Grid LSTM Kalchbrenner et al. (Google DeepMind)

Joost Bastings

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

March 10, 2016

Outline

- 1. Introduction
- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion

Outline

1. Introduction

- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion

Long Short-Term Memory (LSTM) networks have *gates* that control access to memory cells

(Hochreiter and Schmidhuber, 1997)

 $\textcircled{C}\mathsf{Christopher}\;\mathsf{Olah}$

Long Short-Term Memory (LSTM) networks have *gates* that control access to memory cells

(Hochreiter and Schmidhuber, 1997)

 Preserve signals, propagate errors for *much longer*

©Christopher Olah

Long Short-Term Memory (LSTM) networks have *gates* that control access to memory cells

(Hochreiter and Schmidhuber, 1997)

- Preserve signals, propagate errors for *much longer*
- Gates can learn to attend to specific parts of the input signals (and ignore others)

©Christ opher Olah

Long Short-Term Memory (LSTM) networks have *gates* that control access to memory cells

(Hochreiter and Schmidhuber, 1997)

- Preserve signals, propagate errors for *much longer*
- Gates can learn to attend to specific parts of the input signals (and ignore others)

These properties make LSTMs good at speech recognition, hand-writing recognition, machine translation, etc.

 Computer vision success: deep networks are key to finding complex patterns

- Computer vision success: deep networks are key to finding complex patterns
- However, deep networks also suffer from the vanishing gradient problem!

- Computer vision success: deep networks are key to finding complex patterns
- However, deep networks also suffer from the vanishing gradient problem!
- This is the motivation to generalise the advantages of LSTMs to deep computation

Idea: Grid LSTM

 A Grid LSTM (Kalchbrenner et al., 2015) is a network arranged in a grid of 1 or more dimensions

Idea: Grid LSTM

- A Grid LSTM (Kalchbrenner et al., 2015) is a network arranged in a grid of 1 or more dimensions
- LSTM cells in 'any or all' dimensions of the grid

Idea: Grid LSTM

- A Grid LSTM (Kalchbrenner et al., 2015) is a network arranged in a grid of 1 or more dimensions
- LSTM cells in 'any or all' dimensions of the grid
- Short-hand: N-dimensional Grid LSTM = N-LSTM

Outline

- 1. Introduction
- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion

An LSTM processes input and target pairs

 $(x_1, y_1), \ldots, (x_m, y_m)$

An LSTM processes input and target pairs

$$(x_1, y_1), \ldots, (x_m, y_m)$$

▶ Past inputs *x*₁,...*x*_{*i*-1} determine the state of the network:

hidden $\mathbf{h} \in \mathbb{R}^d$ memory $\mathbf{m} \in \mathbb{R}^d$

An LSTM processes input and target pairs

$$(x_1, y_1), \ldots, (x_m, y_m)$$

▶ Past inputs *x*₁,...*x*_{*i*-1} determine the state of the network:

hidden $\mathbf{h} \in \mathbb{R}^d$ memory $\mathbf{m} \in \mathbb{R}^d$

• Let $\mathbf{H} = \begin{bmatrix} lx_i \\ \mathbf{h} \end{bmatrix}$, where *l* is a projection matrix transforming x_i

At each step, calculate:

Gates:

$\mathbf{g}^{u} = \sigma(\mathbf{W}^{u}\mathbf{H})$	update
$\mathbf{g}^{f} = \sigma(\mathbf{W}^{f}\mathbf{H})$	forget
$\mathbf{g}^{o} = \sigma(\mathbf{W}^{o}\mathbf{H})$	output

At each step, calculate:

1. Gates:

$\mathbf{g}^{u} = \sigma(\mathbf{W}^{u}\mathbf{H})$	update
$\mathbf{g}^{f} = \sigma(\mathbf{W}^{f}\mathbf{H})$	forget
$\mathbf{g}^{o}=\sigma(\mathbf{W}^{o}\mathbf{H})$	output
$\mathbf{g}^{c} = \operatorname{tanh}(\mathbf{W}^{c}\mathbf{H})$	content

At each step, calculate:

1. Gates:

$$\begin{array}{ll} \mathbf{g}^{u} = \sigma(\mathbf{W}^{u}\mathbf{H}) & \text{update} \\ \mathbf{g}^{f} = \sigma(\mathbf{W}^{f}\mathbf{H}) & \text{forget} \\ \mathbf{g}^{o} = \sigma(\mathbf{W}^{o}\mathbf{H}) & \text{output} \\ \mathbf{g}^{c} = \tanh(\mathbf{W}^{c}\mathbf{H}) & \text{content} \end{array}$$

2. New memory:

$$\mathbf{m}' = \mathbf{g}^f \odot \mathbf{m} + \mathbf{g}^u \odot \mathbf{g}^c$$

At each step, calculate:

Gates:

 $\begin{array}{ll} \mathbf{g}^u = \sigma(\mathbf{W}^u \mathbf{H}) & \text{update} \\ \mathbf{g}^f = \sigma(\mathbf{W}^f \mathbf{H}) & \text{forget} \\ \mathbf{g}^o = \sigma(\mathbf{W}^o \mathbf{H}) & \text{output} \\ \mathbf{g}^c = \tanh(\mathbf{W}^c \mathbf{H}) & \text{content} \end{array}$

2. New memory:

$$\mathbf{m}' = \mathbf{g}^f \odot \mathbf{m} + \mathbf{g}^u \odot \mathbf{g}^c$$

At each step, calculate:

1. Gates:

$$\begin{array}{ll} \mathbf{g}^{u} = \sigma(\mathbf{W}^{u}\mathbf{H}) & \text{update} \\ \mathbf{g}^{f} = \sigma(\mathbf{W}^{f}\mathbf{H}) & \text{forget} \\ \mathbf{g}^{o} = \sigma(\mathbf{W}^{o}\mathbf{H}) & \text{output} \\ \mathbf{g}^{c} = \tanh(\mathbf{W}^{c}\mathbf{H}) & \text{content} \end{array}$$

2. New memory:

$$\mathbf{m}' = \mathbf{g}^f \odot \mathbf{m} + \mathbf{g}^u \odot \mathbf{g}^c$$

