


Previous Lecture

o Word and Language Representations
o From n-grams to Neural Networks
o Word2vec

o Skip-gram
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Lecture Overview

o Recurrent Neural Networks (RNN) for sequences
o Backpropagation Through Time

o Vanishing and Exploding Gradients and Remedies
o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks
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Sequences

o Next data depend on previous data

o Roughly equivalent to predicting what comes next

Pr(x) = 1_[ Pr(x;| xq, ..., x;—1)
i

youcan be'cool®

what

Eh

Illll nevera narrot
wearinga hﬂﬂﬂle cool
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Sequences

o Next data depend on previous data

o Roughly equivalent to predicting what comes next

Pr(x) = 1_[ Pr(x;| xq, ..., x;—1)
i

youcan be'cool®

wWhat about ’prt/cts

Eh

Illll nevera narrot
wearinga hﬂﬂﬂle cool
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Sequences

o Next data depend on previous data

o Roughly equivalent to predicting what comes next

Pr(x) = 1_[ Pr(x;| xq, ..., x;—1)
i

youcan be'cool®

what about inputs that appear n
sequences, such as text? Could a newral

‘l networlke handle such wodalities?

Illll nevera narrot
wearinga hﬂﬂﬂle cool
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Why sequences?
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Why sequences?

o Considering small chunks x; = fewer parameters, easier modelling

o Generalizes well to arbitrary lengths

RecurrentModel( | think, therefore, [ am! )

RecurrentModel(Bverything is repeated, in a circle. History is a master because it teaches us
that it doesn't exist. it's the permutations that matter. )

o However, often we pick a “frame” T instead of an arbitrary length

Pr(x) = 1_[ Pr(x;| x;_7, ..., x;_1)
i
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What a sequence really is?

o Data inside a sequence are non i.i.d.
o |dentically, independently distributed

o The next “word” depends on the previous “words”
o |deally on all of them

o We need context, and we need memory!

MceGulre
o How to model context and memory ? o
Bond
! am Bownd , )ames tlred
anm

!
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What a sequence really is?

o Data inside a sequence are non i.i.d.
o |dentically, independently distributed

o The next “word” depends on the previous “words”
o |deally on all of them

o We need context, and we need memory!

MceGulre
o How to model context and memory ? o
Bond
[ am  Bond , _james Bonol Elred
anm

!
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x; = One-hot vectors

o A vector with all zeros except for the active dimension
o 12 words in a sequence = 12 One-hot vectors

o After the one-hot vectors apply an embedding (Word2Vec, GloVE)

Vocabulary Owne-hot vectors
t (1 0 0 0
am 0 am 1 0 0
Bond 0 0 Bond 1 0
Javes 0 0 0 Jomes 1
tlreot 0 0 0 0
0 0 0 0
MeGulre 0 0 0 0
! 0 0 0 0
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Indices instead of one-hot vectors?

o Can’t we simply use indices as features?

o No, great solution, because introduces artificial bias between inputs

t o James  MeGulre t o James  MeGulre
1 0 0 0 Gt=1,234 = 1 2 4 7

0 1 0 0

Ly(q1,94) =3<Ly(q1,97) =6
Xt=1,2,3,4 — 0 0 1 0

6o o 0 O Is “I” closer to James than to MeGuire?

0 0 0 0
0 0 0 1
0 0 0 0
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Memory

o A representation of the past
o Project information at timestep t on a latent space ¢; using parameters 6

o Re-using the projected information fromtatt + 1
Ctr1 = N(X¢qq,Ct50)

o Recurrent parameters 0 are the shared for all timesteps t = 0, ...
Cer1 = h(xpqq, R(xp, h(xe—q, ... h(x1, co; 6); 0); 8); 0)
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Memory as a Graph

