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o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger

o Regularization is crucial to avoid overfitting

o Possible regularization methods
◦ ℓ2-regularization

◦ ℓ1-regularization

◦ Dropout

◦ …

Regularization
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o Most important (or most popular) regularization

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥;𝑤1,…,L ) +
𝜆
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o The ℓ2-regularization is added to the gradient descent update rule

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 𝛻𝜃ℒ + 𝜆𝑤𝑙 ⟹

𝑤𝑡+1 = 1 − 𝜆𝜂𝑡 𝑤
𝑡 − 𝜂𝑡𝛻𝜃ℒ

o 𝜆 is usually about 10−1, 10−2

ℓ2-regularization 

“Weight decay”, 
because weights get 
smaller
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o ℓ1-regularization is one of the most important regularization techniques

w∗ ← argmin𝑤 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥;𝑤1,…,L ) +
𝜆
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෍
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o Also ℓ1-regularization is added to the gradient descent update rule

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 𝛻𝜃ℒ + 𝜆
𝑤 𝑡

|𝑤 𝑡 |

o ℓ1-regularization  sparse weights
◦ 𝜆 ↗  more weights become 0

ℓ1-regularization 

Sign function
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o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error Stop 
when validation error starts increasing
◦ This quite likely means the network starts to overfit

o For a linear model equivalent to ℓ2-regularization (link)

Early stopping

https://medium.com/@rahuljain13101999/why-early-stopping-works-as-regularization-b9f0a6c2772
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o During training randomly set activations to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 = 0.5

o During testing all neurons are used
◦ Neuron activations reweighted by 𝑝

o Benefits
◦ Reduces complex co-adaptations or co-dependencies between neurons

◦ Every neuron becomes more robust

◦ Decreases overfitting

Dropout [Srivastava2014]
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Original model
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 2
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 2
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Data augmentation

Original

Flip Random crop

Contrast Tint


