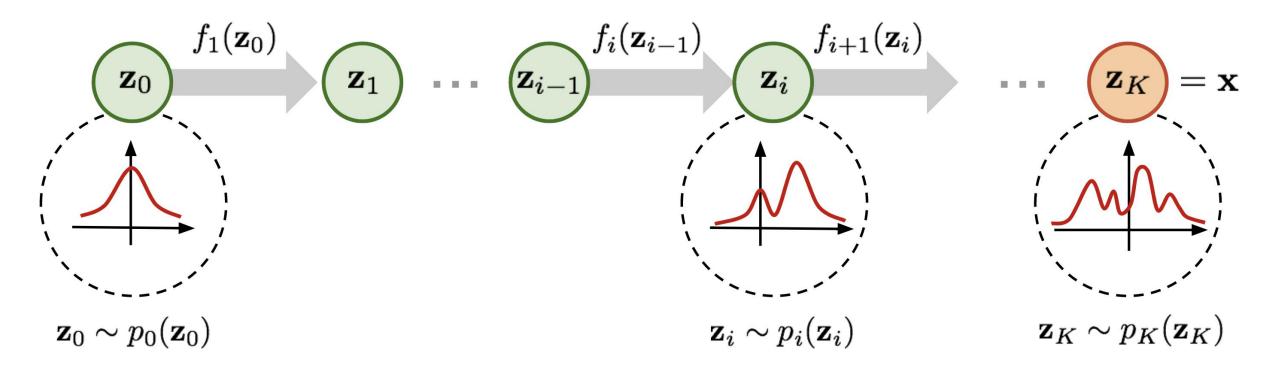


Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al., 2016]: design of new molecules with desired chemical properties. (a) A latent continuous representation \mathbf{z} of molecules is learned on a large dataset of molecules. (b) This continuous representation enables gradient-based search of new molecules that maximizes some chosen desired chemical property given by objective function $f(\mathbf{z})$.

- VAE cannot model p(x) directly because of intractable formulation
- Normalizing Flows solves exactly that problem
- It does that by series of <u>invertible transformations</u> that allow for much more complex latent distributions (beyond Gaussians)
- The loss is the negative log-likelihood (not ELBO and so on)



Series of invertible transformations



https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

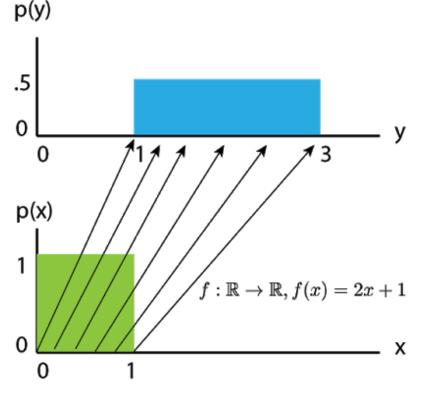
- expressivity of the model
- Better make sure the approximate posterior comes from a class of models that can <u>even</u> contain the true posterior

• Using simple pdfs, like a Gaussian, for the

 Use a series of K invertible transformations to construct the approximate posterior

• $z_k = f_k \circ f_{k-1} \circ \cdots f_1(z_0)$ • Rule of change for variables https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf https://blog.evjang.com/2018/01/nf1.html

https://arxiv.org/pdf/1505.05770.pdf



Changing from the x variable to y using the transformation y = f(x) = 2x + 1

$$\circ x = z_k = f_k \circ f_{k-1} \circ \cdots f_1(z_0) \rightarrow z_i = f_i(z_{i-1})$$

• Again, change of variables (multi-dimensional): $p_i(z_i) = p_{i-1}(f_i^{-1}(z_i)) |\det \frac{df_i^{-1}}{dz_i}|$

