


Lecture Overview

o Machine Learning Paradigm for Neural Networks

o The Backpropagation algorithm for learning with a neural network
o Neural Networks as modular architectures

o Various Neural Network modules

o How to implement and check your very own module
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The Machine
Learning Paradigm
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Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions ., Score/Prediction/ Output Objective/Loss/Cost/Energy
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Forward computations
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

O Eva|uate redictions Modlel Scove/Prediction/Output
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”
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o Collect gradient data
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Optimization through Gradient Descent

o As with many model, we optimize our neural petwork with Gradient Descent
) = gt) —
o The most important component in this formulation is the gradient

o Backpropagation to the rescue
> The backward computations of network return the gradients
> How to make the backward computations

1(6,,0,) .

LEARNING WITH NEURAL NETWORKS - PAGE 13 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING



Backpropagation
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What is a neural network again?

o A family of parametric, non-linear and hierarchical
, Which are massively optimized with stochastic gradient descent
to encode domain knowledge, i.e. domain invariances, stationarity.

O aL(xi 31,...,L) = hy (hy-1(...h1(x,01),0,_1), 01)

o x:input, 6;: parameters for layer |, a; = h;(x, 8;): (non-)linear function

o Given training corpus {X, Y} find optimal parameters

0" < argming Z {(y, aL(X; 01,..L ))
(x,y)S(X,Y)
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Forward connections (Feedforward architecture)

mduj
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Interweaved conmnectlons
(Dlrected AcY clic Graph
architecture- DAGNN)

Input
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

mduj

Loopy conmectlons
(Recurvent architecture, speclal care needed)
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

... .0
L4 L)
........ Yo, 'L

l..

;i Functions =» Modules

®
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What is a module?

o A module is a building block for our network

o Each module is an object/function a = h(x; 0) that
o Contains trainable parameters (0)
o Receives as an argument an input x
> And returns an output a based on the activation function h(...)

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation = store
module input =2

o easy to get module output fast
° easy to compute derivatives Input
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Anything goes or do special constraints exist?

o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)
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Forward computations for neural networks

o Simply compute the activation of each module in the network

a; = hy(x;;9), where a; = xp44(0r x; = a;_4)

o We need to know the precise function behind
each module hy(...)

O Recursive operations
> One module’s output is another’s input

o Steps
° Visit modules one by one starting from the data input
> Some modules might have several inputs from multiple modules

o Compute modules activations with the right order
> Make sure all the inputs computed at the right time

Data Input
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Backward computations for neural networks

Data:
o Simply compute the gradients of each module for our data

> We need to know the gradient formulation of each module
dh;(x;; 0;) w.r.t. their inputs x; and parameters 6;

o We need the forward computations first
° Their result is the sum of losses for our input data

o Then take the reverse network (reverse connections)
and traverse it backwards

o Instead of using the activation functions, we use
their gradients

o The whole process can be described very neatly and concisely
with the backpropagation algorithm
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Again, what is a neural network again?

O aL(xi 91,...,L) = hy, (hy—1(...hy(x,01),0,-1), 01)

o x:input, 0;: parameters for layer |, a; = h;(x, 0;): (non-)linear function

o Given training corpus {X, Y} find optimal parameters

0" « arg ming 2 2(y,a,(x; 01,1 ))

(x,y)E(X,Y)
o To use any gradient descent based optimization (8(¢+1D) = gt+1) _ Nt azl(;t)) we
need the gradients
ox ,JI=1,..,L
00,’

o How to compute the gradients for such a complicated function enclosing other
functions, like a; (...)?
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z @
,dz _dzdy
dx dy dx
o Whenx € R™,ye R"zeR @;‘@
d .
Ay LD, gradients from all possible paths )'&

@) 6@ 6O
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x, y, z (2)
,dz _dzdy
dx dy dx
o Whenx € R™,ye R"zeR Q @
J
A P AN gradients from all possible paths '&

