Grid LSTM

Kalchbrenner et al. (Google DeepMind)

Joost Bastings

£l

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

March 10, 2016



Outline
QOutline

1. Introduction
2. LSTM

3. Grid LSTM
4. Experiments

5. Conclusion

2/32



Introduction

Outline

1. Introduction

3/32



Long Short-Term Memory (LSTM)
networks have gates that control
access to memory cells

(Hochreiter and Schmidhuber, 1997)
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Long Short-Term Memory (LSTM)
networks have gates that control
access to memory cells

(Hochreiter and Schmidhuber, 1997)
> Preserve signals, propagate
errors for much longer
» Gates can learn to attend to

specific parts of the input
signals (and ignore others)
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Introduction

®

Long Short-Term Memory (LSTM)
networks have gates that control

s A
access to memory cells > ; I
(Hochreiter and Schmidhuber, 1997) & ?
» Preserve signals, propagate R [o] N
" J

errors for much longer

v

» Gates can learn to attend to O
. . X
specific parts of the input
signals (and ignore others) ©Christopher Olah

These properties make LSTMs good at speech recognition,
hand-writing recognition, machine translation, etc.
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» Computer vision success: deep networks are key to finding
complex patterns
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Introduction

Motivation

» Computer vision success: deep networks are key to finding
complex patterns

» However, deep networks also suffer from the vanishing
gradient problem!

» This is the motivation to generalise the advantages of LSTMs
to deep computation
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|dea: Grid LSTM

» A Grid LSTM (Kalchbrenner et al., 2015) is a network
arranged in a grid of 1 or more dimensions
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|dea: Grid LSTM

» A Grid LSTM (Kalchbrenner et al., 2015) is a network
arranged in a grid of 1 or more dimensions

» LSTM cells in ‘any or all' dimensions of the grid
» Short-hand: N-dimensional Grid LSTM = N-LSTM
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LSTM

» An LSTM processes input and target pairs

(X17Y1)7 H -y(va)/m)
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» An LSTM processes input and target pairs

(X17Y1)7 H -y(va)/m)

> Past inputs xq,...xj_1 determine the state of the network:

hidden h ¢ R

memory m € RY

Ix;

> LetH:[h

], where [ is a projection matrix transforming x;
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At each step, calculate:

1. Gates:
g' = o(W"H) update
g’ = o(W'H) forget i
g° = o(W°H) output —
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LSTM

At each step, calculate:

1. Gates:
g' = o(W"H) update
g’ = o(W'H) forget <l
g° = o(W°H) output T
g = tanh(W°H) content

2. New memory:

m/:gf®m+gu®gc

3. New state:
h' = tanh(g® © m’)
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10/32



Grid LSTM
Outline

3. Grid LSTM
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Grid LSTM

Grid LSTM

An N-LSTM block receives as input:
» N hidden vectors hy, ... hy
» N memory vectors my,...,my
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Grid LSTM

An N-LSTM block receives as input:
» N hidden vectors hy, ... hy
» N memory vectors my,...,my

We concatenate all hidden vectors into a shared input vector:
h;

H=|
hy
And then calculate N transforms:

(h},m}) =LSTM(H, my,W,)

(hYy,my) = LSTM(H, my, W)
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1D Grid LSTM

Ixx;

Standard LSTM block 1d Grid LSTM Block
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Grid LSTM

1d Grid LSTM Block 2d Grid LSTM block
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2d Grid LSTM

Stacked LSTM
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Grid LSTM

\D/i \D/I:\D/Q -

3d Grid LSTM
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Grid LSTM

Grid LSTM — Notes

» Input is projected along the edge(s), see previous slide:
character ‘C’ initializes h; and my
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Grid LSTM

Grid LSTM — Notes

v

Input is projected along the edge(s), see previous slide:
character ‘C’ initializes h; and my

v

Predictions based on both the state and memory of edge cells

\4

It is possible to share weights along any dimension

v

If weights are shared along all dimensions: Tied N-LSTM
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Experiments

» Given k input bits, output 0 iff sum is
even, else 1

1000110010
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Experiments

» Given k input bits, output 0 iff sum is
even, else 1

» Parity is really hard, because changing
one input bit changes the target

» All input at the same time (why?)

1000110010

19/32



Layers

160 160
' .
140 140 . .
. t.o
1200 g ° 120 R T Y | '
O Biectitnadgth:
100 H ] 100 :";" tel H
. Se g e . c e
80f s ° 80 H . ..
. THHHETIN.
wof 3. - N 60t :igx'!g':.‘: .
* . . . H [} )
H H l I
oF o0 a0t H l‘!. ..
: ' I= .
. HE) o 8
K 20t l' .,|-|.
1t
oL L oL it
0 50 100 150 200 250 0 50 100 150 200 250
Input Bits Input Bits

Left: #hidden = 500, Right

. #thidden = 1500

Dot: 100% accuracy on k-bit input

Experiments

20/32



Experiments
Parity
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Experiments
Addition

Task: sum two 15-digit integers

Layers Samples Accuracy

Stacked LSTM 1 5M 51%
Untied 2-LSTM 5 5M 67%
Tied 2-LSTM 18 0.55M >99%

» Trained up to 5M samples or until accuracy 100%
> Tied better because of the repetitive nature of the task

» Grid LSTM has advantage by tackling vanishing gradient

21/32



Experiments

Memorization

Task: memorize random sequence of 20 symbols

—abc----
————abc-
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Experiments

