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Optimization vs Learning

o In optimization, we want to discover the optimal parameter solution
> that minimize the cost of specific solution

> given a parametric definition of model and a set of data
> For instance, find the optimal train schedule given resources and population

o In learning, we have observed and unobserved data. We want to
- not only make small errors on the observed data (training data)

> but also generalize well to unseen data (validation & test data)
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Learning optimal parameters

o That said, we still want to optimize on observed data
o Borrowing the optimization toolkit, with extra regularizations
min Eyppen L0y, D] +A0(w)
wherey = hy o hy_q o ---o hy (x) and each module h; comes with parameters w;,
o In simple words, (1) make sure the model predictions are not too wrong

o While (2) not being “too geared/optimized” towards the observed data
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Bias-variance tradeoff
High Bias based on primary test set Low Bias
Low Variance I_'I_I High Variance
Underfitting Overfitting
A [
' )
' overfitting =
' zone =
(|
(|
! : 4
1 generalization -
L] error
(|
hias I variance
e, | I - P
B LT '.. 4 A
............ i --................-..}. .. "',... : .
optimal capacity
Link Link

o No need for the “optimal” parameters, as they can never be truly optimal
> We will not see the training data ever again

> And, the learning objective is often a relaxed proxy
> we cannot optimize for {0, 1} hard and discrete predictions, we relax it to a continuous proxy (0, 1)
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Minimizing the empirical risk

o The expectation of a random variable (RV)
should technically be computed on all
possible combinations x, [

o Clearly, that is not possible L,
> Instead stick on observed in training
> Source of stochasticity

[Ex,l~p(x,l) |L( y, ] = Z L( Y, 1)
xX,y*€(X,L) train

o To minimize any function take a step 0
> Our best bet: the (negative) gradient

d
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Gradient descent

o Gradient descent is the go-to approach

WD) — (6 _ 2L

> w) are the parameters of our neural network at epoch (t)

oL . .
" is the gradient of the loss w.r.t. the parameters

o

ow

o It Z—Vi is computed from whole dataset — Batch gradient descent

oL . . . .
o If -—1is computed from random mini-batch — Stochastic gradient descent

o On non-convex landscapes no guarantee for global optimum
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Loss surfaces are highly non-convex [
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Gradient descent vs. Stochastic Gradient Descent

Gradient descent Stochastic gradient descent

Initial
Weight

Cost

II Gradient
v /

I

!

Incremental

= Minimum Cost

Derivative of Cost

>

Link Link
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SGD properties

o SGD is doubly stochastic
> (1) Replacing expectation with sum: Ep,, )[£] = X, ;£ (like Batch GD)
° (2) Replacing whole training set with mini-batches

o Standard error: © / - where ¢ is the variance in p(x, y*), n, the batch size

- To compute 2x more accurate gradients, we need 4x data points
°ny = 32-64 is usually ok

o No need to run through whole dataset to compute a single gradient
o As gradients are good enough and faster, accuracy often better

o Good for streaming data
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SGD properties

o Randomness reduces overfitting
> No guarantees though

> Good shuffling is important
> Better different mini-batches per epoch

Current solution

\\ \Noisy SGD gradient

Best GD solution %

o Must make sure of class/data balance in batches

Best SGD solution

o Could select samples with max information content
- But make sure the selection is still “random enough”

o Preferred because batch GD anyways optimizes what is not the main objective
> The training data
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Stochastic gradient-based optimization

o Stochastic gradient-based optimization is the go-to approach
o Itislocal, so prone to local peculiarities and minima

o But efficient and effective, so it gets the job done
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Stochastic gradient-based optimization

o Stochastic gradient-based optimization is the go-to approach
o Itislocal, so prone to local peculiarities and minima

o But efficient and effective, so it gets the job done

1. Sample mini-batch
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Stochastic gradient-based optimization

o Stochastic gradient-based optimization is the go-to approach
o Itislocal, so prone to local peculiarities and minima

o But efficient and effective, so it gets the job done

2. Forward prop
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Stochastic gradient-based optimization

o Stochastic gradient-based optimization is the go-to approach
o Itislocal, so prone to local peculiarities and minima

o But efficient and effective, so it gets the job done

3. Compute errors and gradients
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Stochastic gradient-based optimization

o Stochastic gradient-based optimization is the go-to approach
o Itislocal, so prone to local peculiarities and minima

o But efficient and effective, so it gets the job done

4. Update model parameters and repeat

h(w®; x)
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Batch gradient descent vs stochastic gradient descent

Conditions of convergence Yes No
Apply Hessians & accelerations on curvatures Yes No
Theoretical analysis Yes No
Scales up/efficient No Yes
Guaranteed theoretical fast convergence No No
Overfitting Easier Harder
Global minimum No No
In practice, good results No Yes

o For deep neural nets: use stochastic gradient descent
> Virtually nobody uses batch gradient descent with deep nets
> Doesn’t mean you should not explore
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In a nutshell

o First, define your neural net
y=hyohy_q0-0hy(x)

where each module h; comes with parameters w;

o Finding an “optimal” neural network means optimizing the empirical risk
w* = argmin Z L(y, 1)
A%
(xy")EXL)
o To optimize the empirical risk, rely on stochastic gradient descent methods

w(ttD) = w(® _p 22
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