&) @)

dz _ dz dy' dz dy*
dxl ~ dyldx! dy?dx?!
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z Q
L4z _ dzdy
dx dy dx
o Whenx € R™,ye R"zeR @ ‘@
dy; -
Ay LD, gradients from all possible paths )'K

&) () @

dz _ dz dy' dz dy*
dx2  dyldx? dy? dx?
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z Q
L4z _ dzdy
dx dy dx
o Whenx € R™,ye R"zeR @ ‘@
dy; >
Ay LD, gradients from all possible paths )'k

@) G@) GO

dz _ dz dy' dz dy*
dx3 ~ dyldx3 dy?dx3
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z @
,dz _dzdy
dx dy dx
oWhean R™Mye RYzeR @;‘@
o =), — 4z &y - gradients from all possible paths )'K

dxl J dy; dx;

° Or in vector notation @ @ @

dz _(dy\' dz
dx  \dx dy

dy . .
gd is the Jacobian
dx
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he Jacobian

o Whenx € R3,y € R?

Ay |ax® 9x@ 9x®
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Chain rule in practice

o f(y) = sin(y),y = g(x) = 0.5 x?

df d|[sin(y)]d[0.5x°]
dx — dg dx
= cos(0.5x%) - x
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Backpropagation < Chain rule!!!

o The loss function L(y, a;) depends on a;, which dependsona;_q, ...,
which depends on a;. aL(xi 91,...,L) =hy (hy—1(...h1(x,01),..,0,-1),01)

o Gradients of parameters of layer | = Chain rule

oL 0L da;, Jda;4 da;
06, da; da;,_, da;_, 06,

o When shortened, we need to two quantities

oL  da;. OL

a_Hl B (091) Bal
/

cradient of a wmodule w.rt. its parameters \ qradient of loss w.r.t. the module output
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Backpropagation < Chain rule!!!

9a ;. 9L _ danr 9L i i
e Forael in ael (691) aal we only need the Jacobian of the [-th

module output a; w.r.t. to the module’s parameters 6,
o Very local rule, every module looks for its own

o Since computations can be very local
° graphs can be very complicated
> modules can be complicated (as long as they are differentiable)
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Backpropagation < Chain rule!!!

Ap+1 = i1 (X415 0141)

oL . 9L _ dajy OL

o For—in — = — we apply chain rule again
6al 691 (691 aal PR 5
T
0L da; 41 0L Xi41 = a4
aal 0al aal+1
.. da . :
o We can rewrite a;“ as gradient of module w.r.t. to input  a; = h(x;6)
l
> Remember, the output of a module is the input for the next one: a;=x;,4
T
Gradient w.r.t. the module tnput aL — aal+1 . aL
da, 0X141 0a;+4

recursive rule (good for us)!!!
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Multivariate functions f (x)

o Often module functions depend on multiple input variables

° Softmax! o
> Each output dimension depends on al = - ¢ _ -, =1,2,3
multiple input dimensions eX” +e*" +e*
aal aal . .
o For these cases for the Py (or ﬁ) we must compute Jacobian matrix as a;
l l
depends on multiple input x; (or 6;)

1

o e.g. in softmax a® depends on all e*~, e*

2 3 . 2
and e* , not juston e”*
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Diagonal Jacobians

o Often in modules the output depends only in a single input
°e.g.asigmoid a = o(x), or a = tanh(x), ora = exp(x)

51 o(x1)
a(x) = o(x) = G([xZD =lo(x?)
3

o(x°).

o Not need for full Jacobian, only the diagonal: anyways ng =0, Vi#)
b as [GEDA - oGh) 0 0 | [eGxHA=0o(x))]
dx ~ dx 0 o(x*)(1—a(x?)) 0 ~ oD (1 = o (x?)