Memorization

Task: memorize random sequence of 20 symbols

—abc----
= Untied Stacked LSTM
Samples (millions) « Tied 2-LSTM . Untied 2-LSTM + Tied Stacked LSTM
1 T T 1.7
3
| 15
0.7
2
13
0.4 B
! 1.1
0.1 - 0 0.9 1
0 10 20 30 40 50 0 10 20 30 0 4 8 12 16
Layers Layers Layers
Accuracy > 99% Accuracy > 80% Accuracy > 50%

» All networks have 100 hidden units
> Vertical axis: #samples to reach threshold

22/32



Character-level LM

Task: predict next character in corpus
» Hutter challenge (Wikipedia data set, 100M characters)
» Sample sequences of 10000 chars, backprop every 50 chars
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Experiments
Character-level LM

BPC Params Alphabet Test

Stacked LSTM (Graves) 1.67  27M 205 last 4MB
MRNN (Sutskever) 1.60 4.9M 86 last 10MB
GFRNN (Chung) 1.58  20M 205 last 5MB

Tied 2-LSTM 1.47 16.8M 205 last 5MB

24732



MNIST Digits

l//

A 3-LSTM processes non-overlapping patches of image pixels
So, the input is a 2D grid of patches

The 3rd dimension is the depth of the network

Final ReLU layer + Softmax

vV v v Y
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MNIST Digits — Results

Test Error (%)

Wan et al. (Wan et al., 2013) 0.28
Graham (Graham, 2014a) 0.31
Untied 3-LSTM 0.32
Ciresan et al. (Ciresan et al., 2012) 0.35
Untied 3-LSTM with RelLU 0.36
Mairar et al. (Mairal et al., 2014) 0.39
Lee et al. (Lee et al., 2015) 0.39
Simard et al. (Simard et al., 2003) 0.4

Graham (Graham, 2014b) 0.44
Goodfellow et al. (Goodfellow et al., 2013) 0.45
Visin et al. (Visin et al., 2015) 0.45
Lin et al. (Lin et al., 2013) 0.47
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Experiments

Machine Translation
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» We view translation as a 2-dimensional mapping
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Experiments

Machine Translation

» We view translation as a 2-dimensional mapping
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Experiments

Machine Translation

» We view translation as a 2-dimensional mapping

» One dimension processes the source sentence, another
dimension produces the target sentence

» The network repeatedly re-encodes the source sentence
based on the part of the target sentence generated so far

» Weights are shared across source and target dimensions

» Regular identity connections along the 3rd dimension

28/32



Experiments
Evaluation

Evaluation on IWSLT BTEC Chinese-to-English
» 44016 sentence pairs (train), 1006 (dev), 503 (test)
» Target sentences on average 12 words long

> 15 reference translations
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Experiments
Evaluation

Evaluation on IWSLT BTEC Chinese-to-English
» 44016 sentence pairs (train), 1006 (dev), 503 (test)
» Target sentences on average 12 words long

> 15 reference translations

Valid-1 Test-1 Valid-15 Test-15

DGLSTM-Att. - 345 - -
CDEC 30.1 41 50.1 58.9
3-LSTM 30.3 42.4 51.8 60.2

29/32
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5. Conclusion
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Conclusion

Conclusion

» Introduction of Grid LSTM

> Cells have shown advantages is parity, addition, memorization
tasks

» Applications in character prediction, MNIST, and machine
translation
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Conclusion
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Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention

DRAW: A Recurrent Neural Network For Image Generation

Kelvin Xu

Jimmy Lei Ba

Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
Richard S. Zemel
Yoshua Bengio

Abstract

Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
stochastically by maximizing a variational lower
bound. We also show through visualization how
the model is able to automatically learn to fix its
gaze on salient objects while generating the cor-
responding words in the output sequence. We
validate the use of attention with state-of-the-
art performance on three benchmark datasets:
Flickr8k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions of an image is a task
very close to the heart of scene understanding — one of the
primary goals of computer vision. Not only must caption
generation models be powerful enough to solve the com-
puter vision challenges of determining which objects are in
an image, but they must also be capable of capturing and
expressing their relationships in a natural language. For
this reason, caption generation has long been viewed as
a difficult problem. It is a very important challenge for
machine learning algorithms, as it amounts to mimicking
the remarkable human ability to compress huge amounts of
salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in training
neural networks (Krizhevsky et al., 2012) and large clas-
sification datasets (Russakovsky et al., 2014), recent work

KELVIN.XU@UMONTREAL.CA

JIMMY @PSI.UTORONTO.CA

RKIROS @CS.TORONTO.EDU
KYUNGHYUN.CHO@UMONTREAL.CA
AARON.COURVILLE@UMONTREAL.CA
RSALAKHU@CS.TORONTO.EDU
ZEMEL@CS.TORONTO.EDU
FIND-ME@ T THE.WEB

Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4

14x14 Feature Map A
X
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"

water
Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word
generation |

has significantly improved the quality of caption genera-
tion using a combination of convolutional neural networks
(convnets) to obtain vectorial representation of images and
recurrent neural networks to decode those representations
into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual sys-
tem is the presence of attention (Rensink, 2000; Corbetta &
Shulman, 2002). Rather than compress an entire image into
a static representation, attention allows for salient features
to dynamically come to the forefront as needed. This is
especially important when there is a lot of clutter in an im-
age. Using representations (such as those from the top layer
of a convnet) that distill information in image down to the
most salient objects is one effective solution that has been
widely adopted in previous work. Unfortunately, this has
one potential drawback of losing information which could
be useful for richer, more descriptive captions. Using more
low-level representation can help preserve this information.
However working with these features necessitates a power-
ful mechanism to steer the model to information important
to the task at hand.

