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Lecture 9: Bayesian Deep Learning
Efstratios Gavves
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oWhy Bayesian Deep Learning?

oTypes of uncertainty

oBayesian Neural Networks

oBackprop by Bayes

oMC Dropout

Lecture overview
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Bayesian modelling
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oConventional Machine Learning  single optimal value per weight

oBayesian Machine Learning  a distribution per latent variable/weight

The Bayesian approach
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Benefits of being Bayesian
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o Ensemble modelling  better accuracies

oUncertainty estimates  control our predictions

o Sparsity and model compression

o Active Learning

oDistributed Learning

o And more …

Benefits of being Bayesian
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oMachine predictions can get embarrassing quite quickly

oWould be nice to have a mechanism to control uncertainty in the world

Why uncertainty?
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oEpistemic uncertainty
◦Captures our ignorance regarding which of all possible models from a class of models 
generated the data we have

◦By increasing the amount of data, epistemic uncertainty can be explained away

◦Why?

Types of Uncertainty
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oEpistemic uncertainty
◦Captures our ignorance regarding which of all possible models from a class of models 
generated the data we have
◦By increasing the amount of data, epistemic uncertainty can be explained away
◦Why? The more data we have the fewer are the possible models that could in fact 
generate all the data

oAleatoric uncertainty
◦Uncertainty due to the nature of the data.
◦ If we predict depth from images, for instance, highly specular surfaces make it very 
hard to predict depth. Or if we detect objects, severe occlusions make it very difficult 
to predict the object class and the precise bounding box
◦Better features reduce aleatoric uncertainty

oPredictive Uncertainty = Epistemic uncertainty + Aleatoric uncertainty

Types of Uncertainty
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Types of Uncertainty
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o Important to consider modelling when
◦we have safety-critical applications

◦the datasets are small

Epistemic uncertainty

Should I give the operate or give a drug?
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o Important to consider modelling when
◦Large datasets  small epistemic uncertainty

◦Real-time  aleatoric models can be deterministic (no Monte Carlo sampling needed)

Aleatoric uncertainty
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oAlso called heteroscedastic aleatoric uncertainty

oThe uncertainty is in the raw inputs

oData-dependent aleatoric uncertainty can be one of the model outputs

Data-dependent aleatoric uncertainty
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oAlso called homoscedastic aleatoric uncertainty

o It is not a model output, it relates to the uncertainty that a particular task 
might cause
◦For instance, for the task of depth estimation predicting depth around the edges is 
very hard  thus uncertain

oWhen having multiple tasks task-dependent aleatoric uncertainty may be 
reduced
◦For instance?

Task-dependent aleatoric uncertainty
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Task-dependent aleatoric uncertainty

Input

Depth Prediction

Uncertainty

Edge prediction as second task?



Bayesian Modelling
Variational Inference
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oDeep learning provides powerful 
feature learners from raw data
◦But they cannot model uncertainty

oBayesian learning provides 
meaningful uncertainty estimates
◦But they often rely on methods that are 
not scalable, e.g. Gaussian Processes

oBayesian Deep Learning combines 
the best of two worlds
◦Hierarchical representation power
◦Outputs complex multi-modal 
distributions

Bayesian Deep Learning
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oDeep Networks: filters & architecture

oStandard Deep Networks  single optimal value per filter

oA Bayesian approach associates a distribution per latent variable/filter

Bayesian Deep Learning: Goal?
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oWe add a variance term per data point to our loss function

ℒ =
𝑦𝑖 − ෝ𝑦𝑖

2

2𝜎𝑖
2 + log 𝜎𝑖

oWhat is the role of 2𝜎𝑖
2?

◦When the nominator becomes large, the network may choose to shrink the loss by 
increasing the output variance 𝜎𝑖

oBut then what about log 𝜎𝑖?
◦Without it the network will always tend to return high variance

Modelling data-dependent aleatoric uncertainty

A. Kendal, Y. Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision, NIPS 2017
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oSimilar to the data-dependent  uncertainty

ℒ =
𝑦𝑖 − ෝ𝑦𝑖

2

2𝜎2
+ log 𝜎

oThe only difference is that now the variance is a learnable parameter 
shared by all task data points

oOne can use task-dependent uncertainties to weigh multiple tasks

Modelling task-dependent aleatoric uncertainty
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Results
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oEpistemic uncertainty is harder to model

𝑝 𝑤 𝑥, 𝑦 =
𝑝 𝑥, 𝑦 𝑤 𝑝(𝑤)

𝑤 𝑝 𝑥, 𝑦 𝑤 𝑝(𝑤) 𝑑𝑤

oComputing the posterior densities is usually intractable for complex 
functions like neural networks