3. New state:

 $\mathbf{h}' = \operatorname{tanh}(\mathbf{g}^o \odot \mathbf{m}')$

LSTM

Standard LSTM block

Outline

- 1. Introduction
- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion

An N-LSTM block receives as input:

- *N* hidden vectors $\mathbf{h}_1, \ldots, \mathbf{h}_N$
- N memory vectors $\mathbf{m}_1, \ldots, \mathbf{m}_N$

An N-LSTM block receives as input:

- *N* hidden vectors $\mathbf{h}_1, \ldots, \mathbf{h}_N$
- N memory vectors $\mathbf{m}_1, \ldots, \mathbf{m}_N$

We concatenate all hidden vectors into a shared input vector:

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_N \end{bmatrix}$$

An N-LSTM block receives as input:

- *N* hidden vectors $\mathbf{h}_1, \ldots, \mathbf{h}_N$
- N memory vectors $\mathbf{m}_1, \ldots, \mathbf{m}_N$

We concatenate all hidden vectors into a shared input vector:

$$\mathsf{H} = \begin{bmatrix} \mathsf{h}_1 \\ \vdots \\ \mathsf{h}_N \end{bmatrix}$$

And then calculate N transforms:

1D Grid LSTM

 $\mathbf{I} * x_i$

Standard LSTM block

1d Grid LSTM Block

1D and 2D

Stacked LSTM vs 2-LSTM

Stacked LSTM

2d Grid LSTM

3D

Input is projected along the edge(s), see previous slide: character 'C' initializes h₁ and m₁

- Input is projected along the edge(s), see previous slide: character 'C' initializes h₁ and m₁
- > Predictions based on both the state and memory of edge cells

- Input is projected along the edge(s), see previous slide: character 'C' initializes h₁ and m₁
- > Predictions based on both the state and memory of edge cells
- It is possible to share weights along any dimension

- Input is projected along the edge(s), see previous slide: character 'C' initializes h₁ and m₁
- Predictions based on both the state and memory of edge cells
- It is possible to share weights along any dimension
- If weights are shared along all dimensions: Tied N-LSTM

Outline

- 1. Introduction
- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion
Given k input bits, output 0 iff sum is even, else 1

- Given k input bits, output 0 iff sum is even, else 1
- Parity is really hard, because changing one input bit changes the target

- Given k input bits, output 0 iff sum is even, else 1
- Parity is really hard, because changing one input bit changes the target
- All input at the same time (why?)

Left: #hidden = 500, Right: #hidden = 1500 Dot: 100% accuracy on k-bit input

Left: #hidden = 500, Right: #hidden = 1500 Dot: 100% accuracy on k-bit input

	Layers	Hidden	k
Tied tanh FFN	5	1500	30
Tied ReLU FFN	4	1500	30
Tied 1-LSTM	72	1500	220
Tied 1-LSTM	148	500	250

Addition

Task: sum two 15-digit integers 1 2 3 8 9 9

Addition

Task: sum two 15-digit integers - 1 2 3 - 8 9 9 - - - -

----1022-

	Layers	Samples	Accuracy
Stacked LSTM	1	5M	51%
Untied 2-LSTM	5	5M	67%
Tied 2-LSTM	18	0.55M	>99%

Task: sum two 15-digit integers

	Layers	Samples	Accuracy
Stacked LSTM	1	5M	51%
Untied 2-LSTM	5	5M	67%
Tied 2-LSTM	18	0.55M	>99%

- Trained up to 5M samples or until accuracy 100%
- Tied better because of the repetitive nature of the task
- Grid LSTM has advantage by tackling vanishing gradient

Memorization

Task: memorize random sequence of 20 symbols

Memorization

- All networks have 100 hidden units
- Vertical axis: #samples to reach threshold

Character-level LM

Task: predict next character in corpus

- Hutter challenge (Wikipedia data set, 100M characters)
- Sample sequences of 10000 chars, backprop every 50 chars

	BPC	Params	Alphabet	Test
Stacked LSTM (Graves)	1.67	27M	205	last 4MB
MRNN (Sutskever)	1.60	4.9M	86	last 10MB
GFRNN (Chung)	1.58	20M	205	last 5MB
Tied 2-LSTM	1.47	16.8M	205	last 5MB

MNIST Digits

- ► A 3-LSTM processes non-overlapping patches of image pixels
- So, the input is a 2D grid of patches
- ► The 3rd dimension is the depth of the network
- Final ReLU layer + Softmax

	Test Error (%)
Wan et al. (Wan et al., 2013)	0.28
Graham (Graham, 2014a)	0.31
Untied 3-LSTM	0.32
Ciresan et al. (Ciresan et al., 2012)	0.35
Untied 3-LSTM with ReLU	0.36
Mairar et al. (Mairal et al., 2014)	0.39
Lee et al. (Lee et al., 2015)	0.39
Simard et al. (Simard et al., 2003)	0.4
Graham (Graham, 2014b)	0.44
Goodfellow et al. (Goodfellow et al., 2013)	0.45
Visin et al. (Visin et al., 2015)	0.45
Lin et al. (Lin et al., 2013)	0.47

Machine Translation

Machine Translation

We view translation as a 2-dimensional mapping

- We view translation as a 2-dimensional mapping
- One dimension processes the source sentence, another dimension produces the target sentence

- We view translation as a 2-dimensional mapping
- One dimension processes the source sentence, another dimension produces the target sentence
- The network repeatedly re-encodes the source sentence based on the part of the target sentence generated so far

- We view translation as a 2-dimensional mapping
- One dimension processes the source sentence, another dimension produces the target sentence
- The network repeatedly re-encodes the source sentence based on the part of the target sentence generated so far
- Weights are shared across source and target dimensions

- We view translation as a 2-dimensional mapping
- One dimension processes the source sentence, another dimension produces the target sentence
- The network repeatedly re-encodes the source sentence based on the part of the target sentence generated so far
- Weights are shared across source and target dimensions
- Regular identity connections along the 3rd dimension

Evaluation

Evaluation on IWSLT BTEC Chinese-to-English

- ▶ 44016 sentence pairs (train), 1006 (dev), 503 (test)
- Target sentences on average 12 words long
- 15 reference translations

Evaluation

Evaluation on IWSLT BTEC Chinese-to-English

- ▶ 44016 sentence pairs (train), 1006 (dev), 503 (test)
- Target sentences on average 12 words long
- 15 reference translations

	Valid-1	Test-1	Valid-15	Test-15
DGLSTM-Att.	-	34.5	-	-
CDEC	30.1	41	50.1	58.9
3-LSTM	30.3	42.4	51.8	60.2

Outline

- 1. Introduction
- 2. LSTM
- 3. Grid LSTM
- 4. Experiments
- 5. Conclusion

Conclusion

- Introduction of Grid LSTM
- Cells have shown advantages is parity, addition, memorization tasks
- Applications in character prediction, MNIST, and machine translation

Bibliography

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780. Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid long short-term memory. CoRR, abs/1507.01526.

