
Christof Monz

Deep Learning
Language Models and Word Embeddings

Today’s Class

Christof Monz
Language Models and Word Embeddings

1

I N-gram language modeling
I Feed-forward neural language model

• Architecture

• Final layer computations
I Word embeddings

• Continuous bag-of-words model

• Skip-gram

• Negative sampling

The Role of LM in SMT

Christof Monz
Language Models and Word Embeddings

2

I Translation models map source phrases to target phrases
• Translation probabilities should reflect the degree to which the

meaning of the source phrase is preserved by the target phrase
(adequacy)

• source: “Der Mann hat einen Hund gekauft.”
monotone translation: “The man has a dog bought.”
Translation preserves the meaning but is not fluent

I Language models compute the probability of a string
• p(the man has a dog bought.)< p(the man has bought a dog.)
• Language model probabilities do not necessarily correlate with

grammaticality: p(green ideas sleep furiously.) is likely to be
small

• During translation language model scores of translation
hypotheses are compared to each other

The Role of LM in SMT

Christof Monz
Language Models and Word Embeddings

3

I The language model is one of the most important models
in SMT

I Substantial improvements in translation quality can be
gained from carefully trained language models

I Decades of research (and engineering) in language
modeling for Automated Speech Recognition (ASR)
• Many insights can be transferred to SMT
• Types of causes for disfluencies differ between both areas

ASR: p(We won’t I scream) < p(We want ice cream)
SMT: p(Get we ice cream) < p(We want ice cream)

• Reordering does not play a role in ASR

N-gram Language Modeling

Christof Monz
Language Models and Word Embeddings

4

I N-gram language model compute the probability of a
string as the product of probabilities of the consecutive
n-grams:
• p(<s> the man has a dog bought . </s>)

= p(<s> the) · p(<s> the man) · p(the man has) · p(man
has a) · p(has a dog) · p(a dog bought) · p(dog bought .) ·
p(bought . </s>)

• Generally: p(wN
1) = ∏

N
i=1 p(wi|wi−1

i−n+1), for order n
• Problem: if one n-gram probability is zero, e.g.,

p(dog bought .) = 0, then the probability of the entire product
is zero

• Solution: smoothing

Language Model Smoothing

Christof Monz
Language Models and Word Embeddings

5

I A number of smoothing approaches have been developed
for language modeling

I Jelinek-Mercer smoothing
• Weighted linear interpolation of conditional probabilities of

different orders
I Katz smoothing

• Back-off to lower-order probabilities and counts are discounted
I Witten-Bell smoothing

• Linear interpolation where lower-order probabilities are
weighted by the number of contexts of the history

I Kneser-Ney smoothing
• Weight lower-order probabilities by the number of contexts in

which they occur

Kneser-Ney Smoothing

Christof Monz
Language Models and Word Embeddings

6

pKN(wi|wi−1
i−n+1)=


max{c(wi

i−n+1)−D(c(wi
i−n+1)),0}

∑wi c(wi
i−n+1)

if c(wi
i−n+1)> 0

γ(wi−1
i−n+1)pKN(wi|wi−1

i−n+2) if c(wi
i−n+1) = 0

I Original backoff-style formulation of Kneser-Ney
smoothing
• Closer to representation found in ARPA style language models
• Can be re-formulated as linear interpolation (see Chen and

Goodman 1999)

LM Smoothing in SMT

Christof Monz
Language Models and Word Embeddings

7

I Does the choice of smoothing method matter for SMT?
• Kneser-Ney smoothing typically yields results with the lowest

perplexity
• Correlation between perplexity and MT metrics (such a BLEU)

is low
• Few comparative studies, but Kneser-Ney smoothing yields

small gains over Witten-Bell smoothing

I Kneser-Ney smoothing is the de facto standard for SMT
(and ASR)

I Recent SMT research combines Witten-Bell smoothing
with Kneser-Ney smoothing

Size Matters

Christof Monz
Language Models and Word Embeddings

8

17

More data is better data…

Five-gram language model, no count-cutoff, integrated into search:

47.5

48.5

49.5

50.5

51.5

52.5

53.5

75
M

15
0M

30
0M

60
0M

1.
2B

2.
5B 5B 10

B
18

B

+2
19

B
w
eb

AE BLEU[%]

Probabilistic Neural Network LMs

Christof Monz
Language Models and Word Embeddings

9

I Both word- and class-based models use discrete
parameters as elements of the event space

I The current word+history n-gram has not been seen
during training or it has not been seen (binary decision)
• Smoothing results in a more relaxed matching criterion

I Probabilistic Neural Network LMs (Bengio et al. JMLR
2003) use a distributed real-valued representation of
words and contexts