In this paper, we describe approaches to caption genera-
tion that attempt to incorporate a form of attention with

Describe images

Karol Gregor

Ivo Danihelka

Alex Graves

Danilo Jimenez Rezende
Daan Wierstra

Google DeepMind

Abstract

This paper introduces the Deep Recurrent Atten-
tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

Proceedings of the 92™ International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

KAROLG@GOOGLE.COM
DANIHELKA @GOOGLE.COM
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DANILOR @ GOOGLE.COM
WIERSTRA @GOOGLE.COM

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-

Generate images
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Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
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this reason, caption generation has long been viewed as
a difficult problem. It is a very important challenge for
machine learning algorithms, as it amounts to mimicking
the remarkable human ability to compress huge amounts of
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Despite the challenging nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in training
neural networks (Krizhevsky et al., 2012) and large clas-
sification datasets (Russakovsky et al., 2014), recent work
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ized attentional maps (3) are explained in section 3.1 & 5.4
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has significantly improved the quality of caption genera-
tion using a combination of convolutional neural networks
(convnets) to obtain vectorial representation of images and
recurrent neural networks to decode those representations
into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual sys-
tem is the presence of attention (Rensink, 2000; Corbetta &
Shulman, 2002). Rather than compress an entire image into
a static representation, attention allows for salient features
to dynamically come to the forefront as needed. This is
especially important when there is a lot of clutter in an im-
age. Using representations (such as those from the top layer
of a convnet) that distill information in image down to the
most salient objects is one effective solution that has been
widely adopted in previous work. Unfortunately, this has
one potential drawback of losing information which could
be useful for richer, more descriptive captions. Using more
low-level representation can help preserve this information.
However working with these features necessitates a power
ful mechanism to steer the model to information important
to the task at hand.

In this paper, we describe approaches to caption genera-
tion that attempt to incorporate a form of attention with
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DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor

Ivo Danihelka

Alex Graves

Danilo Jimenez Rezende
Daan Wierstra

Google DeepMind

Abstract

This paper introduces the Deep Recurrent Atten-
tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

Proceedings of the 32™° International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

KAROLG@GOOGLE.COM
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Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
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Grammatical description of images

https://vimeo.com/146492001



https://vimeo.com/146492001

Grammatical description of images

e a smiling old lady holds a pizza on a plate.

« a woman holding a plate with a pizza on it

e a woman carrying homemade pizza to the table.

« a woman holding a pizza on a red plate.

e a woman walking with a pan in her hands with a
whole pizza on it.




RNN for Captioning

Distribution
over vocab

d1

— —

Features: Hidden state:

First Second
word word

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 13- 85 24 Feb 2016

Source: http://cs231n.stanford.edu/slides/winter1516_lecture13.pdf
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throwing(0.33) frisbee(0.37)

park(0.35)

(b) A woman is throwing a frisbee in a park.

14x14 Feature Map

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation




A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- E— mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation




A stop sign is on a road with a

mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.

Intuition: Since we usually see dogs at a certain position,
we expect dogs at certain positions.

The model learns correlation structures in the input and starts putting
attention weight where dogs can be expected (and actually exist in the

training data).



14x14 Feature Map

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation

512 filter, each 14x14 pixel




A woman is throwing a frisbee in a park.

“soft” deterministic attention “hard” stochastic attention

summarize all locations, so that sample one locatio
context vector z is

since you do argmax, gradient is zero
almost everywhere, so you can't use
gradient descent

you can take the derivative dz/dp

| | reinforcement learning:
trainable by back-propagation REINFORCE (Williams, 1992)
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Evaluation

 BLEU

Google NIC(Vinyals et al., 2014)
Log Bilinear (Kiros et al., 2014a)°
Soft-Attention
Hard-Attention
Google NIC'®
Log Bilinear
Soft-Attention
Hard-Attention
CMU/MS Research (Chen & Zitnick, 2014)¢
MS Research (Fang et al., 2014)12
BRNN (Karpathy & Li, 2014)°
Google NICT°*

Log Bilinear®
Soft-Attention
Hard-Attention

Flickr8k

Flickr30k

BLEU is n-gram precision

METEOR is a combination of unigram-precision, unigram-recall, and
a measure of fragmentation (how well-ordered matched words are)
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Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention

Kelvin Xu

Jimmy Lei Ba

Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
Richard S. Zemel
Yoshua Bengio

Abstract

Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
stochastically by maximizing a variational lower
bound. We also show through visualization how
the model is able to automatically learn to fix its
gaze on salient objects while generating the cor-
responding words in the output sequence. We
validate the use of attention with state-of-the-
art performance on three benchmark datasets:
Flickr8k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions of an image is a task
very close to the heart of scene understanding — one of the
primary goals of computer vision. Not only must caption
generation models be powerful enough to solve the com-
puter vision challenges of determining which objects are in
an image, but they must also be capable of capturing and
expressing their relationships in a natural language. For
this reason, caption generation has long been viewed as
a difficult problem. It is a very important challenge for
machine learning algorithms, as it amounts to mimicking
the remarkable human ability to compress huge amounts of
salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in training
neural networks (Krizhevsky et al., 2012) and large clas-
sification datasets (Russakovsky et al., 2014), recent work
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Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4
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1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image
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word
generation

has significantly improved the quality of caption genera-
tion using a combination of convolutional neural networks
(convnets) to obtain vectorial representation of images and
recurrent neural networks to decode those representations
into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual sys-
tem is the presence of attention (Rensink, 2000; Corbetta &
Shulman, 2002). Rather than compress an entire image into
a static representation, attention allows for salient features
to dynamically come to the forefront as needed. This is
especially important when there is a lot of clutter in an im-
age. Using representations (such as those from the top layer
of a convnet) that distill information in image down to the
most salient objects is one effective solution that has been
widely adopted in previous work. Unfortunately, this has
one potential drawback of losing information which could
be useful for richer, more descriptive captions. Using more
low-level representation can help preserve this information.
However working with these features necessitates a power-
ful mechanism to steer the model to information important
to the task at hand.

