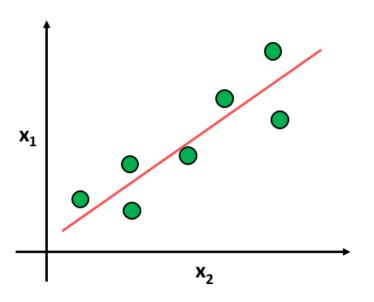
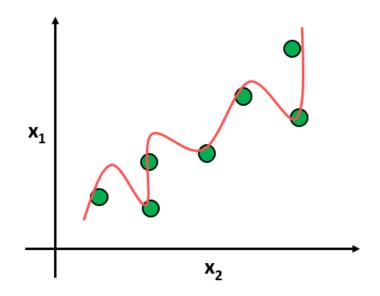
Regularization





Regularization

- Neural networks typically have thousands, if not millions of parameters
 - Usually, the dataset size smaller than the number of parameters
- Overfitting is a grave danger
- Regularization is crucial to avoid overfitting
- Possible regularization methods
 - \circ ℓ_2 -regularization
 - ℓ_1 -regularization
 - Dropout
 - • •

ℓ_2 -regularization

Most important (or most popular) regularization

$$\mathbf{w}^* \leftarrow \arg\min_{w} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; w_{1,...,L})) + \frac{\lambda}{2} \sum_{l} ||w_l||^2$$

 \circ The ℓ_2 -regularization is added to the gradient descent update rule

$$w_{t+1} = w_t - \eta_t (\nabla_{\theta} \mathcal{L} + \lambda w_l) \Longrightarrow$$

$$w_{t+1} = (1 - \lambda \eta_t) w^{(t)} - \eta_t \nabla_{\theta} \mathcal{L}$$

o λ is usually about 10^{-1} , 10^{-2}

"Weight decay", because weights get smaller

ℓ_1 -regularization

 \circ ℓ_1 -regularization is one of the most important regularization techniques

$$\mathbf{w}^* \leftarrow \operatorname{arg\,min}_{w} \sum_{(x,y) \subseteq (X,Y)} \mathcal{L}(y, a_L(x; w_{1,\dots,L})) + \frac{\lambda}{2} \sum_{l} |w_l|$$

• Also ℓ_1 -regularization is added to the gradient descent update rule

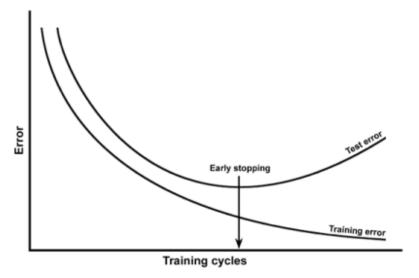
$$w_{t+1} = w_t - \eta_t \left(\nabla_{\theta} \mathcal{L} + \lambda \frac{w^{(t)}}{|w^{(t)}|} \right)$$

- ℓ_1 -regularization → sparse weights
 - $\lambda \nearrow$ more weights become 0

Sign function

Early stopping

- Monitor performance on a separate validation set
- Training the network will decrease training error, as well validation error Stop when validation error starts increasing
 - This quite likely means the network starts to overfit
- For a linear model equivalent to ℓ_2 -regularization (link)

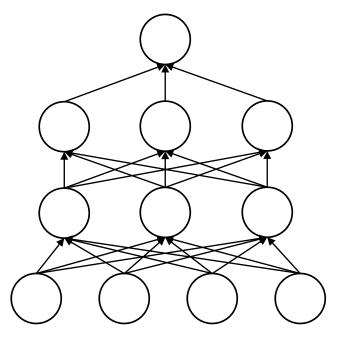


Dropout [Srivastava2014]

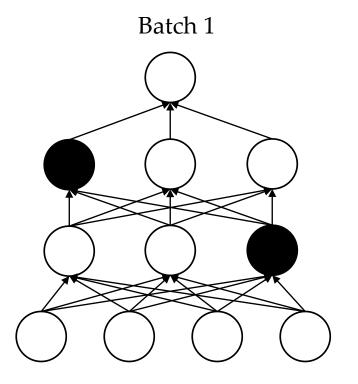
- During training randomly set activations to 0
 - Neurons sampled at random from a Bernoulli distribution with p = 0.5
- During testing all neurons are used
 - Neuron activations reweighted by p
- Benefits
 - Reduces complex co-adaptations or co-dependencies between neurons
 - Every neuron becomes more robust
 - Decreases overfitting

- Effectively, a different architecture for every input batch during training
 - Similar to model ensembles

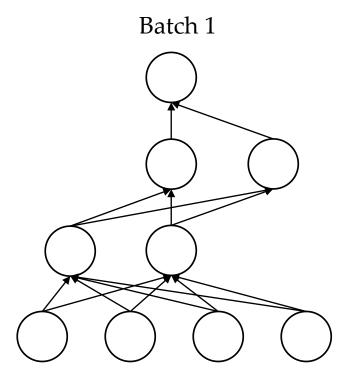
Original model



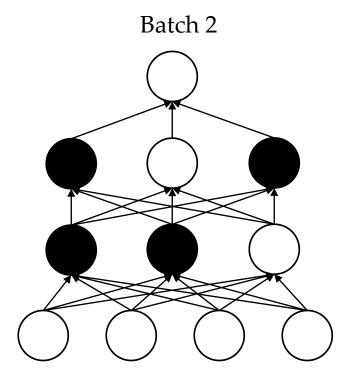
- Effectively, a different architecture for every input batch during training
 - Similar to model ensembles



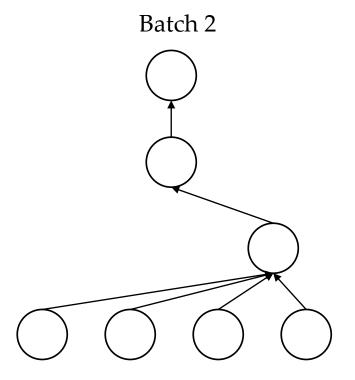
- Effectively, a different architecture for every input batch during training
 - Similar to model ensembles



- Effectively, a different architecture for every input batch during training
 - Similar to model ensembles



- Effectively, a different architecture for every input batch during training
 - Similar to model ensembles



Data augmentation

Original

Flip

Contrast

Random crop

Tint