I Each word in the vocabulary is mapped to a
m-dimensional real-valued vector
• C(w) ∈ Rm, typical values for m are 50, 100, 150
• A hidden layer capture the contextual dependencies between

words in an n-gram
• The output layer is a |V|-dimensional vector describing the

probability distribution of p(wi|wi−1
i−n+1)

Probabilistic Neural Network LMs

Christof Monz
Language Models and Word Embeddings

10

Probabilistic Neural Network LMs

Christof Monz
Language Models and Word Embeddings

11

I Layer-1 (projection layer)

C(wt−i) = C wt−i

where
• wt−i is a V-dimensional 1-hot vector, i.e., a zero-vector where

only the index corresponding the word occurring at position
t− i is 1

• C is a m×V matrix

I Layer-2 (context layer)

h = tanh(d+H x)
where
• x = [C(wt−n+1); . . . ;C wt−1] ([· ; ·] = vector concatenation)

• H is a n× (l−1)m matrix

Probabilistic Neural Network LMs

Christof Monz
Language Models and Word Embeddings

12

I Layer-3 (output layer)

ŷ = softmax(b+U h)
where
• U is a V×n matrix

• softmax(v) = exp(vi)
∑i exp(vi)

(turns activations into probs)

I Optional: skip-layer connections

ŷ = softmax(b+W x+U h)
where
• W is a V× (l−1)m matrix (skipping the non-linear context

layer)

Training PNLMs

Christof Monz
Language Models and Word Embeddings

13

I Loss function is cross-entropy: L(y, ŷ) =−log(ŷi), where
i = argmax(y)

I Optimize with respect to ∂L(y,ŷ)
∂θ

where θ = {C,H,d,U,b} using stochastic gradient
descent (SGD)

I Update all parameters, including C (the projections)
I What does C capture?

• maps discrete words to continuous, low dimensional vectors

• C is shared across all contexts

• C is position-independent

• if C(white)≈ C(red) then
p(drives|a white car)≈ p(drives|a red car)

PNLM Variant

Christof Monz
Language Models and Word Embeddings

14

I Previous architecture directly connects hidden context
layer to full vocabulary output layer

I Alternative: introduce output projection layer in between:

I Sometimes also referred to as ‘deep output layer’

How useful are PNLMs?

Christof Monz
Language Models and Word Embeddings

15

I Advantages:
• PNLMs outperform n-gram based language models (in terms

of perplexity)

• Use limited amount of memory

− NPLM: ∼100M floats ≈ 400M RAM
− n-gram model: ∼10-40G RAM

I Disadvantages:
• Computationally expensive

− Mostly due to large output layer (size of vocabulary): U h can
involve hundreds of millions of operations!

− We want to know p(w|C) for a specific w, but to do so we
need softmax over entire output layer

Speeding up PNLMs

Christof Monz
Language Models and Word Embeddings

16

I Slow training
• annoys developpers/scientists/PhD students

• slows down development cycles
I Slow inference

• annoys users

• can cause products to become impractical
I Speeding things up

• Mini-batching (training)

• Using GPUs (training)

• Parallelization (training)

• Short-lists (training + inference)

• Class-based structured output layers (training + inference)

• Hierarchical softmax (training + inference)

• Noise contrastive estimation (training + inference)

• Self-normalization (inference)

Mini-Batching

Christof Monz
Language Models and Word Embeddings

17

I Instead of computing p(w|C) compute p(W|C)
where W is an ordered set of words, and C is ordered set
of contexts

I ⇒ Matrix-matrix multiplications instead of matrix-vector
multiplications
allows to use low-level libraries such as BLAS to exploit
memory-layout

I ŷ = softmax(b+U tanh(d+H x) becomes

Ŷ = softmax(b+U tanh(d+H X)
I Advantage: Mini-batching is very GPU friendly
I Disadvantage: fewer parameter updates (depends on

mini-batch size)
I Disadvantage: not really applicable during inference

Short-lists

Christof Monz
Language Models and Word Embeddings

18

I In NLP, the size of the vocabulary can easily reach 200K
(English) to 1M (Russian) words

I Quick-fix: short-lists
• ignore rare words and keep only the n most frequent words

• all rare words are mapped to a special token: <unk>

I Typical sizes of short-lists vary between 10K, 50K, 100K,
and sometimes 200K words

I Disadvantage: all rare words receive equal probability (in
a given context)

Class-Based Output Layer

Christof Monz
Language Models and Word Embeddings

19

I Partition vocabulary into n non-overlapping classes (C)
• using clustering (Brown clustering)

• fixed categories (POS tags)