In this paper, we describe approaches to caption genera-
tion that attempt to incorporate a form of attention with

Describe images

DRAW: A Recurrent Neural Network For Image Generation
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Abstract

This paper introduces the Deep Recurrent Atten-
tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut

dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

Proceedings of the 92™° International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).
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Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-

Generate images




Goal: Generate images

"dreaming up” images -
transforming random noise into
an endless stream of images
that the model has never even
seen before

Works for MNIST and Street
View House Numbers
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image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

Proceedings of the 92™ International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

KAROLG@GOOGLE.
DANIHELKA @ GOOGLE.
GRAVESA @GOOGLE.
DANILOR @ GOOGLE.
WIERSTRA@GOOGLE.

O Q| e |0g | Gy |42 |0 x

O Q< v |og | |4 |oe |
O |Q|-<|w|og | G|42 | os |0

C¥Qleclv|o6 |4 o]
Cx|Qlc|vioe|G g o |y

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows suc ve stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-




Variational Autoencoder

Encoder: determines a
distribution that captures
salient information about the
input data

Decoder: samples from the
distribution

Spatial selective attention

mechanism that mimics the
foveation of the human eye,
with a sequential variational

auto-encoding framework that

allows for the iterative

construction of complex images
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Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
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network decides at every
step "where to read”,
"where to write", and
“what to write”



Figure 3. Left: A 3 x 3 grid of filters superimposed on an image.
The stride (6) and centre location (¢gx, gy) are indicated. Right:
Three N X N patches extracted from the image (N = 12). The
green rectangles on the left indicate the boundary and precision
(o) of the patches, while the patches themselves are shown to the
right. The top patch has a small § and high o, giving a zoomed-in
but blurry view of the centre of the digit; the middle patch has
large 6 and low o, effectively downsampling the whole image;
and the bottom patch has high ¢ and o.

Selective Attention Model

An NxN grid of Gaussian filters is
positioned on the image by
specifying the co-ordinates of the
grid centre and the stride distance
between adjacent filters.

stride / delta = zoom

It starts covering the entire image
and then zooms in



Implementations

Show, Attend, and Tell

https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow/

DRAW
https://github.com/ikostrikov/TensorFlow-VAE-GAN-DRAW

https://github.com/ericjang/draw

Great blog post about DRAW
http://evjang.com/articles/draw
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Ask, Attend and Answer:
Exploring Question-Guided
Spatial Attention for
Visual Question Answering

memory

is the giraffe on the left an adult ?
One Hop: yes Two Hop: no

where is the smoke coming from ?
GT: train One Hop: cit Two Hop: train

what is the colour of the object near the bed ?
: pink One Hop: bed Two Hop: pink

no
predict

is the man clean shaven ?
One Hop: yes Two Hop: no

what is the kid eating ?

GT: apple One Hop: cake Two Hop: apple

what is beneath the framed picture ?
One Hop: table Two Hop: sofa

Figure 6. Visualization of the spatial attention weights in the one-hop and two-hop model on VQA (top two rows) and DAQUAR (bottom
row) datasets. For each image and question pair, we show the original image, the attention weights W,;; of the one-hop model, and the
two attention weights W+ and W42 of the two-hop model in order.




Image Captioning &

Attention
Deep Learning

Hendrik Heuer
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Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch

Joint work with Alexei A. Efros &
Abhinav Gupta



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation
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ImageNet + Deep Learning
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Geometry? Boundaries?



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and






Semantics from a non-semantic task




Relative Position Task

oo et D <& 8 possible locations

i
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Sample Second Patch



Patch Embedding

CNN Note: connects across instances!




Architecture

F ~ .0

\ aummEa aummEa

Softmax loss S HE
Fully connected S e
A ;lll: :llll: ;lll:

Fully connected

i,
Fully connected | =---==--

Max Pooling
Convolution

¢S
O‘W Max Pooling
_______ Convolution

LRN
Max Pooling
________ Convolution

Convolution
P P

[ Patch1 | [ Patch2 |




Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations




A Not-So “Trivial” Shortcut
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Chromatic Aberra
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What is learned?

Random Initialization ImageNet AlexNet

l'leP; " ~
ﬂh.... Y




Still don’t capture everything

Ours Random Initialization ImageNet AIexNet

You don’t always need to learn!

Input Ours Random Initialization ImageNet AlexNet




Visual Data Mining

Via Geometric .. ..

Verification

Simplified from [Chum et al 2007]




Mined from Pascal VOC2011




Pre-Training for R-CNN

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

AL
1. Input 2. Extract region 3. Compute 4. Classify
Image proposals (~2k) CNN features regions

!

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]



% Average Precision

VOC 2007 Performance

(pretraining for R-CNN)

No Rescaling
Krahenbuhl et al. 2015

68.6
VGG + Krahenbuhl et al.

61.7 [Krdhenbihl, Doersch, Donahue &

Darrell, “Data-dependent

568 Initializations of CNNs”, 2015]

54.2
51.1
46.3 45 6

40.7 42.4

ImageNet Labels Ours No Pretraining



Capturing Geometry?