Modelling epistemic uncertainty
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oLong story short

oTo get uncertainty estimates for your Deep Net, keep dropout during 
testing

oThe uncertainties derived from there approximate the uncertainties you 
would obtain from a Variational Inference Framework

Monte Carlo (MC) Dropout

Y. Gal, Z. Ghahramani, Dropout as a Bayesian Approximation Representing Model Uncertainty, ICML 2016
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oVariational Inference assumes a (approximate) posterior distribution to 
approximate the true posterior

oDropout turns on or off neurons based on probability distribution (Bernoulli)

oThe Bernoulli distribution can be used as the variational distribution 
MC Dropout

Epistemic uncertainty: Monte Carlo (MC) Dropout!

Y. Gal, Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, MLR 2016
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oExpected model output described by
◦Predictive mean 𝔼(𝑦∗)

◦Predictive variance Var(𝑦∗)

oStarting from a Gaussian Process and deriving a variational approximation, 
one arrives at a Dropout Neural Network

oThe model precision 𝜏 (inverse of variance 𝜏 = 1/𝜎2) is equivalent to

𝜏 =
𝑙2𝑝

2𝑁𝜆
◦ 𝑙 is the length-scale: large for high-frequency data, small for low-frequency data

◦𝑝 the dropout survival rate

◦𝜆 is the learning rate

Bayesian Neural Networks as (approximate) Gaussian Processes



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    BAYESIAN DEEP LEARNING    - 26

oThe predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥,𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

◦The 𝜔 is our model weights, which are distributions

◦Thus, to find the predictive probability of a new point we must integrate over all 
possible 𝜔 in the distribution

oThe likelihood term 𝑝 𝑦 𝑥, 𝜔 is Gaussian
𝑝 𝑦 𝑥, 𝜔 = 𝑁(𝑦; ො𝑦 𝑥, 𝜔 , 𝜏−1)

Deep Gaussian Processes
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oThe predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥,𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

◦The 𝜔 is our model weights, which are distributions

◦Thus, to find the predictive probability of a new point we must integrate over all 
possible 𝜔 in the distribution

oThe likelihood term 𝑝 𝑦 𝑥, 𝜔 is Gaussian
𝑝 𝑦 𝑥, 𝜔 = 𝑁(𝑦; ො𝑦 𝑥, 𝜔 , 𝜏−1𝐼𝐷)

oThe mean ො𝑦 𝑥, 𝜔 is modelled by a Deep Net

ො𝑦 𝑥, 𝜔 = ൗ1 𝐾𝐿
𝑊𝐿𝜎(… ൗ1 𝐾1

𝜎(𝑊1𝑥 + 𝑚1))

◦𝜔 = {𝑊1,𝑊2, … ,𝑊𝐿}

Deep Gaussian Processes
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oThe predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥, 𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

oThe posterior is intractable  we approximate by a variational approximation

oThe 𝑞 𝜔 is defined in this model as

𝑊𝑖 = 𝑀𝑖 ⋅ diag zi,j 1
Ki

𝑧𝑖,𝑗~Bernoulli(pi)
◦Columns of 𝑀𝑖 are randomly set to 0 

◦The 𝑧𝑖,𝑗 = 0 basically corresponds to dropping the 𝑗-th neuron in the 𝑖 − 1 layer

Deep Gaussian Processes
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oThe predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥, 𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

oOnce more, we minimize the KL divergence

oℒ = − 𝑞 𝜔 log 𝑝 𝑌 𝑋,𝜔 𝑑𝜔 + KL(𝑞 𝜔 ||𝑝 𝜔 )

oHow do we get the first term?

Deep Gaussian Processes
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oThe predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥, 𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

oOnce more, we minimize the KL divergence

oℒ = − 𝑞 𝜔 log 𝑝 𝑌 𝑋,𝜔 𝑑𝜔 + KL(𝑞 𝜔 ||𝑝 𝜔 )

oHow do we get the first term?

oWe approximate with a Monte Carlo sample 𝜔𝑛~𝑞(𝜔)
◦A dropout round

oHow do we get the second term?

