


Previous lecture

o Machine learning paradigm for neural networks
o Backpropagation algorithm, backbone for training neural networks
o Neural network == modular architecture

o Visited different modules, saw how to implement and check them
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Lecture overview

o How to define our model and optimize it in practice
o Data preprocessing and normalization

o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters

o Learning rate

o Weight initializations

o Good practices

s
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Deeper into
Neural Networks &
Deep Neural Nets
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.



A Neural/Deep Network in a nutshell

1. The Neural Network
aj, (Xi 01..L ) =hy (hy—1(...h1(x,01),0,-1),0;.)

2. Learning by minimizing empirical ervor

0" < argming z L(y, aL(x; 01,1 ))
(xy)S(XY)

3. Optimizing with Gradient Descend based methods
O+ = 9) — .V, L
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1. The Neural Network
a, (x; 91,...,L ) = hy (hy—1(...hy(x,01),0,-1),6;)

SGD vs GD 2. Learning by minimizing empirical ervor

0" < argming Z L(y, aL(X; 01,..L ))
(x,y)E(X)Y)

3. Optimizing with Gradient Descend based wmethods
O+ =g — .V, L
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Backpropagation again

o Step 1. Compute forward propagations for all layers recursively

a; = hy(x;) and x;41 = q

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients
° Cache computations when possible to avoid redundant operations

0L (daj..\ oL oL da, (az:)T

da;  \0x.1) Oaq 96, 36,

aal

o Step 3. Use the gradients %é? with Stochastic Gradient Descend to train
l
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Still, backpropagation can be slow

o Often loss surfaces are
° non-quadratic
° highly non-convex
° very high-dimensional

o Datasets are typically really large to compute complete gradients

o No real guarantee that
° the final solution will be good
o we converge fast to final solution
o or that there will be convergence
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Stochastic Gradient Descend (SGD)

o Stochastically sample “mini-batches” from dataset D
° The size of Bj can contain even just 1 sample

B; = sample(D)
gt+1) — g& _ Tt VoL,
|B]| iEBj
o Much faster than Gradient Descend
o Results are often better
o Also suitable for datasets that change over time

o Variance of gradients increases when batch size decreases

s
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SGD is often better
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SGD is often better

o (A bit) Noisy gradients act as regularization
o Gradient Descend = Complete gradients

o Complete gradients fit optimally the (arbitrary) data we have, not the
distribution that generates them
o All training samples are the “absolute representative” of the input distribution
o Test data will be no different than training data
o Suitable for traditional optimization problems: “find optimal route”
> But for ML we cannot make this assumption = test data are always different

o Stochastic gradients = sampled training data sample roughly
representative gradients
> Model does not overfit to the particular training samples
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SGD is faster
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SGD is faster
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SGD is faster
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SGD is faster

o Of course in real situations data do not replicate

o However, after a sizeable amount of data there are clusters of data that
are similar

o Hence, the gradient is approximately alright

o Approximate alright is great, is even better in many cases actually
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SGD for dynamically changed datasets

tﬁitttttitiiﬁt*ttiﬁt

7‘?

o Often datasets are not “rigid”
O Imagine Instagram ,,"" .\'

nnl
o Let’s assume 1 m|II|on of new images U loaded per week and JoGECLL LR

we want to build a “cool picture” classifier

> Should “cool pictures” from the previous year have the same as
much influence?

> No, the learning machine should track these changes

o With GD these changes go undetected, as results are
averaged by the many more “past” samples
o Past “over-dominates”

o A properly implemented SGD can track changes much
better and give better models
o [LeCun2002]

Popular ln 2010
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Shuffling examples

Dataset

o Applicable only with SGD

o Choose samples with maximum information content

o Mini-batches should contain examples from different classes

> As different as possible Shuffling
at epoch t

o Prefer samples likely to generate larger errors
> Otherwise gradients will be small = slower learning
> Check the errors from previous rounds and prefer “hard examples”
> Don’t overdo it though :P, beware of outliers

Shuffling [

o In practice, split your dataset into mini-batches at epoch t+1

o Each mini-batch is as class-divergent and rich as possible
> New epoch =2 to be safe new batches & new, randomly shuffled examples

