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Lecture 1: Introduction to Neural Networks and Deep Learning
Deep Learning @ UvA
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o Calculus, Linear Algebra
◦ Derivatives

◦ Matrix operations

o Probability and Statistics

o Advanced programming

o Time and patience

Prerequisites
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o Idea: Go in depth in theory & get hands-on practical experience

o What will you learn?
◦ How to train Deep Learning models

◦ Neural Networks for Computer Vision

◦ Neural Networks for Language

◦ Unsupervised and Bayesian Deep Learning

◦ Deep Reinforcement Learning

o All material uploaded on the course website

o Book on Neural Networks and Deep Learning from Y. Bengio

Course overview
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o Course: Theory (4 hours per week) + Labs (4 hours per week)

o Rooms are not always the same, check Datanose

o Final grade = 50% from lab assignments + 50% from final exam
◦ Exam moved to Dec 20, 13.00-15.00, check Datanose

Course Logistics
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o 6 lab assignments=5 practical assignments + 1 presentation
◦ Equally weighed

o Practical assignments done individually
◦ Python + Tensorflow

o Presentation in groups of 3
◦ Pick your team & paper by Nov 30

◦ Present end of December, schedule announced after Nov 30

◦ 7 min per presentation, 3 min for questions, we will give you template

◦ Graded: 50% presentation skills (group), 50% per student Q&A (individual)

Practicals
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o Efstratios Gavves, TAs: Kirill Gavrilyuk, Berkay Kicanaoglu, Patrick Putzky
◦ uva.deeplearning@gmail.com

o Course website: http://uvadlc.github.io
◦ Lecture sides & notes, practicals

o Virtual classroom
◦ Piazza: www.piazza.com/university_of_amsterdam/spring2016/uvadlc/home 

◦ Datanose: https://datanose.nl/#course[55904] 

Who we are and how to reach us

mailto:uva.deeplearning@gmail.com
http://uvadlc.github.io/
http://www.piazza.com/university_of_amsterdam/spring2016/uvadlc/home
https://datanose.nl/#course[55904
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o Deep Learning in
◦ Computer Vision

◦ Natural Language Processing (NLP)

◦ Speech

◦ Robotics and AI

◦ Music and the arts!

o A brief history of Neural Networks and Deep Learning

o Basics of Neural Networks

Lecture Overview
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Deep Learning in 
Computer Vision
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Object and activity recognition

Click to go to the video in Youtube

https://www.youtube.com/watch?v=qrzQ_AB1DZk
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Object detection and segmentation

Click to go to the video in Youtube

https://www.youtube.com/watch?v=CxanE_W46ts
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Image captioning and Q&A

Click to go to the video in Youtube Click to go to the website

https://www.youtube.com/watch?v=8BFzu9m52sc
http://cloudcv.org/vqa/
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o Vision is ultra challenging!
◦ For a small 256x256 resolution and for 256 pixel values

◦ a total 2524,288 of possible images

◦ In comparison there are about 1024stars in the universe

o Visual object variations
◦ Different viewpoints, scales, deformations, occlusions

o Semantic object variations
◦ Intra-class variation

◦ Inter-class overlaps

Why should we be impressed?
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Deep Learning in 
Robotics
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Self-driving cars

Click to go to the video in Youtube

https://www.youtube.com/watch?v=-96BEoXJMs0
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Drones and robots

Click to go to the video in Youtube

https://www.youtube.com/watch?v=2hGngG64dNM
https://www.youtube.com/watch?v=2hGngG64dNM
https://www.youtube.com/watch?v=2hGngG64dNM
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Game AI

Click to go to the video in Youtube

https://www.youtube.com/watch?v=V1eYniJ0Rnk


UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 17UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 17

o Typically robotics are considered in controlled environments
◦ Laboratory settings, Predictable positions, Standardized tasks (like in factory robots)

o What about real life situations?
◦ Environments constantly change, new tasks need to be learnt without guidance, 

unexpected factors must be dealt with

o Game AI
◦ At least 1010

48
possible GO games. Where do we even start?