I Instead of ŷ = softmax(b+U h)

compute ĉ = softmax(b+U h), where |c| � |V|
then choose ĉi = argmax(ĉ) and

compute ŷci = softmax(b+Uci h)

where Uci is a |Vci|× |h| matrix, where |Vci| � |V|
I Advantage: leads to significant speed improvements
I Disadvantage: not very mini-batch friendly (matrix Uci

can vary across instances in the same batch)

Self-Normalization

Christof Monz
Language Models and Word Embeddings

20

I During inference (i.e., when applying a trained model to
unseen data) we are interested in p(w|c) and not p(w′|c),
where w′ 6= w

I Unfortunately b+U h does not yield probabilities and
softmax requires summation over the entire output layer

I ‘Encourage’ the neural network to produce probability-like
values (Devlin et al., ACL-2014) without applying softmax

Self-Normalization

Christof Monz
Language Models and Word Embeddings

21

I Softmax log likelihood:

log(P(x)) = log(exp(Ur(x))
Z(x))

where
• Ur(x) is the output layer score for x

• Z(x) = ∑
|V|
r′=1 Ur′(x)

log(P(x)) = log(Ur(x))− log(Z(x))
I If we could ensure that log(Z(x)) = 0 then we could use

log(Ur(x)) directly
I Strictly speaking not possible, but we can encourage the

model by augmenting the loss function:

L = ∑i[log(P(xi))−α(log(Z(xi))
2]

Self-Normalization

Christof Monz
Language Models and Word Embeddings

22

I Self-normalization included during training; for inference,
log(P(x)) = log(Ur(x))

I α regulates the importance of normalization
(hyper-parameter):

I Initialize output layer bias to log(1/|V|)
I Devlin et al. report speed-ups of around 15x during

inference
I No speed-up during training

Reminder: PNLM Architecture

Christof Monz
Language Models and Word Embeddings

23

Projections = Embeddings?

Christof Monz
Language Models and Word Embeddings

24

I Are projections the same as word embeddings?
I What are (good) word embeddings? C(w)≈ C(w′) iff

• w and w′ mean the same thing

• w and w′ exhibit the same syntactic behavior
I For PNLMs the projections/embeddings are by-products

• Main objective is to optimize next word prediction

• Projections are fine-tuned to achieve this objective

I Representation learning: if the main objective is to learn
good projections/embeddings

Word Meanings

Christof Monz
Language Models and Word Embeddings

25

I What does a word mean?
I Often defined in terms of relationship between words

• Synonyms: purchase :: acquire (same meaning)

• Hyponyms: car :: vehicle (is-a)

• Meronyms: wheel :: car (part-whole)

• Antonyms: small :: large (opposites)
I Explicit, qualitative relations require hand-crafted

resources (dictionaries, such as WordNet)
• expensive

• incomplete

• language-specific
I What about

• learning relations automatically?

• quantifying relations between words, e.g.,
sim(car,vehicle)> sim(car, tree) ?

Distributional Semantics

Christof Monz
Language Models and Word Embeddings

26

I “You shall know a word by the company it keeps.” (Firth,
1957)

I In distributional semantics all words w are represented as
a V-dimensional context vector cw

I cw[i] = f where f is the frequency of word i occurring
within the (fixed-size) context of w

Distributional Semantics

Christof Monz
Language Models and Word Embeddings

27

I Word similarity as cosine similarity in the context vector
space:

I In distributional semantics context vectors are
high-dimensional, discrete, and sparse

Word Embeddings

Christof Monz
Language Models and Word Embeddings

28

I Similar underlying intuition to distributional semantics,
but word vectors are
• low dimensional (e.g., 100 vs. |V|)
• dense (no zeros)

• continuous (cw ∈ Rm)

• learned by performing a task (predict)

I Popular approach: Word2Vec (Mikolov et al.)
I Word2Vec consists of two approaches:

• Continuous Bag of Words (CBOW)

• Skip-Gram

Continuous Bag of Words (CBOW)

Christof Monz
Language Models and Word Embeddings

29

I Task: Given a position t in a sentence, and the n words
occurring to its the left ({wt−n, . . . ,wt−1}) and m its right
({wt+1, . . . ,wt+n}) predict the word in position t

the man X the road, with X =?
I Seemingly similar to n-gram language modeling where

n = LM order −1 and m = 0
I Use feed-forward neural network

• Focus on learning embeddings themselves

• Simpler network (compared to PNLM)