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 17



Advantages of Gradient Descend batch learning

o Conditions of convergence well understood

o Acceleration techniques can be applied
> Second order (Hessian based) optimizations are possible
> Measuring not only gradients, but also curvatures of the loss surface

o Simpler theoretical analysis on weight dynamics and convergence rates
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In practice

o SGD is preferred to Gradient Descend

o Training is orders faster
° |n real datasets Gradient Descend is not even realistic

o Solutions generalize better
> More efficient = larger datasets
o Larger datasets = better generalization

o How many samples per mini-batch?
° Hyper-parameter, trial & error
o Usually between 32-256 samples
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0;)

Data preprocessing &
normalization

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, ClL(X; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
O+ =9 — .V, L
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Data pre-processing

o Center data to be roughly O
o Activation functions usually “centered” around O
o Convergence usually faster
> Otherwise bias on gradient direction =2 might slow down learning

RelU © tanh(x) ©

—— " —— e - - ———
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Data pre-processing

o Scale input variables to have similar diagonal covariances ¢; = Z]-(xi(]))2

> Similar covariances = more balanced rate of learning for different weights
> Rescaling to 1 is a good choice, unless some dimensions are less important
x = [x%,x2,x3]7,0 = [61,0%,03]T,a = tanh(6Tx)

10 T T T T x

—  a=tanh(zx)

—  da/dz l

L x% x3 2> mueh different covartances

05 -

6" / dc ,
53 ol J ; 02: Generated @VOIO(L@WCS 10 12 3 Cmuceh dtﬁerev\,’c
-0 =2 —2 0 3 3 . l -dL/del_
Gradient update havder: H(t"'l) — g(t) — N dL/d92
dL/do3]
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Data pre-processing

o Input variables should be as decorrelated as possible
° Input variables are “more independent”
> Network is forced to find non-trivial correlations between inputs
> Decorrelated inputs = Better optimization
> Obviously not the case when inputs are by definition correlated (sequences)

O Extreme case
o extreme correlation (linear dependency) might cause problems [CAUTION]
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Normalization: N(u, %) = N(0, 1) :

o Input variables follow a Gaussian distribution (roughly) .|

X
o In practice: S ]
° from training set compute mean and standard deviation T ee .
° Then subtract the mean from training samples
> Then divide the result by the standard deviation
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N(u,04) = N(0,1) — Making things faster

o Instead of “per-dimension” = all input dimensions simultaneously

o If dimensions have similar values (e.g. pixels in natural images)
> Compute one (u, a%) instead of as many as the input variables
> Or the per color channel pixel average/variance

(.ured: O-rzed): (.ugreen: Ugreen): (.ublue» Ulglue)
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Even simpler: Centering the input

o When input dimensions have similar ranges ...
o ... and with the right non-linearlity ...

o ... centering might be enough
° e.g.in images all dimensions are pixels
o All pixels have more or less the same ranges

o Juse make sure images have mean 0 (u = 0)
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PCA Whitening

o If C the covariance matrix of your dataset, compute |
eigenvalues and eigenvectors with SVD o o
UV =svd(C)
o Decorrelate (PCA-ed) dataset by L KXo =UTX
Xror = UTX R

> Subset of eigenvectors U’ = [uy, ..., u,] to reduce data dimensions

o Scaling by square root of eigenvalues to whiten data |
Xwht = rot/\/E o ".

o Not used much with Convolutional Neural Nets
° The zero mean normalization is more important st Xine = Xroe/VE
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Example

pnginglimages,  lop J4talgenvesiors _recucsdimages whiiened images

.‘ 13 b A

tmages taken from A. Karpathy course website: http://cs231n.github.lo/newral-networks-2/
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Data augmentation [Krizhevsky2012]

Randow crop

original
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Batch normalization [loffe2015]

o Weights change =2 the
distribution of the layer inputs
changes per round

o Covariance shift

0
TSSSE ST N\

o Normalize the layer inputs with
batch normalization

> Roughly speaking, normalize x; to
N(0,1) and rescale

Backpropagation Batch Normalization
Xy X X1

Layer L bnput distribution at (t) Layerl bnput distribution a=t (t+0.5) Layerl tnput distribution at (t+21)
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Batch normalization - Intuitively

Backpropagation Batch Normalization
S = —>
Xy X X1

Layer L bnput distribution at (t) Layerl bnput distribution a=t (t+0.5) Layer L tnput distribution at (t+21)
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Batch normalization — The algorithm

1gm
O Up < —Xiz1Xi
1

© 0B <~ iz1(x; — pp)*

~ Xi—HUB

O X ¢
/a%+e

o yieyxit+p

Traitnable parameters

[compute mini-batch mean]

[compute mini-batch variance]

[normalize input]