Why should we be impressed?
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Deep Learning in 
NLP and Speech
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Word and sentence representations
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Speech recognition and Machine translation
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o NLP is an extremely complex task
◦ synonymy (“chair”, “stool” or “beautiful”, “handsome”)

◦ ambiguity (“I made her duck”, “Cut to the chase”)

o NLP is very high dimensional
◦ assuming 150K english words, we need to learn 150K classifiers

◦ with quite sparse data for most of them

o Beating NLP feels the closest to achieving true AI
◦ although true AI probably goes beyond NLP, Vision, Robotics, … alone

Why should we be impressed?
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Deep Learning in 
the arts
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Imitating famous painters
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Or dreaming …

Click to go to the video in Youtube

https://www.youtube.com/watch?v=FjFaqVZk_rM
https://www.youtube.com/watch?v=FjFaqVZk_rM
https://www.youtube.com/watch?v=FjFaqVZk_rM
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Handwriting

Click to go to the website

http://www.cs.toronto.edu/~graves/handwriting.html
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o Music, painting, etc. are tasks that are uniquely human
◦ Difficult to model

◦ Even more difficult to evaluate (if not impossible)

o If machines can generate novel pieces even remotely resembling art, they 
must have understood something about “beauty”,  “harmony”, etc.

o Have they really learned to generate new art, however?
◦ Or do they just fool us with their tricks?

Why should we be impressed?
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A brief history of 
Neural Networks & 
Deep Learning

Frank 
Rosenblatt

Charles W. 
Wightman
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First appearance (roughly)
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o Rosenblatt proposed a machine for binary classifications

o Main idea
◦ One weight 𝑤𝑖 per input 𝑥𝑖
◦ Multiply weights with respective inputs and add bias 𝑥0 =+1

◦ If result larger than threshold return 1, otherwise 0

Perceptrons
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o Rosenblatt’s innovation was mainly the learning algorithm for perceptrons

o Learning algorithm
◦ Initialize weights randomly

◦ Take one sample 𝑥𝑖and predict 𝑦𝑖
◦ For erroneous predictions update weights
◦ If the output was ෝ𝑦𝑖 = 0 and 𝑦𝑖 = 1, increase weights

◦ If the output was ෝ𝑦𝑖 = 1 and 𝑦𝑖 = 0, decrease weights

◦ Repeat until no errors are made

Training a perceptron
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o One perceptron = one decision

o What about multiple decisions?
◦ E.g. digit classification

o Stack as many outputs as the
possible outcomes into a layer
◦ Neural network

o Use one layer as input to the next layer
◦ Multi-layer perceptron (MLP)

From a perceptron to a neural network
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o However, the exclusive or (XOR) cannot
be solved by perceptrons
◦ [Minsky and Papert, “Perceptrons”, 1969]

◦ 0 𝑤1 + 0𝑤2 < 𝜃 → 0 < 𝜃

◦ 0 𝑤1 + 1𝑤2 > 𝜃 → 𝑤2 > 𝜃

◦ 1 𝑤1 + 0𝑤2 > 𝜃 → 𝑤1 > 𝜃

◦ 1 𝑤1 + 1𝑤2 < 𝜃 → 𝑤1 + 𝑤2 < 𝜃

XOR & Multi-layer Perceptrons

Input 1 Input 2 Output

1 1 0

1 0 1

0 1 1

0 0 0

Input 1 Input 2

Output

𝑤1 𝑤2

Inconsistent!!
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o Interestingly, Minksy never said XOR cannot be 
solved by neural networks
◦ Only that XOR cannot be solved with 1 layer perceptrons

o Multi-layer perceptrons can solve XOR
◦ 9 years earlier Minsky built such a multi-layer perceptron

o However, how to train a multi-layer perceptron?

o Rosenblatt’s algorithm not applicable, as it 
expects to know the desired target
◦ For hidden layers we cannot know the desired target

Minsky & Multi-layer perceptrons

𝑦𝑖 = {0, 1}
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o Interestingly, Minksy never said XOR cannot be 
solved by neural networks
◦ Only that XOR cannot be solved with 1 layer perceptrons

o Multi-layer perceptrons can solve XOR
◦ 9 years earlier Minsky built such a multi-layer perceptron

o However, how to train a multi-layer perceptron?

o Rosenblatt’s algorithm not applicable, as it 
expects to know the desired target
◦ For hidden layers we cannot know the desired target

Minsky & Multi-layer perceptrons

𝑎𝑖 =? ? ?

𝑦𝑖 = {0, 1}
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The “AI winter” despite notable successes
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o What everybody thought: “If a perceptron cannot even solve XOR, why bother?
◦ Also, the exaggeration did not help (walking, talking robots were promised in the 60s)

o As results were never delivered, further funding was slushed, neural networks 
were damned and AI in general got discredited

o “The AI winter is coming”

o Still, a few people persisted

o Significant discoveries were made, that laid down the road for today’s 
achievements

The first “AI winter”
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o Learning multi-layer perceptrons now possible
◦ XOR and more complicated functions can be solved

o Efficient algorithm
◦ Process hundreds of example without a sweat

◦ Allowed for complicated neural network architectures

o Backpropagation still is the backbone of neural network training today

o Digit recognition in cheques (OCR) solved before the 2000

Backpropagation
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o Traditional networks are “too plain”
◦ Static Input  Processing  Static Output

o What about dynamic input
◦ Temporal data, Language, Sequences

o Memory is needed to “remember” state changes
◦ Recurrent feedback connections 

o What kind of memory
◦ Long, Short?