Image Captioning & Attention Deep Learning

Hendrik Heuer University of Amsterdam

About me

Now

Hendrik Heuer PhD student QUvA Lab

prof. dr. Arnold Smeulders dr. Christof Monz

Statistical Machine Translation & Computer Vision

M.Sc.

European Institute of Innovation & Technology

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Kelvin Xu Jimmy Lei Ba Ryan Kiros Kyunghyun Cho Aaron Courville Ruslan Salakhutdinov Richard S. Zemel Yoshua Bengio

> Abstract Inspired by recent work in machine translation

> and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-theart performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions of an image is a task very close to the heart of scene understanding — one of the primary goals of computer vision. Not only must caption generation models be powerful enough to solve the computer vision challenges of determining which objects are in an image, but they must also be capable of capturing and expressing their relationships in a natural language. For this reason, caption generation has long been viewed as a difficult problem. It is a very important challenge for machine learning algorithms, as it amounts to mimicking the remarkable human ability to compress huge amounts of salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been a recent surge of research interest in attacking the image caption generation problem. Aided by advances in training neural networks (Krizhevsky et al., 2012) and large classification datasets (Russakovsky et al., 2014), recent work JIMMY @ PSI.UTORONTO.CA RKIROS @ CS.TORONTO.EDU KYUNGHYUN.CHO @ UMONTREAL.CA AARON.COURVILLE @ UMONTREAL.CA RSALAKHU @ CS.TORONTO.EDU ZEMEL @ CS.TORONTO.EDU FIND-ME @ THE.WEB

KELVIN.XU@UMONTREAL.CA

Figure 1. Our model learns a words/image alignment. The visualized attentional maps (3) are explained in section 3.1 & 5.4

has significantly improved the quality of caption generation using a combination of convolutional neural networks (convnets) to obtain vectorial representation of images and recurrent neural networks to decode those representations into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual system is the presence of attention (Rensink, 2000; Corbetta & Shulman, 2002). Rather than compress an entire image into a static representation, attention allows for salient features to dynamically come to the forefront as needed. This is especially important when there is a lot of clutter in an image. Using representations (such as those from the top layer of a convnet) that distill information in image down to the most salient objects is one effective solution that has been widely adopted in previous work. Unfortunately, this has one potential drawback of losing information which could be useful for richer, more descriptive captions. Using more low-level representation can help preserve this information. However working with these features necessitates a powerful mechanism to steer the model to information important to the task at hand.

In this paper, we describe approaches to caption generation that attempt to incorporate a form of attention with

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind

5

201

May

20

CV

CS

.04623v2

502.

arXiv:1

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

Abstract

This paper introduces the *Deep Recurrent Attentive Writer* (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual scene will naturally do so in a sequential, iterative fashion, reassessing their handiwork after each modification. Rough outlines are gradually replaced by precise forms, lines are sharpened, darkened or erased, shapes are altered, and the final picture emerges. Most approaches to automatic image generation, however, aim to generate entire scenes at once. In the context of generative neural networks, this typically means that all the pixels are conditioned on a single latent distribution (Dayan et al., 1995; Hinton & Salakhutdinov, 2006; Larochelle & Murray, 2011). As well as precluding the possibility of iterative self-correction, the "one shot" approach is fundamentally difficult to scale to large images. The Deep Recurrent Attentive Writer (DRAW) architecture represents a shift towards a more natural form of image construction, in which parts of a scene are created independently from others, and approximate sketches are successively refined.

Proceedings of the 32^{nd} International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

Time —

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent neural networks: an *encoder* network that compresses the real images presented during training, and a *decoder* that reconstitutes images after receiving codes. The combined system is trained end-to-end with stochastic gradient descent, where the loss function is a variational upper bound on the log-likelihood of the data. It therefore belongs to the family of *variational auto-encoders*, a recently emerged hybrid of deep learning and variational inference that has led to significant advances in generative modelling (Gregor et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where DRAW differs from its siblings is that, rather than generat-

Describe images

Generate images

5

201

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Kelvin Xu Jimmy Lei Ba Ryan Kiros Kyunghyun Cho Aaron Courville Ruslan Salakhutdinov Richard S. Zemel Yoshua Bengio

Abstract

Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-theart performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions of an image is a task very close to the heart of scene understanding — one of the primary goals of computer vision. Not only must caption generation models be powerful enough to solve the computer vision challenges of determining which objects are in an image, but they must also be capable of capturing and expressing their relationships in a natural language. For this reason, caption generation has long been viewed as a difficult problem. It is a very important challenge for machine learning algorithms, as it amounts to mimicking the remarkable human ability to compress huge amounts of salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been a recent surge of research interest in attacking the image caption generation problem. Aided by advances in training neural networks (Krizhevsky et al., 2012) and large classification datasets (Russakovsky et al., 2014), recent work JIMMY @PSI.UTORONTO.CA RKIROS @ CS.TORONTO.EDU KYUNGHYUN.CHO @ UMONTREAL.CA AARON.COURVILLE @ UMONTREAL.CA RSALAKHU@ CS.TORONTO.EDU ZEMEL @ CS.TORONTO.EDU FIND-ME @ THE.WEB

KELVIN.XU@UMONTREAL.CA

Figure 1. Our model learns a words/image alignment. The visualized attentional maps (3) are explained in section 3.1 & 5.4

has significantly improved the quality of caption generation using a combination of convolutional neural networks (convnets) to obtain vectorial representation of images and recurrent neural networks to decode those representations into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual system is the presence of attention (Rensink, 2000; Corbetta & Shulman, 2002). Rather than compress an entire image into a static representation, attention allows for salient features to dynamically come to the forefront as needed. This is especially important when there is a lot of clutter in an image. Using representations (such as those from the top layer of a convnet) that distill information in image down to the most salient objects is one effective solution that has been widely adopted in previous work. Unfortunately, this has one potential drawback of losing information which could be useful for richer, more descriptive captions. Using more low-level representation can help preserve this information. However working with these features necessitates a powerful mechanism to steer the model to information important to the task at hand.