[scale and shift input]
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Batch normalization - Benefits

o Gradients can be stronger = higher learning rates = faster training
o Otherwise maybe exploding or vanishing gradients or getting stuck to local minima

o Neurons get activated in a near optimal “regime”

1

: : - 2 2| o]
o Better model regularization os| ¢
0.8 i' 0 0
> Neuron activations not deterministic, N = e
depend on the batch (a) (b) Without BN (c) With BN

) :
Model cannot be overconfident Figure 1: (a) The test accuracy of the MNIST network

trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy. (b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}th
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shift.
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,061),0,-1),0,)

Regularization

2. Learning by minimizing emplrical ervor

0" « arg ming z t(y,a (X; 01,..L ))
(xy)S(XY)

3. Optimizing with Gradient Descend based methods
H(t'l'l) — H(t) — 77t|79['
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Regularization

o Neural networks typically have thousands, if not millions of parameters
o Usually, the dataset size smaller than the number of parameters

o Qverfitting is a grave danger
o Proper weight regularization is crucial to avoid overfitting

0" « arg ming z £(y, aL(x; 0.1 )) + AQ(0)
(x,y)S(X,Y)
o Possible regularization methods
o £,-regularization
o £1-regularization
° Dropout
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£,-regularization

o Most important (or most popular) regularization

§ . A 2
0" argming  »  LO,a,(x:6,.))+5 ) ll6l
(6 Y)EEY) l
o The £,-regularization can pass inside the gradient descend update rule

0+ = 6 —n (VoL + 16)) =
6+ = (1 —An)6W —n VoL

o Ais usually about 1071,1072 \ wveight decayy, becase

welghts get smaller
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£-regularization

o ¥4-regularization is one of the most important techniques

2
0" « argming z L(y, aL(x; 01 1L )) -+ 52 16|
(XY EXY) l

o Also £1-regularization passes inside the gradient descend update rule
g®)

6]
o ¥4-regularization = sparse weights \

°A 7 2 more weights become O

9(t+1) — H(t) — Ant — 77t\79£

Stgn function
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Early stopping

o To tackle overfitting another popular technique is early stopping
o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error
(although with a slower rate usually)

o Stop when validation error starts increasing
° This quite likely means the network starts to overfit

Error

Training cycles
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Dropout [Srivastava2014]

o During training setting activations randomly to O
> Neurons sampled at random from a Bernoulli distribution with p = 0.5

o At test time all neurons are used
o Neuron activations reweighted by p

o Benefits
> Reduces complex co-adaptations or co-dependencies between neurons
> No “free-rider” neurons that rely on others
o Every neuron becomes more robust
o Decreases significantly overfitting
° Improves significantly training speed
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Dropout

o Effectively, a different architecture at every training epoch
o Similar to model ensembles

original wmooel

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 40



Dropout

o Effectively, a different architecture at every training epoch
o Similar to model ensembles

E'poah 1
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Dropout

o Effectively, a different architecture at every training epoch
o Similar to model ensembles

E'poah 1
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Dropout

o Effectively, a different architecture at every training epoch
o Similar to model ensembles

Epoch 2
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Dropout

o Effectively, a different architecture at every training epoch
o Similar to model ensembles

Epoch 2
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,01),0,-1),0,)

Architectural details

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, ClL(x; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
O+ =9 — .V, L
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Sigmoid-like activation functions

o Straightforward sigmoids not a very good idea

o Symmetric sigmoids converge faster
o E.g. tanh, returns a(x=0)=0

> Recommended sigmoid: a = h(x) = 1.7159 tanh(%x)

o You can add a linear term to avoid flat areas tanh(x) + 0.5x
a = h(x) = tanh(x) + Bx

s et ~tanh(x)
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RBFs vs “Sigmoids”

2

o RBF:a = h(x) = X;u; exp (—,Bj(x — Wj) )
1

1+e™*

o Sigmoids can cover the full feature space

o Sigmoid: a = h(x) = o(x) =

o RBF’s are much more local in the feature space
o Can be faster to train but with a more limited range
o Can give better set of basis functions
o Preferred in lower dimensional spaces
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Rectified Linear Unit (ReLU) module [Krizhevsky2012]

o Activation function a = h(x) = max(0, x)

O' l_fx =0 | S ISuﬂpIus
1,lfx>0 *- — Rectifier

Monlinearitbes
| | | | | |

, . 0
o Gradient wrt the mputﬁ = {

o Very popular in computer vision and speech recognition

o Much faster computations, gradients I )
o No vanishing or exploding problems, only comparison, addition, multiplication

o People claim biological plausibility S, -

O Sparse activations

o No saturation 1- -

o Non-symmetric

o Non-differentiable at 0 T T T ! '1 ! ! !