_ 0 0 o(x )1 —a@x*) | lo(x*)(A - 0o(x?)) |

o Can rewrite equations as inner products to save computations
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Dimension analysis

o To make sure everything is done correctly = “Dimension analysis”

o The dimensions of the gradient w.r.t. 8; must be equal to the dimensions
of the respective weight 6,

dim (0_,6) = dim(a;)

aal

. (0L .
dim 6_Hl = dim(6,)

LEARNING WITH NEURAL NETWORKS - PAGE 37 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING



Dimension analysis

oL (6al+1)T oL dim(a;) = d;

o For a_al - 0a;+1 dlm(gl) — dl—l X dl

0X14+1

[dix 1] = [dj41 X di]" - [dy41% 1]

o For 9L — 2w (a_L)T
691 B 691 aal

[di—1 X di] = [dj—1X 1] - [1 X d{]
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients
° Cache computations when possible to avoid redundant operations

oL <6al+1)T oL oL da, (az:)T

a_al B 0X141 0a

| aal+1 801 591

o Step 3. Use the gradients % with Stochastic Gradient Descend to train
l



Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients

° Cache computations when possible to avoid redundant operations

Vector with dimensions [d;X 1]
T

0L

da;

(

T
aal+1)
alxl+1

0L
0a+1

o Step 3. Use the

Vector with dimensions [d;_1X 1]

/

00, 00,

oL da, (9L
da,

adients oL with Stochastic Gradient D\$scend to train

FY)

Jacobian wmatrix with dimensions [dj4q X d;]7

vector with dimensions [dy1X 1]

Matrix with dimensions

vector with dimensions [1 X d;]

[d;—1X di]



Dimensionality analysis: An Example

o d;_1 = 15 (15 neurons), d; = 10 (10 neurons), d;+1 = 5 (5 neurons)

o Let'ssay a; = HlTxl and a; 1 = Galxlﬂ

o Forward computations X = A1
capq:[15% 1], a;: [10 X 1], agyq:[5 X 1]
oxp: [15 % 1], x;44: [10 X 1]
> @;: [15 x 10]

o Gradients
g—’; [5 % 10]" - [5 x 1] = [10 x 1]
02_5:[15><1]-[10><1]T= [15 x 10]
l



Intultive

10N

Backpropagat
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Backpropagation in practice

o Things are dead simple, just compute per module

da(x;0) da(x; 0)
0x 20

o Then follow iterative procedure

oL  (day, T. oL oL da, (3L
aal axl+1 aal+1 691 631

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING LEARNING WITH NEURAL NETWORKS - PAGE 43



Backpropagation in practice

o Things are dead simple, just compute per module

da(x;0) da(x; 0)
0x 20

o Then follow iterative procedure [remember: a; = X741
Derivatives from layer above

/\

T T
G_L _ 6al+1 . 0£ OL _ aal B,C
da;  \0x141) 0a, 09, 99, \dq

S

Modlule dertvatives
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Forward propagation

o Forinstance, let’s consider our module is the function cos(8x) +

o The forward computation is simply

import numpy as np
def forward(x):

return np.cos(self.theta*x)+np.pi
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Backward propagation

o The backpropagation for the function cos(x) + 7
import numpy as np

def backward dx(x):
return -self.theta*np.sin(self.theta*x)

import numpy as np

def backward dtheta(x):
return -x*np.sin(self.theta*x)
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Backpropagation:
An example
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Backpropagation visualization

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 48 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING



Backpropagation visualization at epoch (t)

Forward propaaat’wws

Compute anol stove ay= hq(xq)
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Backpropagation visualization at epoch (t)

Forward pmpaaatiows

Compute anol store dy= hy(x3)
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Backpropagation visualization at epoch (t)

Forward pmpaaatiom

Egampte
a; = o0(61x1)
a, = o(6;x;)

(as)= lly = xsI?

Store!!ll

Compute anol store az= h3z(x3)
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Backpropagation visualization at epoch (t)

Eaal@pmpaaatiow Example
oL az; = L(y,x3) = h3(x3) = 0.5 ||y — x3||2

Py € Dlrect computation 0L
_odaz ox. VT
_ 9%, (y — x3)
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Backpropagation visualization at epoch (t)

Backpropagation
0L 0L OJdas
da, 0das Oa,
0L 0L Oda,
06, 0da, 06,

Example
L(y,x3) = 0.5 [ly — x3]I?

