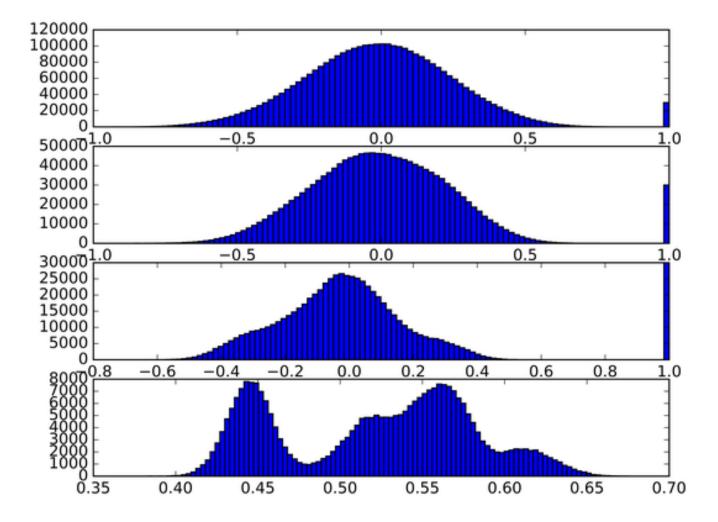
Initialization

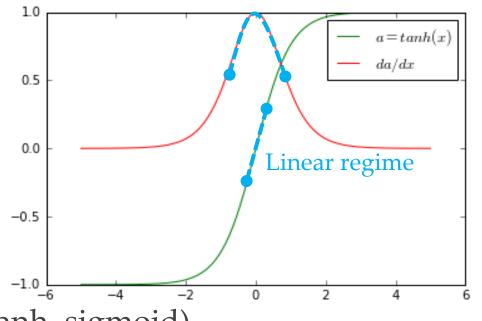


UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES – 1

Weight initialization

Large gradients

- There are few contradictory requirements:
- Weights need to be small enough
 Otherwise output values explode
- Weights need to be large enough
 Otherwise signal too weak to propagate



- Around origin (**0**) for symmetric functions (tanh, sigmoid)
 - In early training stimulate activation functions near their linear regime
 - Larger gradients \rightarrow faster training

Weight initialization

- Weights initialized **to preserve the variance** of the activations/gradients
 - During the forward and backward computations
 - We want similar input and output variance because of modularity
- Weights must be initialized to be different from one another
 - Don't give same values to all weights (like all 0)
 - All neurons generate same gradient \rightarrow no learning
- Initialization depends on
 non-linearities
 - data normalization

$$\frac{dL}{h_0 = x} \rightarrow \text{Store } h_1 \text{ . Remember that } \partial_x \sigma = \sigma \cdot (1)$$

$$h_2 = \sigma(w_2 h_1) \rightarrow \text{Store } h_2$$

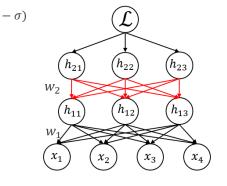
$$\mathcal{L} = 0.5 \cdot ||l - h_2||^2$$

$$\frac{dL}{dh_2} = -(y^* - h_2)$$

$$\frac{dL}{dw_2} = \frac{dL}{dh_2} \frac{dh_2}{dw_2} = \frac{dL}{dh_2} h_1 \sigma(w_2 h_1) (1 - \sigma(w_2 h_1)) = \frac{dL}{dh_2} h_1 h_2 (1 - h_2)$$

$$\frac{dL}{dh_1} = \frac{dL}{dh_2} \frac{dh_2}{dh_1} = \frac{dL}{dh_2} w_2 \sigma(w_2 h_1) (1 - \sigma(w_2 h_1)) = \frac{dL}{dh_2} w_2 h_2 (1 - h_2)$$

$$\frac{dL}{dw_1} = \frac{dL}{dh_1} \frac{dh_1}{dw_1} = \frac{dL}{dh_1} h_0 \sigma(w_1 h_0) (1 - \sigma(w_1 h_0)) = \frac{dL}{dh_1} h_0 h_1 (1 - h_1)$$