◦ Both! Long-short term memory networks (LSTM), Schmidhuber 1997

Recurrent networks
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o Until 1998 some nice algorithms and methods were proposed
◦ Backpropagation

◦ Recurrent Long-Short Term Memory Networks

◦ OCR with Convolutional Neural Networks

o However, at the same time Kernel Machines (SVM etc.) suddenly become very 
popular
◦ Similar accuracies in the same tasks

◦ Neural networks could not improve beyond a few layers

◦ Kernel Machines included much fewer heuristics & nice proofs on generalization 

o As a result, once again the AI community turns away from Neural Networks

The second “AI winter”
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The thaw of the “AI winter”
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o Lack of processing power
◦ No GPUs at the time

o Lack of data
◦ No big, annotated datasets at the time

o Overfitting
◦ Because of the above, models could not generalize all that well

o Vanishing gradient
◦ While learning with NN, you need to multiply several numbers 𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛.

◦ If all are equal to 0.1, for 𝑛 = 10 the result is 0.0000000001, too small for any learning

Neural Network and Deep Learning problems
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o Experimentally, training multi-layer perceptrons was not that useful
◦ Accuracy didn’t improve with more layers

o The inevitable question
◦ Are 1-2 hidden layers the best neural networks can do?

◦ Or is it that the learning algorithm is not really mature yet

Despite Backpropagation …
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o Layer-by-layer training
◦ The training of each layer individually is an 

easier undertaking

o Training multi-layered neural networks 
became easier 

o Per-layer trained parameters initialize 
further training using contrastive 
divergence

Deep Learning arrives

Training layer 1
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o Layer-by-layer training
◦ The training of each layer individually is an 

easier undertaking

o Training multi-layered neural networks 
became easier 

o Per-layer trained parameters initialize 
further training using contrastive 
divergence

Deep Learning arrives

Training layer 2
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o Layer-by-layer training
◦ The training of each layer individually is an 

easier undertaking

o Training multi-layered neural networks 
became easier 

o Per-layer trained parameters initialize 
further training using contrastive 
divergence

Deep Learning arrives

Training layer 3
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Deep Learning Renaissance
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o In 2009 the Imagenet dataset was published [Deng et al., 2009]
◦ Collected images for each term of Wordnet (100,000 classes)

◦ Tree of concepts organized hierarchically 
◦ “Ambulance”, “Dalmatian dog”, “Egyptian cat”, …

◦ About 16 million images annotated by humans

o Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
◦ 1 million images

◦ 1,000 classes

◦ Top-5 and top-1 error measured

More data, more …
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o In 2013 Krizhevsky, Sutskever and Hinton re-implemented [Krizhevsky2013] a 
convolutional neural network [LeCun1998]
◦ Trained on Imagenet, Two GPUs were used for the implementation

o Further theoretical improvements
◦ Rectified Linear Units (ReLU) instead of sigmoid or tanh
◦ Dropout
◦ Data augmentation

o In the 2013 Imagenet Workshop a legendary turmoil
◦ Blasted competitors by an impressive 16% top-5 error, Second best around 26%
◦ Most didn’t even think of NN as remotely competitive

o At the same time similar results in the speech recognition community
◦ One of G. Hinton students collaboration with Microsoft Research, improving state-of-the-art 

by an impressive amount after years of incremental improvements [Hinton2012]

Alexnet

http://image-net.org/challenges/LSVRC/2012/results.html
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Alexnet architecture
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Deep Learning Golden Era
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o Deep Learning is almost everywhere 
◦ Object classification

◦ Object detection, segmentation, pose estimation

◦ Image captioning, question answering

◦ Machine translation

◦ Speech recognition

◦ Robotics

o Some strongholds
◦ Action classification, action detection

◦ Object retrieval

◦ Object tracking

The today
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The ILSVC Challenge over the last three years
CNN based, non-CNN based

Figures taken from Y. LeCun’s CVPR 2015 plenary talk
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o Microsoft Research Asia won the competition with a 
legendary 150-layered network

o Almost superhuman accuracy: 3.5% error
◦ In 2016 <3% error

o In comparison in 2014 GoogLeNet had 22 layers

2015 ILSVRC Challenge

2014

2015

Alexnet, 2012
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So, why now?