O

A large gradient during training can cause a neuron to “die”. Higher learning rates hitigate the problem
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RelLU convergence rate

0.75
= Tanh

@ 0.5 4
E AN
S .
) ~
< ~ -~
= - -
T 025 . ~ 0~
I_

U | | | | | | |

0 5 10 15 20 25 30 35 40

Epochs
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Other Rel.Us

o Soft approximation (softplus): a = h(x) = In(1 + e”*)
o Noisy ReLlU: a = h(x) = max (0,x + €),e~N(0, 0(x))

x,if x>0

Leaky ReLU: a = h(x) =
o oreey e 2 {O.le otherwise

x,if x>0
fx otherwise

(parameter B is trainable)

o ParametricReLu:a = h(x) = {

I
o

Yi

Yi = 0;T; i
Y1 = Q5iTji

I
ReL.U Leaky ReLU/PReLU Randomized Leaky ReLU
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Architectural hyper-parameters

o Number of hidden layers
o Number of neuron in each hidden layer
o Type of activation functions

o Type and amount of regularization
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Number of neurons, number of hidden layers

o Dataset dependent hyperparameters

o Tip: Start small 2 increase complexity gradually
o e.g. start with a 2-3 hidden layers

> Add more layers = does performance improve?
> Add more neurons = does performance improve?

Generalization

o Regularization is very important, use ¥,
o Even if with very deep or wide network
o With strong ¥,-regularization we avoid overfitting

) n )

Model complexity
(number of neurons)
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,061),0,-1),0,)

Learning rate

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, ClL(x; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
O+ =9 — .V, L
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Learning rate

o The right learning rate n; very important for fast convergence
> Too strong = gradients overshoot and bounce
> Too weak, = too small gradients =2 slow training

o Learning rate per weight is often advantageous
> Some weights are near convergence, others not

o Rule of thumb
o Learning rate of (shared) weights prop. to square root of share weight connections

o Adaptive learning rates are also possible, based on the errors observed
o [Sompolinsky1995]
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Learning rate schedules

o Constant
o Learning rate remains the same for all epochs

o Step decay
o Decrease (e.g. ny/T orny/T) every T number of epochs

Mo
1+t

o Exponential decay n; = nge

o Inverse decay n; =

—&t

o Often step decay preferred

> simple, intuitive, works well and only a
single extra hyper-parameter T (T =2, 10)
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Learning rate in practice

o Try several log-spaced values 1071, 107%,1073, ... on a smaller set
° Then, you can narrow it down from there around where you get the lowest error

o You can decrease the learning rate every 10 (or some other value) full
training set epochs
o Although this highly depends on your data
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,61),0,-1),0,)

Weight initialization

2. Learning by minimizing emplrical ervor

0" « arg ming 2 {(y, ClL(x; 01,..L ))
(. y)S(XY)

3. Optimizing with Gradient Descend based methods
O+ =9 — .V, L
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Weight initialization

o There are few contradictory requirements

o Weights need to be small enough

—

o around origin (0) for symmetric functions (tanh, sigmoid)

> When training starts better stimulate activation functions near their linear regime

o larger gradients = faster training Large gradients

10

—  a=tanh(zx)

o Weights need to be large enough
o Otherwise signal is too weak for any serious learning™*|

—  da/dx

oo ’l
I Linear regime
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Weight initialization

o Weights must be initialized to preserve the variance of the activations during
the torward and backward computations

o Especially for deep learning
o All neurons operate in their full capacity

Question: Why similar input/output variance?

o Good practice: initialize weights to be asymmetric
> Don’t give save values to all weights (like all 0)
° |n that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
> non-linearities
> data normalization
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Weight initialization

o Weights must be initialized to preserve the variance of the activations during
the torward and backward computations

o Especially for deep learning
o All neurons operate in their full capacity

Question: Why similar input/output variance?
Answer: Because the output of one module is the input to anothe

o Good practice: initialize weights to be asymmetric
> Don’t give save values to all weights (like all 0)

° |n that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
> non-linearities

o data normalization

A\ —4

r
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Weight initialization

o Weights must be initialized to preserve the variance of the activations during
the torward and backward computations

o Especially for deep learning
o All neurons operate in their full capacity

Question: Why similar input/output variance?
Answer: Because the output of one module is the input to anothe

o Good practice: initialize weights to be asymmetric
> Don’t give save values to all weights (like all 0)