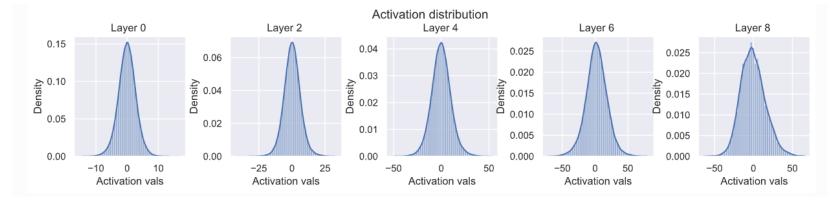


Forward propagation

Bad initialization can cause problems

Activation distribution Layer 0 Layer 2 Layer 6 Layer 8 Layer 4 30 1.5 6 200 50 Density Density 0 0 0 0 0 Density 100 Density 0.1 Density 5 20 10 0.5 2 50 10 0.0 0 0 0 C 0 -0.250.00 0.25 0.00 0.05 0.000 0.025 -0.01 0.00 0.01 1 -0.05-0.025-1 Activation vals Activation vals Activation vals Activation vals Activation vals

Initializing weights in every layer with increasing variance \rightarrow can explode the variance in activations



Initializing weights in every layer with same constant variance \rightarrow can diminish variance in activations

UNIVERSITY OF AMSTERDAM

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – «#>

Initializing weights by preserving variance

• For *x* and *y* independent • $var(xy) = \mathbb{E}[x]^2 var(y) + \mathbb{E}[y]^2 var(x) + var(x)var(y)$ • For $a = wx \Rightarrow var(a) = var(\sum_i w_i x_i) = \sum_i var(w_i x_i) \approx d \cdot var(w_i x_i)$ $var(w_i x_i) = \mathbb{E}[x_i]^2 var(w_i) + \mathbb{E}[w_i]^2 var(x_i) + var(x_i)var(w_i)$ $= var(x_i)var(w_i)$ tanh because we assume that x_i, w_i are unit gaussians $\rightarrow \mathbb{E}[x_i] = \mathbb{E}[w_i] = 0$ So, the variance in our activation $var(a) \approx d \cdot var(x_i)var(w_i)$ Ο

Understanding the difficulty of training deep feedforward neural networks, Glorot, Bengio, 2010

💆 University of Amsterdam

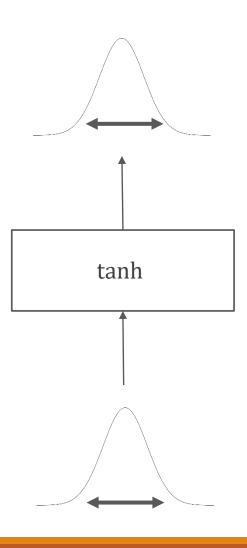
Initializing weights by preserving variance

• Since we want the same input and output variance $var(a) = d \cdot var(x_i)var(w_i) \Rightarrow var(w_i) = \frac{1}{d}$

• Draw random weights from

 $w \sim N(0, 1/d)$

where *d* is the number of input variables to the layer



VISLab

• Unlike sigmoidals, ReLUs return 0 half of the time

- $\mathbb{E}[w_i] = 0$ but $\mathbb{E}[x_i] \neq 0$
- Redoing the computations

 $var(w_i x_i) = var(w_i)(\mathbb{E}[x_i]^2 + var(x_i)) = var(w_i)\mathbb{E}[x_i^2] \quad (var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2)$

•
$$\mathbb{E}[x_i^2] = \int_{-\infty}^{\infty} x_i^2 p(x_i) dx_i = \int_{-\infty}^{\infty} \max(0, a_i)^2 p(a_i) da_i = \int_{0}^{\infty} a_i^2 p(a_i) da_i$$

= $0.5 \int_{-\infty}^{\infty} a_i^2 p(a_i) dy_i = 0.5 \cdot \mathbb{E}[a_i^2] = 0.5 \cdot var(a_i)$

• Draw random weights from $w \sim N(0, 2/d)$

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, He, Zhang, Ren, Sun, 2015 Link

 $a_i = 0$

ReLU

 χ_i