- NN

olelelelslololo ote

g
oL
=

progress. . .

=
(o7 0)
k=
=
R
-




Backpropagation < Chain rule

o The neural network loss is a composite function of modules

o We want the gradient w.r.t. to the parameters of the [ layer

AL dL dh dh, dL  dL dh

dw, dh, dh,_, “dw, ﬁdhl'dw\

Gradient of loss w.r.t. the module output Gradient of a module w.r.t. its parameters

o Backpropagation is the “algorithmic manifestation” of the chain rule
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Backpropagation < Chain rule!!!

o Backpropagating gradients means repeating computation of 2 quantities
dL dL dh

dw, dh, dw,

o For % just compute the Jacobian of the [-th module w.r.t. to its parameters w;,
l

o Very local rule —» “every module looks for its own”

o Since computations can be very local, this means that
> graphs can be complex

- modules can be complex if differentiable
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Backpropagation < Chain rule!!!

o Backpropagating gradients means repeating computation of 2 quantities
df dL dh

dw, dh; dw,

o For ar we applv chain rule again to recursively reuse computations
an pply & y |

l
dL  dL  dhyy
dht  dh;., dh

\ N

Recursive rule —» computation-friendly Gradient of module w.r.t. its module input

o Remember, the output of a module is the input for the next one: a;=x;,1
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Computational graphs: Forward graph

o Compute the activation of each module in the network h; = h;(w; x;)

o Then, set x;,1: = hy

o Store intermediate variables h;
- will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

O

h,
Fon

—»@—\’ h4
> h3 —>< :z ,
hs

@ h
@
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations
oh; Oh!
ow;’ onl-1

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
- Because the flow of computations is reverse to data flow

ohy oh,
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations
dh; OJdh;
ow;’ 0h;_4

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
- Because the flow of computations is reverse to data flow

@‘7 ahl al < ah3
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Higher-order derivatives

o Computing higher-order derivatives is similar

dh oh
d2h 0x1X4 0X1XM
Hessian = H = ——5 = : :
dx oh oh
_axMxM 8xMxM_

o Basically, it is the gradient of the gradient

. . ... dh . .
o Per first-order partial derivative ——, auto-differentiate once more
i

o In practice, computing the second-order gradient is very expensive
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Backprogation in summary

o Step 1. Compute forward propagations for all layers recursively

h; = hy(x;) and x44 = Iy

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients
> Cache computations when possible to avoid redundant operations

de dL dh, 4L dL dhy,
dw, dh; dw; dhy  dhyyy  dhiy

o Step 3. Use the gradients —; with Stochastic Gradient Descend to train

ar
dw
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Backpropagation visualization

Forward propagation

— hy=x

—> hy = a(w1hyp) — Store h; . Remember that d,0 = g - (1 — 0)
h, = a(w,hy) — Store h,
L =05l — hyl|?

Backward propagation
L _ o

dh, (v 2)

dL  dL dh, dL
dw, dh,dw, dh,
dL  drL dh, dr

dL
h1U(W2h1)(1 — U(W2h1)) = d_azh1h2(1 — hy)

dL
WZU(W2h1)(1 — U(W2h1)) = ——wyhy(1 — hy)

dh, dh,dh; dh, dh,
de _ dL dh _ dL (wiho)(1 — o€ h))—dthl ,
dWl - dhl dWl - dhl 00- Wl 0 o Wl 0 - dh1 0 1( 1)
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Backpropagation visualization

Forward propagation

ho =X
hy = o(wihg) — Store h; . Remember that 0,0 = o - (1 — 7)
—> h, = a(w,yhy) — Store h,

L =05-|[l— hyl?

Backward propagation
L

dh, —(y" = hy)

d.  dL dh, dL
dw, dh,dw, dh,

dL dL dh dL dL
2 = WZU(W2h1)(1 - U(W2h1)) = —wyhy(1 = hy)

dL
h1U(W2h1)(1 — U(W2h1)) = Ehﬂlz(l — hy)

2

dh, dh,dh; dh, dh,
A _ dbdhy _dr, A (1 o h))—dthl ,
dw, _ dh, dw, _ dh, 00 W1l o\W1ilp) ) = dh, 011 ( 1)
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Backpropagation visualization

Forward propagation
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— L =05l = Ryl
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Backpropagation visualization

Forward propagation

ho =X
hy = o(wihg) — Store h; . Remember that 0,0 = o - (1 — 7)
h, = a(w,hy) — Store h,

L =05-|[l— hyl?

Backward propagation
L

_’d—hz=—(3’ — h3)

d.  dL dh, dL
dw, dh,dw, dh,

dL dL dh dL dL
2 = WZU(W2h1)(1 - U(W2h1)) = —wyhy(1 = hy)

dL
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2

dh, dh,dh; dh, dh,
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Backpropagation visualization

Forward propagation
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Backward propagation
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dw, dh,dw, dh,

dL dL dh dL dL
2 = WZU(W2h1)(1 - U(W2h1)) = —wyhy(1 = hy)

—_—

dL
h1U(W2h1)(1 — U(W2h1)) = Ehﬂlz(l — hy)

2

" dh, _ dh,dh; _dh, dh,
dL _dtdh _dL, ) (1 — o h))—dthl ,
dw, _ dh, dw, _ dh, 00 W1l oW1l ~dh, 011 ( 1)
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Backpropagation visualization

Forward propagation

ho =X
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L =05-|[l— hyl?
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What's the big deal?

o Backpropagation is as simple as it is complicated
o Mathematically, just the chain rule

o That simple, that we can even automate it (“reverse-mode differentiation”)

o However, algorithmically the devil is in the details to make it efficient

o And, theoretically, why does it even work given the strong non-convexity?
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Summary

o Modularity in Neural Networks
o Neural Network Modules
o Neural Network Cheatsheet

o Backpropagation

Reading material
o Chapter 6
o Eftficient Backprop, LeCun et al., 1998
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