X3 = dz
a, = a(6,xz)

0L 0L

da, 0xs —(y — x3)

do(x) = o(x)(1 —oa(x))
da,
= = X20(0,x) (1 — a(6;x3))

00,
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Backpropagation visualization at epoch (t)

Example

Backpropagation L(y,a3) = 0.5 |ly — as]|?
0L 4L da, ?cz = Z(Hzxz)

= . 2 — 11
aal aaz aal a, = O-(Hlxl)
oL 0L Jday da, A

— ) = =60,a,(1—a
091 aal 691 gal axz 2 2( 2)

aq
0_91 =x1a:(1 —ay)

Computed from the exact previous
baclkepropagation step (Remember, recursive rule)
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Backpropagation visualization at epoch (t + 1)

Forward propaaat’wws

Compute anol stove ay= hq(xq)
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Backpropagation visualization at epoch (t + 1)

Forward pmpaaatiows

Compute anol store dy= hy(x3)
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Backpropagation visualization at epoch (t + 1)

Forward pmpaaatiom

Egampte
a; = o0(61x1)
a, = o(6;x;)

(as)= lly = xsI?

Store!!ll

Compute anol store az= h3z(x3)
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Backpropagation visualization at epoch (t + 1)

Eaal@pmpaaatiow Example
oL az; = L(y,x3) = h3(x3) = 0.5 ||y — x3||2

Py < Dlyrect computation oL
| & 9% (y — x3)
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Backpropagation visualization at epoch (t + 1)

Backpropagation
0L 0L OJdas
da, 0das Oa,
0L 0L Oda,
06, 0da, 06,

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 59

Example
L(y,x3) = 0.5 [ly — x3]I?

X3 = dz
a, = a(6,xz)

0L 0L

da, 0xs —(y — x3)

do(x) = o(x)(1 —oa(x))
da,
90- = x,0(0,x2)(1 — 0(62x3))
2
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Backpropagation visualization at epoch (t + 1)

Example

Backpropagation L(y,a3) = 0.5 |ly — as]|*
0L 4L da, ?cz = Z(Hzxz)

= . 2 — %1
aal aaz aal a, = O-(Hlxl)
oL 0L Jday da, A

— ) = =60,a,(1—a
091 aal 691 gal axz 2 2( 2)

aq

— =x;0:(1—a,)

Computed from the exact previous
baclkepropagation step (Remember, recursive rule)
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Some practical tricks of the trade

o For classification use cross-entropy loss
o Use Stochastic Gradient Descent on mini-batches
o Shuffle training examples at each new epoch

o Normalize input variables

°(u,0%) = (0,1)
cu=0
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Everything is a
module
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

... .'
L 4 L}

.0. -h-
»

;i Functions =» Modules

®
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Linear module

o Activation function a = Ox

o Gradient with respect to the mput — =0

dx
da
o Gradient with respect to the parameters — g = X
3 . - T - ——
— a=#éx
21 —  dajdr |-
ok
S|
=3 5 —4 =2 0 2 4 6
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Sigmoid module

o Activation function a = o(x) = 1+2_x
o Gradient wrt the mput —=0x)(1 —0a(x))
o Gradient wrt the input aa;zx) =0 - U(Hx)(l — a(Hx))
o Gradient wrt the parameters "
do(0x) o3|
FY R o(0x)(1 —0(0x)) .

o4t

02

oa
-5

OPTIMIZING NEURAL NETWORKS IN THEORY AND IN PRACTICE - PAGE 65 UVA DEEP LEARNING COURSE - EFSTRATIOS GAVVES & MAX WELLING



Sigmoid module — Pros and Cons

+ Output can be interpreted as probability
+ Output bounded in [0,1] =2 network cannot overshoot
- Always multiply with < 1 -> Gradients can be small in deep networks