Deep Gaussian Processes
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o The predictive probability of a Deep GP is
𝑝 𝑦 𝑥, 𝑋, 𝑌 =  𝑝 𝑦 𝑥, 𝜔 𝑝 𝜔|𝑋, 𝑌 𝑑𝜔

oOnce more, we minimize the KL divergence

o ℒ = − 𝑞 𝜔 log 𝑝 𝑌 𝑋,𝜔 𝑑𝜔 + KL(𝑞 𝜔 ||𝑝 𝜔 )

oHow do we get the first term?

oWe approximate with a Monte Carlo sample 𝜔𝑛~𝑞(𝜔)
◦A dropout round

oHow do we get the second term?

o Again we approximate and arrive at

KL(𝑞 𝜔 ||𝑝 𝜔 )~

𝑖=1

𝐿
𝑝𝑖𝑙

2

2
𝑀𝑖 2

2 +
𝑙2

2
|𝑚_𝑖 ቚ

2

2

Deep Gaussian Processes
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𝜏 =
𝑙2𝑝

2𝑁𝜆

𝔼 𝑦∗ ≈
1

𝑇


𝑡=1

𝑇

ො𝑦𝑡
∗ 𝑥∗

𝔼 𝑦∗2 = 𝜏−1𝚰D +
1

T


𝑡=1

𝑇

ො𝑦𝑡
∗ 𝑥∗ 𝑇 ො𝑦𝑡

∗ 𝑥∗

Var 𝑦∗ = 𝔼 𝑦∗2 − 𝔼 𝑦∗ 𝑇𝔼 𝑦∗

Var 𝑦∗ equals the sample variable after 𝑇 stochastic forward 
passes, plus the inverse model precision

Predictive mean and variance in MC Dropout Deep Nets

Demo

https://github.com/yaringal/DropoutUncertaintyDemos
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oUse dropout in all layers both during training and testing

oAt test time repeat dropout T times (e.g., 10) and look at mean and sample 
variance

oPros: Very easy to train 

oPros: Easy to convert a standard network to a Bayesian Network

oPros: No need for an inference network 𝑞𝑤(𝜑)

oCons: Requires weight sampling also during testing  expensive

Dropout for Bayesian Uncertainty in practice
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Example

Prediction in a 5-layer ReLU 
neural network with dropout

Using 100-trial MC dropout

Using 100-trial MC dropout 
with tanh nonlinearity
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oOver-parameterized models give better uncertainty estimates, as they 
capture a bigger class of data

oLarge models need higher dropout rates for meaningful uncertainty
◦Large models tend to push 𝑝 → 0.5

◦For smaller models lower dropout rates reduce uncertainty estimates

Tricks of the trade
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MC Dropout rates
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oStart from a Deep Network with a distribution on its weights

oSimilar to VAE, what is logical to minimize?

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oStart from a Deep Network with a distribution on its weights

oSimilar to VAE, what is logical to minimize?

oThe KL between approximate and true weight posteriors

𝐾𝐿(𝑞 𝑤 𝜃 | 𝑝 𝑤 𝒟 = 𝐾𝐿(𝑞(𝑤|𝜃)||𝑝 𝑤 ) − න
𝑤

𝑞 𝑤|𝜃 log 𝑝 𝒟 𝑤 𝑑𝑤

oWhat do these two terms look like?

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oStart from a Deep Network with a distribution on its weights

oSimilar to VAE, what is logical to minimize?

oThe KL between approximate and true weight posteriors

𝐾𝐿(𝑞 𝑤 𝜃 | 𝑝 𝑤 𝒟 = 𝐾𝐿(𝑞(𝑤|𝜃)||𝑝 𝑤 ) − න
𝑤

𝑞 𝑤|𝜃 log 𝑝 𝒟 𝑤 𝑑𝑤

oWhat do these two terms look like?

oPrior term pushing approximate posterior towards prior 𝑝 𝑤

oThe data term making sure the weights explain data well

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oThe KL between approximate and true weight posteriors

𝐾𝐿(𝑞 𝑤 𝜃 | 𝑝 𝑤 𝒟 = 𝐾𝐿(𝑞(𝑤|𝜃)| 𝑝 𝑤 −න
𝑤

𝑞 𝑤|𝜃 log 𝑝 𝒟 𝑤 𝑑𝑤

oHow could we efficiently compute these integrals?

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oThe KL between approximate and true weight posteriors

𝐾𝐿(𝑞 𝑤 𝜃 | 𝑝 𝑤 𝒟 = 𝐾𝐿(𝑞(𝑤|𝜃)| 𝑝 𝑤 −න
𝑤

𝑞 𝑤|𝜃 log 𝑝 𝒟 𝑤 𝑑𝑤

oHow could we efficiently compute these integrals?

oApproximate with Monte Carlo Integration

oSample a single weight value 𝑤𝑠 from our posterior 𝑞 𝑤|𝜃
◦e.g., a Gaussian

oThen, compute the MC ELBO:

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oThen, compute the MC ELBO:
ℒ = log 𝑞(𝑤𝑠||𝜃) − log 𝑝 𝑤𝑠 − log 𝑝(𝒟|𝑤𝑠)

oSame for backprop

oWhat’s so special aboutlog 𝑞(𝑤𝑠||𝜃) − log 𝑝 𝑤𝑠 ?