In this paper, we describe approaches to caption generation that attempt to incorporate a form of attention with

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind

5

201

May

20

CV

CS

502.04623v2

arXiv:1

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

Abstract

This paper introduces the *Deep Recurrent Attentive Writer* (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual scene will naturally do so in a sequential, iterative fashion, reassessing their handiwork after each modification. Rough outlines are gradually replaced by precise forms, lines are sharpened, darkened or erased, shapes are altered, and the final picture emerges. Most approaches to automatic image generation, however, aim to generate entire scenes at once. In the context of generative neural networks, this typically means that all the pixels are conditioned on a single latent distribution (Dayan et al., 1995; Hinton & Salakhutdinov, 2006; Larochelle & Murray, 2011). As well as precluding the possibility of iterative self-correction, the "one shot" approach is fundamentally difficult to scale to large images. The Deep Recurrent Attentive Writer (DRAW) architecture represents a shift towards a more natural form of image construction, in which parts of a scene are created independently from others, and approximate sketches are successively refined.

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent neural networks: an *encoder* network that compresses the real images presented during training, and a *decoder* that reconstitutes images after receiving codes. The combined system is trained end-to-end with stochastic gradient descent, where the loss function is a variational upper bound on the log-likelihood of the data. It therefore belongs to the family of *variational auto-encoders*, a recently emerged hybrid of deep learning and variational inference that has led to significant advances in generative modelling (Gregor et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where DRAW differs from its siblings is that, rather than generat-

Describe images

Generate images

5

201

Grammatical description of images

https://vimeo.com/146492001

Grammatical description of images

- a smiling old lady holds a pizza on a plate.
- a woman holding a plate with a pizza on it
- a woman carrying homemade pizza to the table.
- a woman holding a pizza on a red plate.
- a woman walking with a pan in her hands with a whole pizza on it.

RNN for Captioning

Source: http://cs231n.stanford.edu/slides/winter1516_lecture13.pdf

(b) A woman is throwing a frisbee in a park.

woman(0.54)

is(0.37)

A woman is throwing a <u>frisbee</u> in a park.

A $\underline{\text{dog}}$ is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Intuition: Since we usually see dogs at a certain position, we expect dogs at certain positions.

The model learns correlation structures in the input and starts putting attention weight where dogs can be expected (and actually exist in the training data).

512 filter, each 14x14 pixel

A woman is throwing a frisbee in a park.

"soft" deterministic attention

summarize all locations, so that context vector z is

$$\mathbb{E}_{p(s_t|a)}[\hat{\mathbf{z}}_t] = \sum_{i=1}^L lpha_{t,i} \mathbf{a}_i$$

you can take the derivative dz/dp

trainable by back-propagation

"hard" stochastic attention

sample one locatio

since you do argmax, gradient is zero almost everywhere, so you can't use gradient descent

reinforcement learning: REINFORCE (Williams, 1992)

RNN for Captioning

Source: http://cs231n.stanford.edu/slides/winter1516_lecture13.pdf

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lect

Lecture 13 - 90 24 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 13 - 91 24 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 13 - 92 24 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 13 - 93 24 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 13 - 97 24 Feb 2016

Evaluation

			BL	EU		
Dataset	Model	B-1	B-2	B-3	B-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{$†\Sigma$}	63	41	27		
Flipler91	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
FIICKIOK	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
	Google NIC ^{$\dagger \circ \Sigma$}	66.3	42.3	27.7	18.3	
Eliokr20k	Log Bilinear	60.0	38	25.4	17.1	16.88
FIICKIJUK	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a		—			20.41
	MS Research (Fang et al., 2014) ^{$\dagger a$}					20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
COCO	Google NIC ^{$\dagger \circ \Sigma$}	66.6	46.1	32.9	24.6	_
	Log Bilinear ^o	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

BLEU is n-gram precision

METEOR is a combination of unigram-precision, unigram-recall, and a measure of fragmentation (how well-ordered matched words are)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Kelvin Xu Jimmy Lei Ba Ryan Kiros Kyunghyun Cho Aaron Courville Ruslan Salakhutdinov Richard S. Zemel Yoshua Bengio

Abstract

Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-theart performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions of an image is a task very close to the heart of scene understanding — one of the primary goals of computer vision. Not only must caption generation models be powerful enough to solve the computer vision challenges of determining which objects are in an image, but they must also be capable of capturing and expressing their relationships in a natural language. For this reason, caption generation has long been viewed as a difficult problem. It is a very important challenge for machine learning algorithms, as it amounts to mimicking the remarkable human ability to compress huge amounts of salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been a recent surge of research interest in attacking the image caption generation problem. Aided by advances in training neural networks (Krizhevsky et al., 2012) and large classification datasets (Russakovsky et al., 2014), recent work KELVIN.XU@UMONTREAL.CA JIMMY@PSI.UTORONTO.CA RKIROS@CS.TORONTO.EDU KYUNGHYUN.CHO@UMONTREAL.CA AARON.COURVILLE@UMONTREAL.CA RSALAKHU@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU FIND-ME@THE.WEB

Figure 1. Our model learns a words/image alignment. The visualized attentional maps (3) are explained in section 3.1 & 5.4

has significantly improved the quality of caption generation using a combination of convolutional neural networks (convnets) to obtain vectorial representation of images and recurrent neural networks to decode those representations into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual system is the presence of attention (Rensink, 2000; Corbetta & Shulman, 2002). Rather than compress an entire image into a static representation, attention allows for salient features to dynamically come to the forefront as needed. This is especially important when there is a lot of clutter in an image. Using representations (such as those from the top layer of a convnet) that distill information in image down to the most salient objects is one effective solution that has been widely adopted in previous work. Unfortunately, this has one potential drawback of losing information which could be useful for richer, more descriptive captions. Using more low-level representation can help preserve this information. However working with these features necessitates a powerful mechanism to steer the model to information important to the task at hand.