Perceptron

Backpropagation

OCR with CNN

???

Object recognition with CNN

Imagenet: 1,000 classes 
from real images, 
1,000,000 images

Datasets of everything (captions, 
question-answering, …), 
reinforcement learning, ???

Bank cheques

Parity, negation problems

M
ar

k 
I P

er
ce

p
tr
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n

Potentiometers 
implement perceptron 
weights 

1. Better hardware

2. Bigger data
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1. Better hardware

2. Bigger data

3. Better regularization methods, such as dropout

4. Better optimization methods, such as Adam, batch normalization

So, why now? (2)
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Deep Learning: 
The What and Why
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o A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent 
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥; 𝜃1,…,L = ℎ𝐿 (ℎ𝐿−1 …ℎ1 𝑥, θ1 , θ𝐿−1 , θ𝐿)
◦ 𝑥:input, θ𝑙: parameters for layer l, 𝑎𝑙 = ℎ𝑙(𝑥, θ𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

θ∗ ← argmin𝜃 ෍

(𝑥,𝑦)⊆(𝑋,𝑌)

ℓ(𝑦, 𝑎𝐿 𝑥; 𝜃1,…,L )

Long story short
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o Traditional pattern recognition

o End-to-end learning  Features are also learned from data

Learning Representations & Features

Hand-crafted
Feature Extractor

Separate Trainable  
Classifier

“Lemur”

Trainable
Feature Extractor

Trainable  Classifier “Lemur”
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o 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℛ𝑑

o Given the 𝑛 points there are in 
total 2𝑛 dichotomies

o Only about 𝑑 are linearly 
separable

o With 𝑛 > 𝑑 the probability 𝑋 is 
linearly separable converges to 0 
very fast

o The chances that a dichotomy is 
linearly separable is very small

Non-separability of linear machines
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o Most data distributions and tasks are non-linear

o A linear assumption is often convenient, but not necessarily truthful

o Problem: How to get non-linear machines without too much effort?

o Solution: Make features non-linear

o What is a good non-linear feature?
◦ Non-linear kernels, e.g., polynomial, RBF, etc

◦ Explicit design of features (SIFT, HOG)?

Non-linearizing linear machines 
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o Invariant
◦ But not too invariant

o Repeatable
◦ But not bursty

o Discriminative
◦ But not too class-specific

o Robust
◦ But sensitive enough

Good features
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o High-dimensional data (e.g. faces) lie in lower dimensional manifolds
◦ Goal: discover these lower dimensional manifolds

◦ These manifolds are most probably highly non-linear

o Hypothesis (1): Compute the coordinates of the input (e.g. a face image) 
to this non-linear manifold  data become separable 

o Hypothesis (2): Semantically similar things lie closer together than 
semantically dissimilar things

How to get good features?
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o Raw data live in huge dimensionalities

o Semantically meaningful raw data prefer lower dimensional manifolds
◦ Which still live in the same huge dimensionalities

o Can we discover this manifold to embed our data on?

Feature manifold example
D

im
en

si
o

n
 1

Dimension 2
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o There are good features and bad features, good manifold representations 
and bad manifold representations

o 28 pixels x 28 pixels = 784 dimensions

The digits manifolds

PCA manifold
(Two eigenvectors)

t-SNE manifold
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o A pipeline of successive modules

o Each module’s output is the input for the next module

o Modules produce features of higher and higher abstractions
◦ Initial modules capture low-level features (e.g. edges or corners)

◦ Middle modules capture mid-level features (e.g. circles, squares, textures)

◦ Last modules capture high level, class specific features (e.g. face detector)

o Preferably, input as raw as possible
◦ Pixels for computer vision, words for NLP

End-to-end learning of feature hierarchies

Initial 
modules

“Lemur”
Middle 

modules
Last 

modules
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o Manually designed features
◦ Often take a lot of time to come up with and implement

◦ Often take a lot of time to validate

◦ Often they are incomplete, as one cannot know if they 
are optimal for the task

o Learned features
◦ Are easy to adapt

◦ Very compact and specific to the task at hand

◦ Given a basic architecture in mind, it is relatively easy and 
fast to optimize

o Time spent for designing features now spent for 
designing architectures

Why learn the features?
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o Supervised learning
◦ (Convolutional) neural networks