° |n that case all neurons generate same gradient = no learning

o Generally speaking initialization depends on
> non-linearities

o data normalization

A\ —4

r
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One way of initializing sigmoid-like neurons

6
dl—1+dl

o For tanh initialize weights from [ \/dl 1+d; \/

o d;_q is the number of input variables to the tanh layer and d; is the number of the
output variables

. . 6 6 Lo
o For asigmoid |—4 - 4 -
d;—1+d; dj—1+d;

o5

Large gradients

—  a=tanh(zx)

—  da/dr

0o "
I Linear reglme
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Xavier initialization [Glorot2010]

o Fora = Ox the variance is
Var(a) = E[x]?Var(0) + E[8]*Var(x) + Var(x)Var(0)

o Since E[x] = E[8] =0
Var(a) =Var(x)Var(0) = d - Var(x")Var(6')

o For Var(a) = Var(x) = Var(0') = %
o Draw random weights from
6~N(0,,/1/d)

where d is the number of neurons in the input

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 63



[He2015] initialization for ReLUs

o Unlike sigmoids, ReLUs ground to O the linear activations half the
time

o Double weight variance
> Compensate for the zero flat-area =2
° Input and output maintain same variance

° Very similar to Xavier initialization —

o Draw random weights from

w~N(0,/2/d)

where d is the number of neurons in the input
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,061),0,-1),0,)

Loss functions

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, aL(X; 01,..L ))
(xY)S(XY)

3. Optimizing with Gradient Descend based methods
H(t'l'l) — H(t) — 77t|79['
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Multi-class classification

o Our samples contains only one class
o There is only one correct answer per sample

o Negative log-likelihood (cross entropy) + Softmax
L(O;x,y) ==X y.logal forallclassesc =1,...,C

o Hierarchical softmax when Cis very large ls bt a cat? Is it @ horse? ...

o Hinge loss (aCka SVM loss)

L(O;x,y) = z max(0,af — a; + 1)
c=1

c£y
o Squared hinge loss

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 66



Multi-class, multi-label classification

o Each sample can have many correct answers

o Hinge loss and the likes
> Also sigmoids would also work

o Each output neuron is independent
o “Does this contain a car, yes or no?“
> “Does this contain a person, yes or no?"
> “Does this contain a motorbike, yes or no?"“
> “Does this contain a horse, yes or no?“

o Instead of “Is this a car, motorbike or person?”
> p(car|x) = 0.55,p(m/bike|x) = 0.25,p(person|x) = 0.15, p(horse|x) = 0.05
> p(car|x) + p(m/bike|x) + p(person|x) + p(horse|x) = 1.0
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Regression

o The good old Euclidean Loss
1
L(O;x,y) = > v —agl5

o Or RBF on top of Euclidean loss

LE:xy) = ) ujexp(—f;(y - a,)?)

J
o Or ¥, distance

L(O;x,y) = z ly; — aj |
j
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1. The Neural Network
a, (x; 01 ..L ) =hy (hy—1(...hy(x,061),0,-1),0,)

Even better
optimizations

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, ClL(x; 01,..L ))
(x,y)S(X)Y)

3. Optimizing with Gradient Descend based methods
Ot = 9) — . VoL
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Momentum

Loss surface

o Don’t switch gradients all the time \ Gradient + momentum

. . o ) . , \
o Maintain “momentum” from previous aradient
parameters

ug =y0® —n,VpL
9(t+1) = H(t) _|_ ue

o More robust gradients and learning =2
faster convergence

o Nice “physics”-based interpretation

° Instead of updating the position of the “ball”, we
update the velocity, which updates the position
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Nesterov Momentum [Sutskever2013]

Gradient + momentum
o Use the future gradient instead of

the current gradient Morentun
ug =y —n, VoL
g+l — g(©) 4 Ug Gradient
Graoient + Nesterov
o Better theoretical convergence momentum
o Generally works better with Momentum

Convolutional Neural Networks
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Second order optimization

o Normally all weights updated with same “aggressiveness”
o Often some parameters could enjoy more “teaching”
> While others are already about there

o Adapt learning per parameter
g+l — g(t) _ HL_lrltVHL
o Hp is the Hessian matrix of L: second-order derivatives
H =
00,00,
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Second order optimization methods in practice

o Inverse of Hessian usually very expensive
° Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
o Keeps memory of gradients to approximate the inverse Hessian

o L-BFGS works alright with Gradient Descend. What about SGD?