In this paper, we describe approaches to caption generation that attempt to incorporate a form of attention with

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind

5

201

May

20

CV

CS

.04623v2

502.

arXiv:1

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

Abstract

This paper introduces the *Deep Recurrent Attentive Writer* (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual scene will naturally do so in a sequential, iterative fashion, reassessing their handiwork after each modification. Rough outlines are gradually replaced by precise forms, lines are sharpened, darkened or erased, shapes are altered, and the final picture emerges. Most approaches to automatic image generation, however, aim to generate entire scenes at once. In the context of generative neural networks, this typically means that all the pixels are conditioned on a single latent distribution (Dayan et al., 1995; Hinton & Salakhutdinov, 2006; Larochelle & Murray, 2011). As well as precluding the possibility of iterative self-correction, the "one shot" approach is fundamentally difficult to scale to large images. The Deep Recurrent Attentive Writer (DRAW) architecture represents a shift towards a more natural form of image construction, in which parts of a scene are created independently from others, and approximate sketches are successively refined.

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

Time —

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent neural networks: an *encoder* network that compresses the real images presented during training, and a *decoder* that reconstitutes images after receiving codes. The combined system is trained end-to-end with stochastic gradient descent, where the loss function is a variational upper bound on the log-likelihood of the data. It therefore belongs to the family of *variational auto-encoders*, a recently emerged hybrid of deep learning and variational inference that has led to significant advances in generative modelling (Gregor et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where DRAW differs from its siblings is that, rather than generat-

Describe images

Generate images

5

20

Goal: Generate images

"dreaming up" images transforming random noise into an endless stream of images that the model has never even seen before

Works for MNIST and Street View House Numbers

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind

2015

May

20

CZ

CS

.04623v2

502.

Xiv:1

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

Abstract

This paper introduces the *Deep Recurrent Attentive Writer* (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual scene will naturally do so in a sequential, iterative fashion, reassessing their handiwork after each modification. Rough outlines are gradually replaced by precise forms, lines are sharpened, darkened or erased, shapes are altered, and the final picture emerges. Most approaches to automatic image generation, however, aim to generate entire scenes at once. In the context of generative neural networks, this typically means that all the pixels are conditioned on a single latent distribution (Dayan et al., 1995; Hinton & Salakhutdinov, 2006; Larochelle & Murray, 2011). As well as precluding the possibility of iterative self-correction, the "one shot" approach is fundamentally difficult to scale to large images. The Deep Recurrent Attentive Writer (DRAW) architecture represents a shift towards a more natural form of image construction, in which parts of a scene are created independently from others, and approximate sketches are successively refined.

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

Time —

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent neural networks: an *encoder* network that compresses the real images presented during training, and a *decoder* that reconstitutes images after receiving codes. The combined system is trained end-to-end with stochastic gradient descent, where the loss function is a variational upper bound on the log-likelihood of the data. It therefore belongs to the family of *variational auto-encoders*, a recently emerged hybrid of deep learning and variational inference that has led to significant advances in generative modelling (Gregor et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where DRAW differs from its siblings is that, rather than generat-

Variational Autoencoder

Encoder: determines a distribution that captures salient information about the input data Decoder: samples from the distribution

Spatial selective attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind

2015

May

20

CV

CS

.04623v2

502.

Xiv:1

KAROLG@GOOGLE.COM DANIHELKA@GOOGLE.COM GRAVESA@GOOGLE.COM DANILOR@GOOGLE.COM WIERSTRA@GOOGLE.COM

Abstract

This paper introduces the *Deep Recurrent Attentive Writer* (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

1. Introduction

A person asked to draw, paint or otherwise recreate a visual scene will naturally do so in a sequential, iterative fashion, reassessing their handiwork after each modification. Rough outlines are gradually replaced by precise forms, lines are sharpened, darkened or erased, shapes are altered, and the final picture emerges. Most approaches to automatic image generation, however, aim to generate entire scenes at once. In the context of generative neural networks, this typically means that all the pixels are conditioned on a single latent distribution (Dayan et al., 1995; Hinton & Salakhutdinov, 2006; Larochelle & Murray, 2011). As well as precluding the possibility of iterative self-correction, the "one shot" approach is fundamentally difficult to scale to large images. The Deep Recurrent Attentive Writer (DRAW) architecture represents a shift towards a more natural form of image construction, in which parts of a scene are created independently from others, and approximate sketches are successively refined.

Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

Time —→

Figure 1. A trained DRAW network generating MNIST digits. Each row shows successive stages in the generation of a single digit. Note how the lines composing the digits appear to be "drawn" by the network. The red rectangle delimits the area attended to by the network at each time-step, with the focal precision indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent neural networks: an *encoder* network that compresses the real images presented during training, and a *decoder* that reconstitutes images after receiving codes. The combined system is trained end-to-end with stochastic gradient descent, where the loss function is a variational upper bound on the log-likelihood of the data. It therefore belongs to the family of *variational auto-encoders*, a recently emerged hybrid of deep learning and variational inference that has led to significant advances in generative modelling (Gregor et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where DRAW differs from its siblings is that, rather than generat-

::::					
					2003
			anna Sectio		

without attention

with attention

network decides at every step "where to read", "where to write", and "what to write"

Figure 3. Left: A 3×3 grid of filters superimposed on an image. The stride (δ) and centre location (g_X, g_Y) are indicated. **Right:** Three $N \times N$ patches extracted from the image (N = 12). The green rectangles on the left indicate the boundary and precision (σ) of the patches, while the patches themselves are shown to the right. The top patch has a small δ and high σ , giving a zoomed-in but blurry view of the centre of the digit; the middle patch has large δ and low σ , effectively downsampling the whole image; and the bottom patch has high δ and σ .