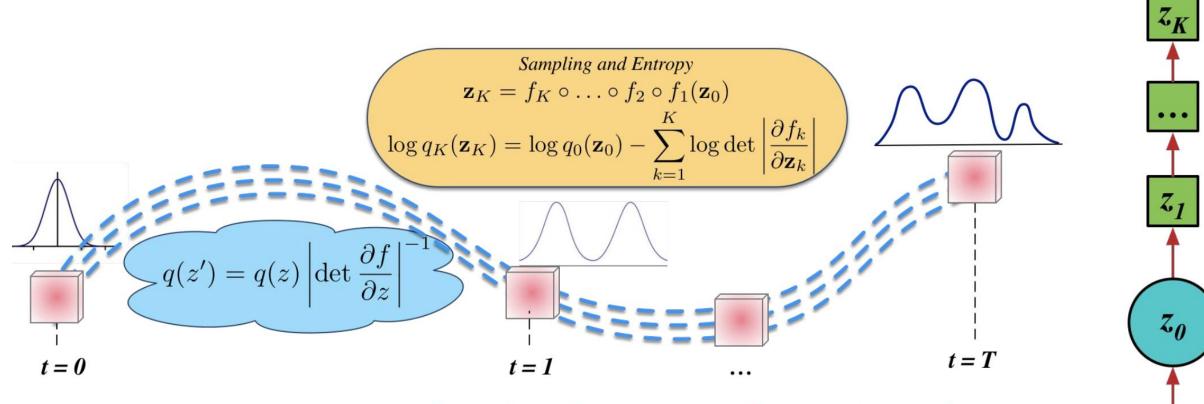
$$\log p(x) = \log \pi_{K}(z_{K}) = \log \pi_{K-1}(z_{K-1}) - \log |\det \frac{df_{K}}{df_{K-1}}|$$

= ...
$$= \log \pi_{0}(z_{0}) - \sum_{i}^{K} \log \left|\det \frac{df_{i}}{dz_{i-1}}\right|$$

- o Two requirements
- 1. f_i must be easily invertible
- 2. The Jacobian of f_i must be easy to compute