o In practice SGD with some good momentum works just fine

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 73



Other per-parameter adaptive optimizations

o Adagrad [Duchi2011]
o RMSprop
o Adam [Kingma2014]
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Adagrad [Duchi2011]

o Schedule
VoLl
cmy = Y(VpLy)? = 0D =00 —n, 2

o £is asmall number to avoid division with O

> Gradients become gradually smaller and smaller
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RMSprop

Decay h 5per—parame’cer

o Schedule /

om; = a XL+ (1 -V 0L = N
VoL 30l T

Vm+te 25|

o Moving average of the squared gradients
> Compared to Adagrad

o 9D = g — p,

15}

10}

5

o Large gradients, e.g. too “noisy” loss surface
o Updates are tamed

00 05 10 15 2 25 0 i5 40

o Small gradients, e.g. stuck in flat loss surface ravine

> Updates become more aggressive Square rooting boosts small values
while suppresses Large values
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Adam [Kingma2014]

o One of the most popular learning algorithms

m; = z(Veﬁj)z

p(E+0-3) = ,319&) + (1 —B)VpL

p(E+0.5) — ,Bzv(t) 4+ (1 _ ,Bz)m
0(t+0.5)

t
JuE+05) 4 ¢
o Similar to RMSprop, but with momentum

o Recommended values: B; = 0.9, , = 0.999,¢ = 1078

At = gt) — ¢
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Visual overview

SGD - — SGD
Momentum E - Momentum
NAG E —  NAG
Adagrad | — Adagrad
Adadelta - Adadelta
Rmsprop 4 — Rmsprop
E—— 2

0

-2

1.0

Pleture ereit: Alec radford
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https://twitter.com/alecrad

Learning —not computing— the gradients

o Learning to learn by gradient descent by gradient descent
° [Andrychowicz2016]

o0 0D = 9 4 g (VoL @)

O g is an “optimizer” with its own parameters ¢
o Implemented as a recurrent network
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o Preprocess the data to at least have O mean

o Initialize weights based on activations functions
o For ReLU Xavier or HelCCV2015 initialization

Good practice

o Always use €,-regularization and dropout

o Use batch normalization

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES & MAX WELLING
DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 80




1. The Neural Network
aj, (x; 01 ..L ) =hy (hy—1(...h1(x,01),0,-1),0;,)

Babysitting
Deep Nets

2. Learning by minimizing emplrical ervor

0" « arg ming z L(y, aL(X; 01,..L ))
(xy)S(XY)

3. Optimizing with Gradient Descend based methods
Ot = 9) — . VoL
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Babysitting Deep Nets

o Always check your gradients if not computed automatically

o Check that in the first round you get a random loss

o Check network with few samples
o Turn off regularization. You should predictably overfit and have a O loss
o Turn or regularization. The loss should increase

o Have a separate validation set
o Compare the curve between training and validation sets
> There should be a gap, but not too large
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o How to define our model and optimize it in practice
o Data preprocessing and normalization

Summary o Optimization methods

o Regularizations

o Architectures and architectural hyper-parameters
O Learning rate

o Weight initializations

o Good practices
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Reading material & references

o http://www.deeplearningbook.org/
o Part Il: Chapter 7, 8

[Andrychowicz2016] Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, de Freitas, Learning to learn by gradient descent by gradient
descent, arXiv, 2016

[He2015] He, Zhang, Ren, Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, ICCV, 2015
[loffe2015] loffe, Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv, 2015
[Kingma2014] Kingma, Ba. Adam: A Method for Stochastic Optimization, arXiv, 2014

[Srivastava2014] Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting, JIMLR, 2014

[Sutskever2013] Sutskever, Martens, Dahl, Hinton. On the importance of initialization and momentum in deep learning, JMLR, 2013
[Bengio2012] Bengio. Practical recommendations for gradient-based training of deep architectures, arXiv, 2012

[Krizhevsky2012] Krizhevsky, Hinton. ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012

[Duchi2011] Duchi, Hazan, Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR, 2011
[Glorot2010] Glorot, Bengio. Understanding the difficulty of training deep feedforward neural networks, JMLR, 2010

[LeCun2002]
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o What are the Convolutional Neural Networks?
o Why are they important in Computer Vision?

Next lecture o Differences from standard Neural Networks

o How to train a Convolutional Neural Network?
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