Selective Attention Model

An N×N grid of Gaussian filters is positioned on the image by specifying the co-ordinates of the grid centre and the stride distance between adjacent filters.

stride / delta = zoom

it starts covering the entire image and then zooms in

Implementations

Show, Attend, and Tell

https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow/

DRAW

https://github.com/ikostrikov/TensorFlow-VAE-GAN-DRAW

https://github.com/ericjang/draw

Great blog post about DRAW <u>http://evjang.com/articles/draw</u>

Ask, Attend and Answer: Exploring Question–Guided Spatial Attention for Visual Question Answering

Figure 6. Visualization of the spatial attention weights in the one-hop and two-hop model on VQA (top two rows) and DAQUAR (bottom row) datasets. For each image and question pair, we show the original image, the attention weights W_{att} of the one-hop model, and the two attention weights W_{att} and W_{att2} of the two-hop model in order.

Image Captioning & Attention Deep Learning

Hendrik Heuer University of Amsterdam

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch Joint work with Alexei A. Efros & Abhinav Gupta

ImageNet + Deep Learning

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation

ImageNet + Deep Learning

Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often anded, without resontment, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal raile but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Semantics from a non-semantic task

Architecture

Avoiding Trivial Shortcuts

A Not-So "Trivial" Shortcut

Position in Mage

Chromatic Aberration

Chromatic Aberration

What is learned?

Still don't capture everything

You don't always need to learn!

Visual Data Mining

Via Geometric Verification Simplified from [Chum et al 2007]

Mined from Pascal VOC2011

Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]

VOC 2007 Performance

(pretraining for R-CNN)

% Average Precision
Capturing Geometry?

Surface-normal Estimation

	Error (Low	ver Better)	% Good Pixels (Higher Better		
Method	Mean	Median	11.25°	22.5°	30.0°
No Pretraining	38.6	26.5	33.1	46.8	52.5
Ours	33.2	21.3	36.0	51.2	57.8
ImageNet Labels	33.3	20.8	36.7	51.7	58.1

So, do we need semantic labels?

"Self-Supervision" and the Future

[Agrawal et al. 2015; Jayaraman et al. 2015]

Video

[Wang et al. 2015; Srivastava et al 2015; ...]

Context

[Doersch et al. 2014; Pathak et al. 2015; Isola et al. 2015]

Thank you!

Visual Data Mining?

Geometric Verification

Like [Chum et al. 2007], but simpler

Geometric Verification

Like [Chum et al. 2007], but simpler

Learning Spatiotemporal Features with 3D Convolutional Networks

(1) Dartmouth College, (2) Facebook AI Research, (3) New York University

Introduction

Video Understanding problem:

Many potential applications due to a large-growing number of internet videos

Traditional Computer Vision Pipeline

Current Best Video Features

• Improved Dense Trajectories (iDT)

Wang et al. IJCV'13

Pros:

- Don't need to learn
- Don't need large-scale training data

Cons:

- Highly hand-crafted
- Computational intensive
- Hard to parallelize

What If We Have Big Data?

- Learn features directly from data (no more human biases)
 - Normally built on deep learning, e.g. deep features
- Does it work?
 - Showed to work well for images [Donahue et al. ICML'14]
- How about videos?

Deep Image-based Features

IMAGENET Russakovsky et al. IJCV'15

Krizhevsky et al. NIPS'12

The marriage of Big Data and Good Deep Learning Models

- Fully-supervised trained on large-scale dataset.
- Activations are used as features for transferring tasks.

Can Image-based Features Applied to Videos?

• A video is a sequence of images?

2D ConvNet vs. 3D ConvNet

- Basic operations: 2D vs. 3D convolution
- Most of current work
 - Use 2D convolution on images or videos
 - Cannot model temporal information (motions)

 We propose to use 3D ConvNets for video feature learning

What is a Good Architecture for 3D ConvNets?

- Dataset: UCF101 (13K videos of 101 actions)
- Use similar architecture, varying kernel temporal depth

Learning Video Features with C3D

64 쪽 128 쪽 256 256 쪽 512 512 쪽 512 512 512 쪽 4096 4096 5	Conv1a Conv2a 64 128	Conv3a 256	Conv3b 256	Conv4a 512	Conv4b 512	Conv5a 512	Conv5b 512	<u>ය</u> fc6 4096	fc7 4096
--	------------------------	---------------	------------	---------------	------------	---------------	---------------	----------------------	-------------

- C3D Architecture
 - 8 convolution, 5 pool, 2 fully-connected layers
 - 3x3x3 convolution kernels
 - 2x2x2 pooling kernels
- Dataset: Sports-1M [Karpathy et al. CVPR'14]
 - 1.1M videos of 487 different sport categories
 - Train/test splits are provided

Sport Classification Results

Method	Number of Nets	Clip hit@1	Video hit@1	Video hit@5
Deep Video's Single-Frame + Multires [19]	3 nets	42.4	60.0	78.5
Deep Video's Slow Fusion [19]	1 net	41.9	60.9	80.2
C3D (trained from scratch)	1 net	44.9	60.0	84.4
C3D (fine-tuned from I380K pre-trained model)	1 net	46.1	61.1	85.2

C3D as Generic Features

Simple recipe: C3D + linear SVM = good performance

Action Recognition

UCF101

Action Recognition Results

	Method	Accuracy (%)
Baselines	Imagenet	68.8
Dasennes	iDT	76.2
ĺ	Deep networks [19]	65.4
Use raw pixel	Spatial stream network [36]	72.6
inputs	LRCN [7]	71.1
•	LSTM composite model [39]	75.8
	C3D (1 net)	82.3
Use optical flows	C3D (3 nets)	85.2
	iDT with Fisher vector [31]	87.9
	Temporal stream network [36]	83.7
	Two-stream networks [36]	88.0
	LRCN [7]	82.9
	LSTM composite model [39]	84.3
	Multi-skip feature stacking [26]	89.1
	C3D (3 nets) + iDT	90.4