Surface-normal Estimation

Error (Lower Better) % Good Pixels (Higher Better)
m Mean Median
No Pretraining 38.6 26.5 33.1 46.8 52.5
Ours 33.2 21.3 36.0 51.2 57.8
ImageNet Labels 33.3 20.8 36.7 51.7 58.1



So, do we need semantic labels?



“Self-Supervision” and the Future
Ego Motion Video

Stream1 :
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Stream 2 5

[Agrawal et al. 2015; Jayaraman et al. 2015] [Wang et aI 2015; Srivastava et al 2015; ...]
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| NND |

[Doersch et aI 2014; Pathak et al. 2015; Isola et aI 2015]



Thank you!




Visual Data Mining?




Geometric Verification

Like [Chum et al. 2007], but simpler




Geometric Verification

Like [Chum et al. 2007], but simpler




Learning Spatiotemporal Features
with 3D Convolutional Networks

Du Tran Lubomir Bourdev Rob Fergus Lorenzo Torresani Manohar Paluri
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(1) Dartmouth College, (2) Facebook Al Research, (3) New York University



Introduction

Video Understanding problem:

What Objects?

What Scene?

What Actions?

- cup, mug, hands
- indoor
- making coffee

- person, surfboard
- sea
- surfing

-sun
- mountain
- NA

Many potential applications due to a large-growing number of internet videos



Traditional Computer Vision Pipeline

Feature

Extraction

(e.g. color,
texture,
motions)

@)f this work J

Predictions




Current Best Video Features

* Improved Dense Trajectories (iDT)

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale

——
~~

e L 1 |
. _k;__,_-—"-'_':':-_,.,{: _________
..... = e == __-—d// \\‘.
N RO ,, ,,
Vo ’“&x\)&x\) HOG HOF MBH
Wang et al. IJCV’13

Pros: Cons:
* Don’t need to learn e Highly hand-crafted
* Don’t need large-scale training « Computational intensive

data e Hard to parallelize



What If We Have Big Data?

* Learn features directly from data (no more
human biases)

— Normally built on deep learning, e.g. deep
features

e Does it work?

— Showed to work well for images [Donahue et al.
ICML' 14]

e How about videos?



Deep Image-based Features

%
I M ™ G E Russakovsky et al. 1JCV’15

1000

192 192 128 Max
pooling

2048 2048

Krizhevsky et al. NIPS’12

The marriage of Big Data and Good Deep Learning Models
* Fully-supervised trained on large-scale dataset.
e Activations are used as features for transferring tasks.



Can Image-based Features Applied to
Videos?

* Avideo is a sequence of images?

Any problems?

No explicit
motion

_____¥ ¥ modeling
Image Image

feature feature

‘ What is right for jointly modeling
appearance & motion?

Video feature

3D ConvNets instead of 2D
ConvNets



2D ConvNet vs. 3D ConvNet

e Basic operations: 2D vs. 3D convolution
* Most of current work

— Use 2D convolution on images or videos
— Cannot model temporal information (motions)

0— s
i I ik
H L H <L
output Paln.
w - t

(@) 2D convolution (b) 2D convolution on multiple frames (c) 3D convolution

 We propose to use 3D ConvNets for video
feature learning



What is a Good Architecture for 3D
ConvNets?

e Dataset: UCF101 (13K videos of 101 actions)

e Use similar architecture, varying kernel
temporal depth

—_——
1 +0 4

clip accuracy
clip accuracy

0 5 i 5 | - —4—depth-1 ‘ g | | | |
depth_s 0.32----4ff B o .......... o depth_s i
R depth-5 || osb increase ||
| —¢—depth-7 - | =—a—descrease

é é 10 12 14 16 0 2 4 6 8 10
# epoch # epoch



Learning Video Features with C3D

Convla
64

—

O
[=¥

Conv2a
128

il
5]
O

(o

Conv3a
256

Conv3b
256

Conv4a
512

Conv4b
512

Y Conv5a

512

Convsb
512

ol5

fc6
4096

fc7
4096

e C3D Architecture

— 8 convolution, 5 pool, 2 fully-connected layers

— 3x3x3 convolution kernels

— 2x2x2 pooling kernels

e Dataset: Sports-1M [Karpathy et al. CVPR’14]
— 1.1M videos of 487 different sport categories

— Train/test splits are provided



Sport Classification Results

1 ice_skatings0.98
2 speed_skatings0.01

Method Number of Nets | Clip hit@1 | Video hit@1 | Video hit@5
Deep Video’s Single-Frame + Multires [19] 3 nets 424 60.0 78.5
Deep Video’s Slow Fusion [19] 1 net 419 60.9 80.2
C3D (trained from scratch) 1 net 449 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2




C3D as Generic Features

C3D

What Objects?

fcé
fc7

pre-trained 3D ConvNet

¥ex
x x¥x
(::> oo | What Scene?
*
PR 4

(] °
\’-
e .
#~ What Actions?