Types of learning
Is this a dog or a cat?
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o Supervised learning
◦ (Convolutional) neural networks

o Unsupervised learning
◦ Autoencoders, layer-by-layer training

Types of learning
Reconstruct this image
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o Supervised learning
◦ (Convolutional) neural networks

o Unsupervised learning
◦ Autoencoders, layer-by-layer training

o Self-supervised learning
◦ A mix of supervised and unsupervised learning

Types of learning
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o Supervised learning
◦ (Convolutional) neural networks

o Unsupervised learning
◦ Autoencoders, layer-by-layer training

o Self-supervised learning
◦ A mix of supervised and unsupervised learning

o Reinforcement learning
◦ Learn from noisy, delayed rewards from your environment

◦ Perform actions in your environment, so as to make decisions what data to collect

Types of learning



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 72UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 72

o Feedforward
◦ (Convolutional) neural networks

o Feedback
◦ Deconvolutional networks

o Bi-directional
◦ Deep Boltzmann Machines, stacked autoencoders

o Sequence based
◦ RNNs, LSTMs 

Deep architectures
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Convolutional networks in a nutshell
Dog

Is this a dog or a cat?

Input layer

Hidden layers

Output layers

or Cat?
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Recurrent networks in a nutshell

LSTM LSTM LSTM

Current input
t=0

Current input
t=1

Current input
t=2

Output: “To” “be” “or”

LSTM

Current input
T=3

“not”

Previous 
memory

Previous 
memory

Previous 
memory

…

…

…

LSTM
Input t

Output t

Memory from 
previous state
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Deconvolutional networks

Convolutional network Deconvolutional network
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Autoencoders in a nutshell

Encoding Decoding
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Philosophy of 
the course
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o We only have 2 months = 14 lectures 

o Lots of material to cover

o Hence, lots of assignments that you have to implement
◦ Basic neural networks, learning Tensorflow, learning to program on a server, advanced 

optimization techniques, convolutional neural networks, recurrent neural networks, 
unsupervised learning

o This course is hard

The bad news 
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o We are here to help
◦ Kirill, Berkay and Patrick have done some excellent work and we are all ready here to 

help you with the course

o We have agreed with SURF SARA to give you access to the Dutch 
Supercomputer Cartesius with a bunch of (very) expensive GPUs
◦ You should have no problem with resources

◦ You get to know how it is to do real programming on a server

o You’ll get to know some of the hottest stuff in AI today

The good news 
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o You’ll get to know some of the hottest stuff in AI today
◦ in academia

The good news 

NIPS CVPR
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o You will get to know some of the hottest stuff in AI today
◦ in academia & in industry

The good news 
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o In the end of the course we will give a few MSc Thesis Projects in 
collaboration with Qualcomm/QUVA Lab

o Students will become interns in the QUVA lab and get paid during thesis

o Requirements
◦ Work hard enough and be motivated

◦ Have top performance in the class

◦ And interested in working with us

o Come and find me after the course finishes

The even better news 
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o We encourage you to help each other
◦ 3 students with highest participation in Q&A in Piazza get +1 grade

◦ Your grade depends on what you do, not what others do

o We encourage you to actively participate, give feedback etc
◦ It’s only the first real run of the course after all

o However, we do not tolerate blind copy
◦ Not from each other

◦ Not from the internet

◦ We have (deep) ways to check that

Code of conduct
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First lab 
assignment
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o Tensorflow [https://www.tensorflow.org/] 

o Relies on Python

o Very good documentation

o Lots of code
◦ You can get inspired but not copy, we have ways to check that

Deep Learning Framework

https://www.tensorflow.org/
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o 1 hour presentation from SURF SARA on how to use their facilities

o Multi-layer perceptrons

o Solve a neural network in pen and paper

o Basic hyper-parameter tuning

o Your first neural network classifier

Content & Goal
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o We organized 2 sessions for you, so that you can all comfortably follow 
the presentation from SURF SARA

o 11.00-13.00
◦ SP B0.201

◦ Names: A-M

o 13.00-15.00
◦ SP D1.115

◦ Names N-Z

Some practical information
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Summary

o A brief history of neural networks and deep 
learning

o What is deep learning and why is it happening 
now?

o What types of deep learning exist?

o Demos and tasks where deep learning is 
currently the preferred choice of models



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 89UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    INTRODUCTION TO DEEP LEARNING AND NEURAL NETWORKS - 89

o http://www.deeplearningbook.org/
◦ Chapter 1: Introduction, p.1-p.28

Reading material & references

http://www.deeplearningbook.org/
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Next lecture

o Learn how to describe neural networks as a 
pipeline of layers and modules

o Learn how to build your own modules

o Learn how to optimize modular neural networks 
efficiently in theory and in practice

o And some theory