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oThen, compute the MC ELBO:
ℒ = log 𝑞(𝑤𝑠||𝜃) − log 𝑝 𝑤𝑠 − log 𝑝(𝒟|𝑤𝑠)

oSame for backprop

oWhat’s so special aboutlog 𝑞(𝑤𝑠||𝜃) − log 𝑝 𝑤𝑠 ?

oMonte Carlo approximation of the complexity cost as well

oNot confined to specific pdfs anymore

Bayes by Backprop

C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight Uncertainty in Neural Networks, ICML 2015
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oAssume a Gaussian variational posterior on the weights

oEach weight is then parameterized as 
𝑤 = 𝜇 + 𝜀 ⋅ 𝜎

where 𝜎 is 𝜌-parameterized by the softplus
𝜎 = log(1 + exp(𝜌))

oWhy?

Bayes by Backprop
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o Assume a Gaussian variational posterior on the weights

o Each weight is then parameterized as 
𝑤 = 𝜇 + 𝜀 ∘ 𝜎

where 𝜎 is 𝜌-parameterized by the softplus
𝜎 = log(1 + exp(𝜌))

oWhy?

oWith this parameterization the standard deviation is always positive

o Then we optimize the ELBO

o In the end we learn an ensemble of networks, since we can sample as many 
weights as we want

Bayes by Backprop
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1. Sample 𝜀~𝑁(0, 1)

2. Set 𝑤 = 𝜇 + 𝜀 ⋅ log(1 + exp(𝜌))

3. Set 𝜃 = {𝜇, 𝜌}

4. Let ℒ(𝑤, 𝜃) = log 𝑞(𝑤|𝜃) − log 𝑝 𝑤 𝑝(𝑥|𝑤)

5. Calculate gradients

𝛻𝜇 =
𝜕ℒ

𝜕𝑤

𝜕𝑤

𝜕𝜇
+
𝜕ℒ

𝜕𝜇

𝛻𝜌 =
𝜕ℒ

𝜕𝑤

𝜀

1 + exp(−𝜌)
+
𝜕ℒ

𝜕𝜌

7. Last, update the variational parameters
𝜇t+1 = 𝜇t − ηt𝛻𝜇
𝜌t+1 = 𝜌t − ηt𝛻𝜌

Bayes by Backprop - Algorithm
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Bayes by Backprop: Results
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oRevisit connection between minimum description length and variational 
inference

oMinimum Description Length: best model uses the minimum number of 
bits to communicate the model complexity ℒC and the model error ℒE

ℒ 𝜑 = 𝔼𝑞𝑤 𝜑 log 𝑝 𝐷 𝑤 + 𝔼𝑞𝑤 𝜑 log 𝑝(𝑤) + 𝐻(𝑞𝑤(𝜑))

oUse sparsity-inducing priors for groups of weights  prune weights that 
are not necessary for the model

Bayesian Neural Network Compression

C. Louizos, K. Ullrich, M. Welling, Bayesian Compression for Deep Learning, NIPS 2017

ℒE ℒC
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oDefine the prior over weights
𝑧~𝑝 𝑧
𝑤~𝑁(𝑤; 0, 𝑧2)

oThe scales of the weight prior have a prior themselves

oGoal: by treating the scales as random variables the 
marginal p(𝑤) can be set to have heavy tails more 
density near 0

oSeveral distributions possible to serve as priors

Bayesian Neural Network Compression
Spike-and-slab 

distribution

Laplace distribution 
(Lasso)
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Sparse-inducing distributions

Half-Cauchy

Laplace distribution (Lasso)
𝑝 𝑧2; 𝜆 = exp(𝜆)

Lasso focuses on shrinking 
the larger values

Spike-and-slab distribution
Mixture of a very spiky and a very 

broad Gaussian

Or a mixture of a δ-spike at 0, and a 
slab on the real line

This would lead to large number of 
possible models: 2𝑀 for 𝑀 parameters

Log-Uniform
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o700x compression

o50x speed up 

Bayesian Neural Network Compression

First layer Second layer

Input feature importance



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    BAYESIAN DEEP LEARNING    - 53

oHard to model epistemic uncertainty real-time
◦Typically, Monte Carlo approximations are required

◦Efficiency and uncertainty is needed for robotics, self-driving, health AI, etc

oNo benchmarks to fairly evaluate

o Inference techniques are still not good enough

Some open questions
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Summary

oWhy Bayesian Deep Learning?

oTypes of uncertainty

oBayesian Neural Networks

oBackprop by Bayes

oMC Dropout