- The gradients at the tails flat to O = no serious SGD updates
> Overconfident, but not necessarily “correct” 10 - -

> Neurons get stuck 0s|

Gt

o4t

02
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anh module

L . eX—e™*
o Activation function a = tanh(x) = ex+e‘x
o Gradient with respect to the input a = 1 — tanh?(x)

o Similar to sigmoid, but with different output range
o [—1,+1] instead of [0, +1]

o Stronger gradients, because data is centered 0s |
around O (not 0.5)

° Less bias to hidden layer neurons as now outputsoof
can be both positive and negative (more likely
to have zero mean in the end) s |

— a=tan hlz.':}

—  da/dz
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Rectified Linear Unit (ReLU) module (Alexnet)

o Activation function a = h(x) = max(0, x)

O' l_fx =0 | S ISuﬂpIus
1,lfx>0 *- — Rectifier

Monlinearitbes
| | | | | |

, . 0
o Gradient wrt the mputﬁ = {

o Very popular in computer vision and speech recognition

o Much faster computations, gradients I )
o No vanishing or exploding problems, only comparison, addition, multiplication

o People claim biological plausibility S, -

O Sparse activations

o No saturation 1- -

o Non-symmetric

o Non-differentiable at 0 T T T ! '1 ! ! !

O

A large gradient during training can cause a neuron to “die”. Higher learning rates hitigate the problem



RelLU convergence rate

0.75
= Tanh

@ 0.5 4
E AN
S .
) -~
< ~ -~
£ - -
@ 025 - R
I_

U | | | | | | |

0 5 10 15 20 25 30 35 40

Epochs




Other Rel.Us

o Soft approximation (softplus): a = h(x) = In(1 + e”*)
o Noisy ReLlU: a = h(x) = max (0,x + €),e~N(0, 0(x))

x,if x>0

Leaky RelU:a = h =
oo ea 2 {O.le otherwise

x,if x>0

Lx otherwise (parameter B is trainable)

o ParametricReLu:a = h(x) = {

I
o

Yi

t
|
|
I
|
|
|
|
|
Yi = a5 |
|
|

Y1 = Q5iTji

I
ReL.U Leaky ReLU/PReLU Randomized Leaky ReLU



Softmax module

x(K)
o Activation function a®® = softmax(x*)) = Ze 5
. @
]
o Qutputs probability distribution, 2’,§=1 a® =1 for K classes
o Because e®tP = e%e? e usually compute
ex(k)_
alf) = =—, 1 = max; x) because
Zj eX H
A B (0

5 exD-i euy ex0) - 5 ex0)

o Avoid exponentianting large numbers = better stability
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Euclidean loss module

o Activation function a(x) = 0.5 ||y — x||?
> Mostly used to measure the loss in regression tasks

: : : 0
o Gradient with respect to the input ﬁ =X—Y

25 T L] 1 1 1 i

— a=|lz— :.t!||2
20+
—  da/dr
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Cross-entropy loss (log-loss or log-likelihood) module

o Activation function a(x) = = YX_, y®) Jogx®), yF) =10, 1}

da__ 1
oxl) —  x®

o The cross-entropy loss is the most popular classification losses for
classifiers that output probabilities (not SVM)

o Gradient with respect to the input

o Cross-entropy loss couples well softmax/sigmoid module
o Often the modules are combined and joint gradients are computed

o Generalization of logistic regression for more than 2 outputs
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Many, many more modules out there ...

o Regularization modules
° Dropout

o Normalization modules
o £5-normalization, £1-normalization

Question: When is a normalization module needed?