• Bring embedding/projection layer closer to output

• Typically n = m, and n ∈ {2,5,10}

CBOW Model Architecture

Christof Monz
Language Models and Word Embeddings

30

CBOW Model

Christof Monz
Language Models and Word Embeddings

31

I No non-linearities
I One hidden layer:

h = 1
2nW wC, where

• W is a |h|× |V| matrix

• wC =
t+n
∑

i=t−n,i 6=t
wi

• wi is a 1-hot vector for the word occurring in position i

I Output layer:

ŷ = softmax(W ′ h)
• W ′ is a |V|× |h| matrix

• W ′ and W are not (necessarily) shared, i.e., W ′ 6= WT

I Loss function: cross entropy (see PNLM)
I Trained with SGD

CBOW Embeddings

Christof Monz
Language Models and Word Embeddings

32

I Where do the embeddings live?
• Column i in W (|h|× |V| matrix) represents the embedding for

word i
• Row i in W ′ (|V|× |h| matrix) represents the embedding for

word i
I Which one of the two?

• Typically W or

• Ws = WT +W ′ (combining both into one)

Skip-Gram Model Architecture

Christof Monz
Language Models and Word Embeddings

33

I Alternative to CBOW
I Task: Given a word at position t in a sentence, predict the

words occurring between positions t−n and t−1 and
between t+1 and t+n

Skip-Gram Model

Christof Monz
Language Models and Word Embeddings

34

I One hidden layer:

h = W wI, where

• wI is the 1-hot vector for word at position t

I 2n output layers:
p(wt−n . . .wt−1wt+1 . . .wt+n|wI)

∝
t+n
∏

i=t−n,i 6=t
p(wi|wI)

ŷi = softmax(W ′ h) (t−n≤ i≤ t+n and i 6= t)
• W ′ is a |V|× |h| matrix

• W ′ and W are not (necessarily) shared, i.e., W ′ 6= WT

I Loss function: cross entropy (see PNLM)
I Trained with SGD

Negative Sampling

Christof Monz
Language Models and Word Embeddings

35

I Both CBOW and Skip-gram benefit from large amounts
of data

I Computing activations for the full output layer becomes
an issue

I Negative sampling: Try to distinguish between words that
do and and words that do not occur in the context of the
input word
• Classification task

• 1 positive example (from the ground truth)

• k negative examples (from a random noise distribution

Negative Sampling

Christof Monz
Language Models and Word Embeddings

36

I Given the input word w and a context word c we want to

argmax
θ

∏
(w,c)∈D

p(D = 1|c,w;θ) ∏
(w,c)∈D′

p(D = 0|c,w;θ)

where D represents the observed data and D′ a noise
distribution

I We compute p(D = 1|c,w;θ) as σ(vc · vw)

where vw = W w and vc = W ′T c
I p(D = 0|c,w;θ) = 1−p(D = 1|c,w;θ)
I Since 1−σ(x) = σ(−x):

argmax
θ

∏
(w,c)∈D

σ(vc · vw) ∏
(w,c)∈D′

σ(−vc · vw)

argmax
θ

∑
(w,c)∈D

logσ(vc · vw)+ ∑
(w,c)∈D′

logσ(−vc · vw)

Word2Vec Practical Considerations

Christof Monz
Language Models and Word Embeddings

37

I Skip-Gram:
• For each observer occurrence (w,c) add 5-20 negative samples

to data

• Draw c from uni-gram distribution P(w)
• Scale uni-gram distribution: P(w)0.75 to bias rarer words

I Context size typically around 2-5
I The more data the smaller the context and the negative

sample set
I Exclude very rare words (less than 10 occurrences)
I Removing stop words: better topical modeling, less

sensitive to syntactical patterns

Evaluation of Word Embeddings

Christof Monz
Language Models and Word Embeddings

38

I Word similarity tasks
• Rank list of word pairs, e.g., (car,bicycle), by similarity

• Spearman correlation with human judgements

• Benchmarks: WS-353, Simlex-999, ...

• Mixes all kinds of similarities (synonyms, topical, unrelated...)
I Analogy task

• Paris is to France as Berlin is to X

• Evaluated by accuracy

• Also includes syntactic analogy: acquired is to acquire as tried
is to X

• Arithmetic magic: X = vking− vman + vwoman

Applicability of Word Embeddings

Christof Monz
Language Models and Word Embeddings

39

I Word similarity
I To initialize projection layers in deep networks

• if training data is small

• if number of output classes is small

• Task-specific fine-tuning still useful in many cases

Recap

Christof Monz
Language Models and Word Embeddings

40

I Feed-Forward Neural Language Model
• Projection layers

• Cross-entropy loss

• Final layer computations

− Mini-Batching

− Short-lists

− Class-based structured output layer

− Self-normalization

I Word embeddings
• Continuous bag-of-words model

• Skip-gram

• Negative sampling