Convla
Conv2a

Simple recipe: C3D + linear SVM = good performance



Action Recognition

Jump Rope

Typing

s|Handstand Pushups

| Playing Violin

B ow]nig”

Fencing

Rafting

E o o UCF101




Action Recognition Results

Method Accuracy (%)
Baselines Imagenet 68.8
1DT 76.2
Deep networks [ 1 V] 65.4
Use raw pixel Spatial stream network [50] 72.6
inputs LRCN [7] 71.1
LSTM composite model [39] 75.8
C3D (1 net) 82.3
C3D (3 nets) 85.2
1DT with Fisher vector [31] 87.9
Temporal stream network [50] 83.7
Use optical flows Two-stream networks [30] 88.0
LRCN [7] 82.9
LSTM composite model [39] 84.3
Multi-skip feature stacking [6] 89.1
C3D (3 nets) +iDT 90.4




Action Similarity Labeling

TASK: Given a pair of
clips, predict same or

ASLAN  different actions
The Action

Similarity
Labeling
Challenge

Very challenging evaluation setting: train and test on
different categories of actions



ASLAN Results

4-.- ” -- - -1:;5-;:;4;'-'\\‘0
e :____‘,_;:_;.;-:n_-:'_g_‘_‘_ RN
e o g g >
- s -’
Method Features Model | Acc. | AUC o B ACIR St
7] STIP linear | 60.9 | 653 | 5 el 1
[23] STIP metric | 64.3 | 69.1 ; o Yo |
[21] MIP metric | 65.5 | 71.9 | = o
[12] MIP+STIP+MBH | metric | 66.1 | 73.2 40:) < o ]
[45] iDT+FV metric | 68.7 | 75.4 8_ | | : : : :
Baseline Imagenet linear | 67.5 | 73.8 o S --- g‘?’aan berformanca]
Ours C3D linear 78.3 86.5 E . - - - S'l:'|p[22] |
- OSSML [23]
= = = MIP[21] |
= = = MIP+STIP+MBH [12]
= = = DT+FV [45]
Imagenet 1
: N Random Chance
03 04 05 06 07 08 09 1

false positive rate



Dynamic Scene Classification

YUPENN Maryland

Dataset [5] [41] [9] [10] | Imagenet | C3D
Maryland | 43.1 | 74.6 | 67.7 | 77.7 87.7 87.7
YUPENN | 80.7 | 85.0 | 86.0 | 96.2 96.7 98.1




Object Classification

Dataset Object
Task object recognition
Method [21]
Result 12.0

C3D 22.3

A 10.3

Egocentric object dataset



Result Summary

C3D performance compared with current methods

Dataset SportlM UCF101 ASLAN YUPENN UMD Object
Task action recognition | action recognition | action similarity labeling | scene classification | scene classification | object recognition
Method [19] [391(26D) [51] [10] [10] [32]
Result 80.2 75.8 (89.1) 68.7 96.2 1.7 12.0

C3D 85.2 85.2 (90.4) 78.3 98.1 87.7 22.3

A 5.0 94 (1.3) 9.6 1.9 10.0 10.3

Consistently outperforms state-of-the-art methods
on 4 different tasks and 6 different datasets




Accuracy

C3D is Compact

80

P @-=-==="""""
75} L, =T 9 :
" | e ===
70 l'; -‘-n--- A I
es5f ;E:—"A-_--
I .
60 : ﬁ’
551 .{':
0 .;3
sof -
f
40‘;" | - A- !magehet 1
35-’. . . . --- IDT
& |-e-C3D
30 l

0 5I0 1(I)O 1!';0 2(;0 280 S(I)O SéO 400 45IO 500
Number of dimensions

10-20% better than Imagenet and
iDT at low dimension

Obtains 52.8% using only 10-dim
(random chance is less than 0.96%)
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C3D is Efficient

e Extract features on full UCF101

e 91x faster than iDT

e 276x faster than optical-flow-based methods



Why does C3D works so well?

 What does C3D learn at internal layers?

64 & 128 sl 256 256 512 512 o 512 512 < [4096| (4096

Convla = Conv2a o Conv3a || Conv3b Conv4a || Conv4b Ly Conv5a || Convsb o fcé6 || fc7
O

(softmax]

e Use Deconvolution method [Zeiler & Fergus
ECCV’14] to visualize C3D learned features of
some internal layers.



Deconvolutions of conv2a
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Convla
64

Deconvolutions of conv3b

Conv2a

Conv3a

Conv3b

Conv4a

(Pool1]

128

[ Pool2 ]

256

256

[ Pool3 |

512

(Poold ]




Deconvolutions of conv3b

Convla Conv2a
64 128

Conv3a || Conv3b
256 256

Conv4a || Conv4b
512 512

[ Pool2 |

Conv5a || Convsb
512 512

[ Pool3 |

Poold ]

[(Pool5]

fce || fc7
4096| (4096




Conclusions

* 3D ConvNet is well-suited for spatiotemporal
feature learning.

 C3Dis a good architecture for 3D ConvNet

 C3Dis a good generic video features
— Accurate
— Compact
— Efficient to compute
— Easy to use

Source code & models are available at http://vlg.cs.dartmouth.edu/c3d



http://vlg.cs.dartmouth.edu/c3d

Thank you

e Q&A
* Demo
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Learning by Playing

3
what | think what | say

Slide credit: Devi Parikh
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Image caption

Vision Language
Deep CNN Generating
RNN

o

Vinyals et al., 2015

Donahue et al., 2015

Embedding I Embedding Il Recurrent Multimodal SoftMax
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[ |Predict O Wend
I «— Image

Mao et al., 2015

river.

NP
T
DT{0,1}| JI*| NN
<bus, park, street>
-5 <plane, fly, sky> n
<ship, sail, sea> 3

Z <train, move, rail> \

<bike, ride, grass>

NP

NP{NN n} VP{VB(G|N)} |

Meaning Space

Chen and Zitnick, 2015 Farhadi et al., 2010

Slide credit: Mainak Jas and Devi Parikh

... and many more

Iron bridge over the Duck

Ordonez et al., 2011

4

nhatn

“straw”

START “straw” “hat”

NP{NNn} VP{VBZ}| .