Action Similarity Labeling

TASK: Given a pair of clips, predict same or different actions

Very challenging evaluation setting: train and test on different categories of actions

ASLAN Results

Method	Features	Model	Acc.	AUC
[22]	STIP	linear	60.9	65.3
[23]	STIP	metric	64.3	69.1
[21]	MIP	metric	65.5	71.9
[12]	MIP+STIP+MBH	metric	66.1	73.2
[45]	iDT+FV	metric	68.7	75.4
Baseline	Imagenet	linear	67.5	73.8
Ours	C3D	linear	78.3	86.5

Dynamic Scene Classification

YUPENN

Maryland

Dataset	[5]	[41]	[9]	[10]	Imagenet	C3D
Maryland	43.1	74.6	67.7	77.7	87.7	87.7
YUPENN	80.7	85.0	86.0	96.2	96.7	98.1

Object Classification

Egocentric object dataset

Dataset	Object
Task	object recognition
Method	[31]
Result	12.0
C3D	22.3
Δ	10.3

Result Summary

C3D performance compared with current methods

Dataset	Sport1M	UCF101	ASLAN	YUPENN	UMD	Object
Task	action recognition	action recognition	action similarity labeling	scene classification	scene classification	object recognition
Method	[19]	[39]([26])	[31]	[10]	[10]	[32]
Result	80.2	75.8 (89.1)	68.7	96.2	77.7	12.0
C3D	85.2	85.2 (90.4)	78.3	98.1	87.7	22.3
Δ	5.0	9.4 (1.3)	9.6	1.9	10.0	10.3

Consistently outperforms state-of-the-art methods on 4 different tasks and 6 different datasets

C3D is Compact

- 10-20% better than Imagenet and iDT at low dimension
- Obtains 52.8% using only 10-dim (random chance is less than 0.96%)

Qualitative Comparison

C3D is Efficient

• Extract features on full UCF101

• 91x faster than iDT

• 276x faster than optical-flow-based methods

Why does C3D works so well?

• What does C3D learn at internal layers?

 Use Deconvolution method [Zeiler & Fergus ECCV'14] to visualize C3D learned features of some internal layers.

Deconvolutions of conv2a

Deconvolutions of conv3b

Conv1aConv2aConv3aConv3bConv3b64128256256512	4a Conv4b (Conv5a Conv5b) (G fc6 fc7 (G fc7 512 512 512 512 512 512 60)
	" " infringenter and
1000000000	A A A A A A A A A A A A A A A A A A A
1156666511	3 A 4 4 4 4 A A A A
	* * * * * * * * * * * *
	A A A A A A A A A A A A A A A A A A A

Deconvolutions of conv3b

Conclusions

- 3D ConvNet is well-suited for spatiotemporal feature learning.
- C3D is a good architecture for 3D ConvNet
- C3D is a good generic video features
 - Accurate
 - Compact
 - Efficient to compute
 - Easy to use

Source code & models are available at http://vlg.cs.dartmouth.edu/c3d

Thank you

- Q&ADemo

what i think

Image captioning is receiving a lot of attention

Vinyals et al., 2015

Donahue et al., 2015

Karpathy and Fei-Fei, 2015 Hodosh et al., 2013

"man in blue wetsuit is surfing on wave."

Karpathy and Fei-Fei, CVPR 2015

A group of young people playing a game of frisbee.

Vinyas et al., CVPR 2015

a car is parked in the middle of nowhere .

Kiros et al., TACL 2015

a pot of broccoli on a stove

Fang et al. CVPR 2015

A man is rescued from his truck that is hanging dangerously from a bridge.

A man is *rescued* from his truck that is hanging *dangerously* from a bridge.

Learning Common Sense

- Text
 - Reporting bias

Word	Teraword	Knext	Word	Teraword	Knext
spoke	11,577,917	244,458	hugged	610,040	10,378
laughed	3,904,519	169,347	blinked	390,692	20,624
murdered	2,843,529	11,284	was late	368,922	31,168
inhaled	984,613	4,412	exhaled	168,985	3,490
breathed	725,034	34,912	was punctual	5,045	511

			Word	Teraword	
	11,577,917	244,458	hugged	610,040	10,378
laughed	3,904,519 i	hale:ex	hale = $6:1$	390,692	20,624
	2,843,529	11,284		368,922	31,168
inhaled	984,613	4,412	exhaled	168,985	3,490
breathed	725,034	34,912	was punctual	5,045	511

	Terawor murder:exhale = 17:1			Teraword	
	11,577,917	244,458	hugged	610,040	10,378
laughed	3,904,519	169,347	blinked	390,692	20,624
murdered	2,843,529	11,284		368,922	31,168
inhaled	984,613	4,412	exhaled	168,985	3,490
	725,034	34,912	was punctual	5,045	511

Body Part	Teraword	Knext	Body Part	Teraword	Knext
Head	18,907,427	1,332,154	Liver	246,937	10,474
Eye(s)	18,455,030	1,090,640	Kidney(s)	183,973	5,014
Arm(s)	6,345,039	458,018	Spleen	47,216	1,414
Ear(s)	3,543,711	230,367	Pancreas	24,230	1,140
Brain	3,277,326	260,863	Gallbladder	17,419	1,556

Body Part	Teraword		Body Part	Teraword	
Head	18,907,427	1,332,154	Liver	246,937	10,474
Eye(s)	18,455,030	1,090,640	Kidney(s)	183,973	5,014
Arm(sPec	ple have	heads:ga	allbladder	s = 1085	1,414
	3,543,711	230,367	Pancreas	24,230	
Brain	3,277,326	260,863	Gallbladder	17,419	1,556

Do birds fly?

bird

/b3:d/

noun

 any warm-blooded egg-laying vertebrate of the class Aves, characterized by a body covering of feathers and forelimbs modified as wings. Birds vary in size between the ostrich and the humming bird related adjectives avian ornithic

Do birds fly? penguin 🖘

[peng-gwin, pen-]

Spell Syllables

Examples Word Origin

noun, Ornithology

 any of several flightless, aquatic birds of the family Spheniscidae, of the Southern Hemisphere, having webbed feet and wings reduced to flippers.