Answer: Possibly when combining different modalities/networks (e.g. in
Siamese or multiple-branch networks)

o Loss modules
° Hinge loss

o and others, which we are going to discuss later in the course
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Composite
modules

O]

“Make your own
module”
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Backpropagation again

o Step 1. Compute forward propagations for all layers recursively

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients
° Cache computations when possible to avoid redundant operations

oL <6al+1)T oL oL da, (az:)T

a_al B 0141 Jda;

| aal+1 801 591

o Step 3. Use the gradients % with Stochastic Gradient Descend to train
l



New modules

o Everything can be a module, given some ground rules

o How to make our own module?
o Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

da(x;0) da(x;0)
0x and 00
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A module of modules

o As everything can be a module, a module of modules could also be a
module

o We can therefore make new building blocks as we please, if we expect
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply
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1 sigmoid == 2 modules?

o Assume the sigmoid o(...) operating on top of x
a=o(fx)

o Directly computing it 2 complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

a, = 0x —a, =od(ay)
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1 sigmoid == 2 modules?

- Two backpropagation steps instead of one

+ But now our gradients are simpler
o Algorithmic way of computing gradients
> We avoid taking more gradients than needed in a (complex) non-linearity

a, =o(a;)

A 4

a; = Ox
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Network-in-network [Lin et al., arXiv 2013]

A - .
Ef_ E‘_ ‘H_:.::*;;Q":;: :Q‘“‘
1 ST N 1 "_:_‘ o[ tu ..
: e L RO
¥ T L LN B T
. T
(a) Linear convolution layer (b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer
includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer
perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent

concept.
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ResNet [He et al., CVPR 2016]

34-layer residual

image

weight layer
F(x) l relu
weight layer

F(x)+x

X
identity

Figure 2. Residual learning: a building block.
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Radial Basis Function (RBF) Network module

o RBF module
a= ) wexp(—f;(x—w)?)
J
o Decompose into cascade of modules
a; = (x —w)?
a, = exp(—pfa;)
a3 — uaz

Ay = plus(...,agj), )
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Radial Basis Function (RBF) Network module

o An RBF module is good for regression problems, in which cases it is
followed by a Euclidean loss module

o The Gaussian centers w; can be initialized externally, e.g. with k-means

a; = (x —w)?

exp(—pfa,)
a3 — uaz

Ay = plus(...,agj), )

Q
N
|
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An RBF visually

as = |ly — a,ll”

RBF module ‘

a; = (x —w)?- a, = exp(—fa;) > az =ua, - a, =plus(...,agj), )
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Unit tests
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Unit test

o Always check your implementations
> Not only for Deep Learning

o Does my implementation of the sin function return the correct values?
o If | execute sin(m/2) does it return 1 as it should

o Even more important for gradient functions
° not only our implementation can be wrong, but also our math

o Slightest sign of malfunction = ALWAYS RECHECK

° lgnoring problems never solved problems
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af(x)

Gradient check Original gradient defnition: LE = limy,_,q

f(x+h)
Ah

o Most dangerous part for new modules = get gradients wrong /

o Compute gradient analytically a(0+¢) —a(f —¢)

o Compute gradient computationally g(e(i)) ~ I e
o Compare
. 2
| da(x; 81) .

o Is difference in (10™%,10~7) = thengradients are good
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Gradient check

o Perturb one parameter 8 at a time with 80 + ¢
o Then check A(H(i)) for that one parameter only

o Do not perturb the whole parameter vector 8 + ¢
> This will give wrong results (simple geometry)

o Sample dimensions of the gradient vector
° |f you get a few dimensions of an gradient vector good, all is good
> Sample function and bias gradients equally, otherwise you might get your bias wrong
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Numerical gradients

o Can we replace analytical gradients with numerical gradients?
o In theory, yes!

o In practice, no!
> Too slow
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Be creative!

o What about trigonometric modules?
o Or polynomial modules?

o Or new loss modules?
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o Machine learning paradigm for neural networks

o Backpropagation algorithm, backbone for
training neural networks

Summary

o Neural network == modular architecture

o Visited different modules, saw how to
implement and check them
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Reading material & references

o http://www.deeplearningbook.org/
o Part I: Chapter 2-5
o Part Il: Chapter 6
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http://www.deeplearningbook.org/

o Optimizing deep networks
o Which loss functions per machine learning task

Next lecture o Advanced modules

o Deep Learning theory
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