NP
NP{NNn} PP{IN}|

Mitchell et al., 2012

| stea ot the dock
H CNN er

ving a lot of attention

<. describes the image
without any errors

b) person

Kiros

brown 0.01
striped 0.16

Kulkarni et al., 2011

ispace |USCNLM Decoder

et al., 2015



'man in blue wetsuit is surfing on

wave."

Karpathy and Fei-Fei, CVPR 2015

Slide credit: Devi Parikh



A group of young people playing a
game of frisbee.

Vinyas et al., CVPR 2015

Slide credit: Devi Parikh



a car is parked
in the middle
of nowhere .

Kiros et al., TACL 2015

Slide credit: Devi Parikh
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a pot of broccoli on a stove

Fang et al. CVPR 2015

Slide credit: Devi Parikh



A man is rescued from his truck that is hanging
dangerously from a bridge.

-

Slide credit: Larry Zitnick



A man is rescued from his truck that is hanging
dangerously from a bridge.

-

Slide credit: Devi Parikh



Learning Common Sense

* Text
— Reporting bias

Slide credit: Devi Parikh



Reporting bias in text

Word Teraword Knext Word Teraword  Knext

spoke 11,577,917 244,458 hugged 610,040 10,378
laughed 3,904,519 169,347 blinked 390,692 20,624
murdered 2,843,529 11,284 was late 368,922 31,168
inhaled 084,613 4,412 exhaled 168,985 3,490

breathed 725,034 34,912 was punctual 5,045 511

Slide credit: Devi Parikh

[Gordon et al. 2013]
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inhaled

Slide credit: Devi Parikh

Reporting bias in text

inhale:exhale = 6:1

084,613 exhaled 168,985

[Gordon et al. 2013]
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Reporting bias in text

murder:exhale=17:1

murdered 2,843,529
exhaled 168,985

[Gordon et al. 2013]

Slide credit: Devi Parikh
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Reporting bias in text

Body Part  Teraword Knext Body Part Teraword  Knext
Head 18,907,427 1,332,154 Liver 246,937 10,474
Eye(s) 18,455,030 1,090,640 Kidney(s) 183,973 5,014
Arm(s) 6,345,039 458,018 Spleen 47,216 1,414
Ear(s) 3,543,711 230,367 Pancreas 24,230 1,140
Brain 3,277,326 260,863 Gallbladder 17,419 1,556

Slide credit: Devi Parikh

[Gordon et al. 2013]
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Reporting bias in text

Head 18,907,427

People have heads:gallbladders = 1085:1

Gallbladder 17,419

[Gordon et al. 2013]

Slide credit: Devi Parikh
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Do birds fly?

bird
/ba:d/

noun

1. any warm-blooded egg-laying vertebrate of the class Aves,
characterized by a body covering of feathers and forelimbs modified
as wings. Birds vary in size between the ostrich and the humming
bird related adjectives avian ornithic

Slide credit: Devi Parikh
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Do birds fly?
penguin

[peng-gwin, pen-]
.~ EEEl  syllables

Examples Word Origin

NOuUnN, Ornithology

1. any of several flightless, aquatic birds of the family Spheniscidae, of

the Southern Hemisphere, having webbed feet and wings reduced to
flippers.

Slide credit: Devi Parikh 16



Learning Common Sense

* Text
— Reporting bias

* From structure in our visual world?

Slide credit: Devi Parikh



Two professors converse in front of a blackboard.

Slide credit: Larry Zitnick



Two professors stand in front of a blackboard.

Slide credit: Larry Zitnick



Two professors converse in front of a blackboard.

Slide credit: Larry Zitnick



Challenges

* Lacking visual density
* Annotations are expensive
 Computer vision doesn’t work well enough

Improved image Learning
understanding common sense

Slide credit: Devi Parikh



Is photorealism necessary?

Slide credit: Larry Zitnick



Slide credit: Larry Zitnick
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Slide credit: Larry Zitnick
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Slide credit: Larry Zitnick



Slide credit: Devi Parikh
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Mike fights off a bear by giving him a hotdog while Jenny runs away.

Slide credit: Larry Zitnick
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Dataset

1,000 classes of semantically similar scenes:

/ Clrass 1

/Class 2

/Class 1,000

ﬂﬂ

il

1,000 classes x 10 scenes per class = 10,000 scenes

Slide credit: Larry Zitnick

[Zitnick and Parikh, CVPR 2013, Oral]




Slide credit: Larry Zitnick

Visual Features

29



Slide credit: Larry Zitnick

Visual Features

30



Visual Features

ICIr""I I

Which visual features
are important for
semantic meaning?

_nile

_— .

Cat

Person
standing

Person sitting

Tree

Which words correlate
with specific visual
features?

Slide credit: Devi Parikh

31



Generate Scenes

Input: Jenny is catching the ball. Mike is kicking the ball. The table is next to the tree.

Tuples: <<Jenny>,<catch>,<ball>> <<Mike><kick>,<ball>> <<table><be><>>

Automatically Generated Human Generated

[Zitnick, Parikh and Vanderwende, ICCV 2013]

Slide credit: Devi Parikh 32



Generate Scenes

Jenny was mad and tried to kick Mike.  Mike is holding a baseball bat. Mike is wearing a blue hat with a star. The cat is watching Jenny and Mike.