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

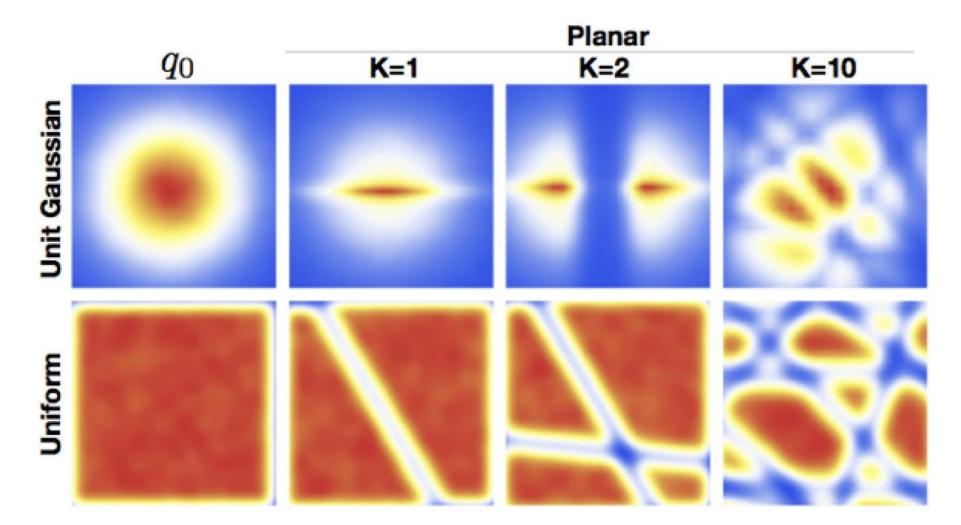
https://arxiv.org/pdf/1505.05770.pdf



Distribution flows through a sequence of invertible transforms

x

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds

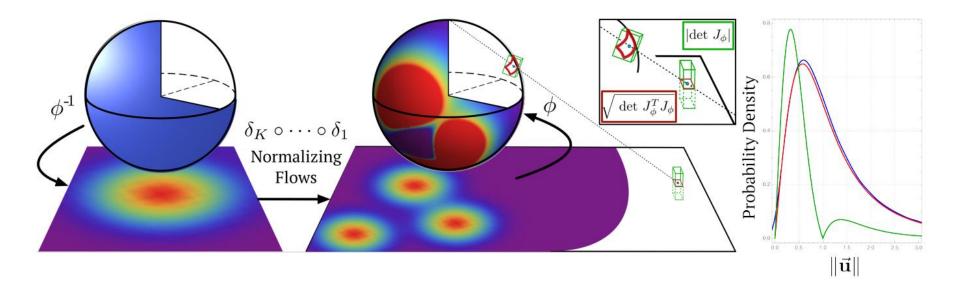


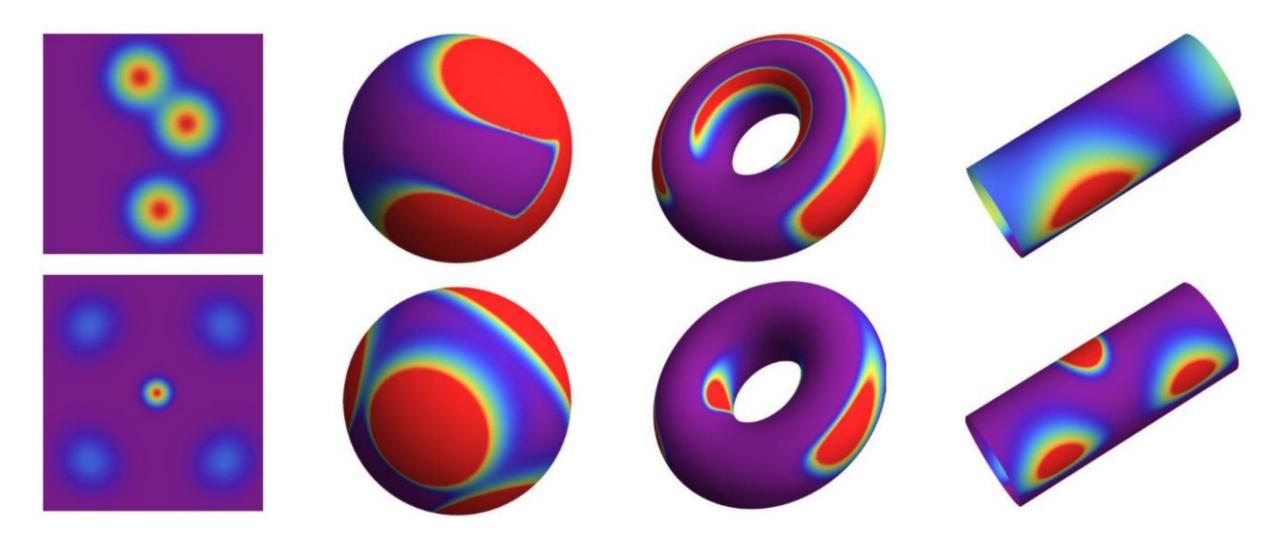
Figure 1: Left: Construction of a complex density on \mathbf{S}^n by first projecting the manifold to \mathbf{R}^n , transforming the density and projecting it back to \mathbf{S}^n . Right: Illustration of transformed ($\mathbf{S}^2 \to \mathbf{R}^2$) densities corresponding to an uniform density on the sphere. Blue: empirical density (obtained by Monte Carlo); Red: Analytical density from equation (4); Green: Density computed ignoring the intrinsic dimensionality of \mathbf{S}^n .

$$\log q_K(\mathbf{z}_K) = \log q_0(\mathbf{z}_0) - \frac{1}{2} \sum_{k=1}^{N} \log \det \left| \mathbf{J}_{\phi}^{\top} \mathbf{J}_{\phi} \right|$$

Gemici et al., 2016

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Normalizing Flows on Non-Euclidean Manifolds



Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 101 • Gentle intro to Bayesian Modelling and Variational Inference • Restricted Boltzmann Machines • Deep Boltzmann Machines O Deep Belief Network Contrastive Divergence • Variational Autoencoders • Normalizing Flows