Learning Common Sense

- Text
 - Reporting bias

• From structure in our visual world?

Two professors converse in front of a blackboard.

Two professors stand in front of a blackboard.

Two professors converse in front of a blackboard.

Challenges

- Lacking visual density
- Annotations are expensive
- Computer vision doesn't work well enough

Is photorealism necessary?

Slide credit: Larry Zitnick

Slide credit: Larry Zitnick

Slide credit: Larry Zitnick

Create a children's illustration!

Weak help as create and historian for a diddle cise story hask by creating a coalisine scene from the object digard magnetized. Clipset may be added by daugung the digard onto the scene and removed by daugung it off. The digard may be reased as fligged and each digard may only be added once. Blace use at least 5 pieces of clipset in each scene. You will be added to complete 3 different scenes. Beas: "Next" when finished with the current scene and "Done" when all are finished. Tranked

Scene 1/3

Mike fights off a bear by giving him a hotdog while Jenny runs away.

Dataset

1,000 classes of semantically similar scenes:

1,000 classes x 10 scenes per class = 10,000 scenes

[Zitnick and Parikh, CVPR 2013, Oral] .

Slide credit: Larry Zitnick

Dataset online

Visual Features

Visual Features

Visual Features

Generate Scenes

Input: Jenny is catching the ball. Mike is kicking the ball. The table is next to the tree.

Tuples: <<Jenny>,<catch>,<ball>> <<Mike>,<kick>,<ball>> <<table>,<be>,<>>

Automatically Generated

Human Generated

[Zitnick, Parikh and Vanderwende, ICCV 2013]

Generate Scenes

Jenny was mad and tried to kick Mike. <<Jenny>, <be mad>, <>> <<Jenny>, <try>, <kick>> <<Jenny>, <kick>, <Mike>>

Mike and Jenny are wearing hats. <<Mike>, <wear>, <hat>> << Jenny>, <wear>, <hat>> Mike is holding a baseball bat. <<Mike>, <hold>, <bat>>

Mike is standing in front of the table. <<Mike>, <stand in_front_of>, >

Jenny is sad because she wants the ball. <<Jenny>, <be sad>, <>> <<she>, <want>, <ball>> Mike is wearing a blue hat with a star. <<Mike>, <wear>, <hat>> <<hat>, <with>, <star>> Jenny is happy to see Mike. <<Jenny>, <be happy>, <>> <<Jenny>, <see>, <Mike>>

Mike is eating a burger <<<Mike>, <eat>, <burger>>>

The cat is watching Jenny and Mike. <<cat>, <watch>, <Jenny>> <<cat>, <watch>, <Mike>> Jenny wants Mike to share the bat.

<<Jenny>, <want>, <share>> <<Mike>, <share>, <bat>>

Jenny is on the swings. <<Jenny>, <be>, <>>

[Zitnick, Parikh and Vanderwende, ICCV 2013]

Learning Fine-grained Interactions

Illustrate this sentence:

Sentence 1/2: Person 1 is dancing with Person 2

Who is Person 1 in your creation?

Blonde-haired person

Brown-haired person

Who is Person 2 in your creation? O Blonde-haired person O Brown-haired person

Next

Slide credit: Devi Parikh

[Antol, Zitnick and Parikh, ECCV 2014]

3x

Learning Fine-grained Interactions

Train on clipart, test on real

Results: 60 categories

[Antol, Zitnick and Parikh, ECCV 2014]
Learning Common Sense

- Assess plausibility of relations
 - man holds meal
 - tree grows in table
- Plausibility: similarity to other relations we know are plausible
 - person holds sandwich
 - man eats pizza

— ..

• Textual and visual similarity

Results

Given any tuple, can assess its plausibility

	Average Precision	Rank Correlation
Text alone		
Visual alone		
Text + visual		

[Vedantam, Lin, Batra, Zitnick, and Parikh, ICCV 2015]

Online Demo

Online Demo Home

Predicting Plausibility of Common Sense Assertions

Based on Ramakrishna Vedantam^{*}, Xiao Lin^{*}, Tanmay Batra, C. Lawrence Zitnick, Devi Parikh, Learning Common Sense Through Visual Abstraction, ICCV 2015. *Equal Contribution

Demo prepared by Arijit Ray.

Enter the Primary, Relation and Secondary Phrases of a Tuple whose plausibility you want to assess:

Examples ❤ Or, submit your text file ❤

Entered Tuple : man eats cake

Predicted Plausibility Score : 0.3096

Show More Details ¥

Fill-in-the-blank:

Mike is having lunch when he sees a bear.

- A. Mike orders a pizza.
- B. Mike hugs the bear.
- C. Bears are mammals.
- D. Mike tries to hide.

Fill-in-the-blank

Question

. Mike is

wearing a blue cap. Mike is telling Jenny to get off the swing **Options and Generated Scenes**

A. There is a tree near a table.

B. The brown dog is standing next to Mike.

C. The sun is in the sky.

D. Jenny is standing dangerously on the swing

Visual Paraphrasing

It is a sunny day. Mike is sitting with a pizza. Jenny is playing with a soccer ball. Mike is eating a pizza. Jenny is playing soccer. A cat is eating a hot dog.

Results

	Fill-in-the-blanks (FITB) Accuracy (+/- ~0.15)	Visual Paraphrasing (VP) AP (+/- ~0.02)
Random	25.00	33.33

[Lin and Parikh, CVPR 2015]

Visual Abstraction For...

- Zero-sh Study high-level image understanding
- tasks without waiting for lower-level vision tasks to be solved Studyin
- Learning common sense knowledge •

50k scenes Available online!

Slide credit: Devi Parikh

Semantic Image Understanding

"Color College Avenue", Blacksburg, VA, May 2012

Semantic Image Understanding

Semantic Image Understanding

Words

Mike is wearing a blue hat with a star. <<Mike>, <wear>, <hat>> <<hat>, <with>, <star>> Jenny is happy to see Mike. <<Jenny>, <be happy>, <>> <<Jenny>, <see>, <Mike>>

Pictures

Reasoning (Common Sense, Knowledge Base)

Thank you.