<<Jenny>, <be mad>, <>> <<Mike>, <hold>, <bat>> <<Mike>, <wear>, <hat>> <<cat>, <watch>, <Jenny>>

<<Jenny>, <try>, <kick>> T S <<hat>, <with>, <star>> <<cat>, <watch>, <Mike>>

<<Jenny>, <kick>, <Mike>> Mike is standing in front of the table. Jenny is happy to see Mike. Jenny wants Mike to share the bat.
<<Mike>, <stand in_front_of>, <table>> <<Jenny>, <be happy, <>> <<lenny>, <want>, <share>>

Mike and Jenny are wearing hats. Jenny is sad because she wants the ball. clennygy, sseen, <hieas <<Mike>, <share>, <bat>>

<<Mike>, <wear>, <hat>> <<Jenny>, <be sad>, <>> Mike is eating a burger Jenny is on the swings.

<< Jenny>, <wear>, <hat>> <<she>, <want>, <ball>> <<Mike>, <eat>, <burger>> <<Jenny>, <be>, <>>

R Jenny lightning
R = cocee f 71 Kl
\ jenny - thunderstorm [ Il ) 22

. and lighten
no one bolt play with . . e o © ® 6 ¢ & o o

-~ thunder
weather fight . ‘ ® . e o O ©® +» O

helmet

horn G .
helm ‘g’;gte - umpoff @ @ @ @ . e o o @ o
i bl eoco0oee O

kick

runaway @ ..0. e .‘
[Zitnick, Parikh and Vanderwende, ICCV 2013]

bucket
pail bonfire
sand fire
pale

campfire

behappy... o o o @ » o ¢ 0 o

Slide credit: Devi Parikh 33



Learning Fine-grained Interactions

Hlustrate this sentence:

Sentence 1/2: Person 1 is dancing with Person 2

i
=

Gender

@L
®)

3
@

_—

z1e>
D
D
D

Whao iz Person 1 in your creation? ' Blonde-haired person ' Brown-haired person
Who is Person 2 in your creation? ' ' Blonde-haired person * Brown-haired person
Mext

[Antol, Zitnick and Parikh, ECCV 2014]

Slide credit: Devi Parikh
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Learning Fine-grained Interactions

jumping over

holding hands with dancing with

Train on clipart, test on real

Slide credit: Devi Parikh
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Slide credit: Devi Parikh

Accuracy %

S N
o N b

O N b OO

Results: 60 categories

.

Chance Today's Today's Perfect
PoseDet PoseDet ++ PoseDet

[Antol, Zitnick and Parikh, ECCV 2014]
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Learning Common Sense

* Assess plausibility of relations

— man holds meal
— tree grows in table

* Plausibility: similarity to other relations we know are plausible
— person holds sandwich
— man eats pizza

e Textual and visual similarity

Slide credit: Devi Parikh



Slide credit: Devi Parikh
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Results

Given any tuple, can assess its plausibility

Text alone

Visual alone

Text + visual

[Vedantam, Lin, Batra, Zitnick, and Parikh, ICCV 2015]

Slide credit: Devi Parikh
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Online Demo

Online Demo Home

Predicting Plausibility of Common Sense Assertions

Based on Ramakrishna Vedantam®, Xiao Lin*, Tanmay Batra, C. Lawrence Zithick, Devi Parikh, Learning Common Sense Through Visual

Abstraction, ICCV 2015. *Equal Contribution

Demo prepared by Arijit Ray.

Enter the Primary, Relation and Secondary Phrases of a Tuple whose plausibility you want to assess:

Examples ¥

Or, submit your text file ¥

Entered Tuple : man eats cake

Predicted Plausibility Score : 0.3096

Show More Details v

40

Slide credit: Devi Parikh



Fill-in-the-blank:

Mike is having lunch when
he sees a bear.

Mike orders a pizza.
Mike hugs the bear.
Bears are mammals.
Mike tries to hide.

OO ®xr

I N\

Slide credit: Devi Parikh



Fill-in-the-blank

Question

-

.Mike is )

-

wearing a blue cap. Mike is
telling Jenny to get off the
S

J

Slide credit: Devi Parikh

Options and Generated Scenes

A. There is a
tree near a table.

C. The sun is
in the sky.

B. The brown
dog is standing
next to Mike.

D. Jenny i1s standing
dangerously on the
swing

[Zitnick, Parikh and Vanderwende, ICCV 2013]
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Visual Paraphrasing

It is a sunny day. ) Mike is eating a pizza.
Mike is sitting with a pizza. Jenny is playing soccer.
Jenny 1s playing with a soccer ball. A cat is eating a hot dog. y

T~

Same or different?

Slide credit: Devi Parikh 43



Random

Slide credit: Devi Parikh

Results

Fill-in-the-blanks (FITB) Visual Paraphrasing (VP)
Accuracy (+/- ~0.15) AP (+/- ~0.02)

25.00 33.33

[Lin and Parikh, CVPR 2015]
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Visual Abstraction For...

e Studying mappings -
e Zero-sh Study h\gh -

* Learning common sense knowledge

* Rich annotation modality
— Ask for o
— Ask for st
— Show sce
— Perturb a'scene and ask for descriptions

Slide credit: Devi Parikh 45



Slide credit: Devi Parikh

50k scenes Available online!

46



Semantic Image Understanding

h
‘

il X

- &

“Color College Avenue”, Blacksburg, VA, May 2012

Slide credit: Devi Parikh



Semantic Image Understanding

Slide credit: Devi Parikh



Semantic Image Understanding

Words |
e suengsane s PiCTUTES v
Reasoning

| (Common Sense,
B | Knowledge Base)

<<Jenny>, <be happy>, <>>
<<Jenny>, <see>, <Mike>>
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Slide credit: Devi Parikh



Slide credit: Devi Parikh

Thank you.
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