o Simplest model
° Input with parameters U
> Memory embedding with parameters W

o Qutput with parameters IV
Output Ve

Output parameters |

Memorg
para WLELEYS

lput parameters U

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

RECURRENT NEURAL NETWORKS - 16



Memory as a Graph

o Simplest model
° Input with parameters U
> Memory embedding with parameters W

o Qutput with parameters IV
Output Yt Yt+1

Output parameters

Memorg
para WLELEYS

lput parameters U

Xt Xt+1
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Memory as a Graph

o Simplest model
° Input with parameters U
> Memory embedding with parameters W

o Qutput with parameters IV
Output Yt Yi+1 Yi+2 Ye+3

Output parameters

Memorg
para WLELEYS

Input parameters U U U U

Xt Xt+1 Xt+2 Xt+3
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Folding the memory

Unrolled/Unfolded Network Folded Network

Yt YVt+1 Vt+2

(ce—1)

Xt Xt+1 Xt+2 Xt
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Recurrent Neural Network (RNN)

o Only two equations

c; = tanh(U x; + Wc;_1)
y; = softmax(V/ c;)

(ce—1)
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RNN Example

o Vocabulary of 5 words

o A memory of 3 units [Hyperparameter that we choose like layer size]
o ¢ [3 X 1],W:[3 X 3]

o Aninput projection of 3 dimensions (¢ = tanh(U Xt T+ Wct—l)

- U: [3 X 5] y; = softmax(V ¢;)

o An output projections of 10 dimensions
> Vi [10 x 3] -

0

0.1 —03 12 06 =081 10
U Xpzy = |02 04 05 09 —01}-/0] =109 I 94C)

1

0

0.1 02 —0.7 0.8 03
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Rolled Network vs. Multi-layer Network?

o What is really different?
o Steps instead of layers
o Step parameters shared whereas in a Multi-Layer Network they are different

Y1 Y2 Y3
Flnal output
V. , |V
‘Layer/step” 1 ‘Layer/step” 2 Layer/step” 3
w Wi E m| E |w|
™ i ™ T®
S S S
= Do w
z-gram Unrolled Recurrent Network =-layer Newral Network
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Rolled — Unrolled networks

e Sometlmes Lntermediate pUtputs are not even neeoed
* Removing them, we abmost end up to a standard
Neural Networle

o What is really different?
o Steps instead of layers
o Step parameters shared whereas |

er Network they are different

V1 Y3

Funal putput

“La Y ev/ Step” 1 “Lo Y er/step c
w w5 | 5 w8
Q) v Q0] g Q0]
= = =
—_ (\®) w

z-gram Unrolled Recurrent Network =-layer Newral Network
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raining Recurrent Networks

o Cross-entropy loss

Ltk _ _ _ -
P = V. = L=-—logP = Lt——f l; log y;
t t

t,k
o Backpropagation Through Time (BPTT)

° Again, chain rule
> Only difference: Gradients survive over time steps
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Backpropagation Through Time: An Example

Step by step explanation at:

oL oL oL http://www.wildml.com/2015/10/recurrent-neural-networks-
O , , tutorial-part-3-backpropagation-through-time-and-vanishing-
av- ow " dU gradients/

o To make it simpler let’s focus on step 3

0Ls 0L; 0L3
av ' ow’ ou

¢; = tanh(U x; + Wce_q)
y: = softmax(Vc;)

L= —thlogyt =Z‘Lt
t t
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Backpropagation Through Time

0L, 0L, 0y, SR
— — —_ — - C
WV dy, av 3T 38
y1, L1 V2, Lo V3, L3
|4
c; = tanh(U x; + Wce_q)
y: = softmax(Vc;) W
L= _zltlogyt = ZLt
t t
U
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Backpropagation Through Time

o % . 6L3 6y3 6C3

ow ayg aC3 ow
o What is the relation betwqé c3 and W?

o Two-fold: ¢; = tanh(U x; + Wci_q)
5 Jf(ex),Y(x)) _ 0f dp | Of 0y

o = 90 9x T 9w ox
6C3 662 6W .
O Gw > €2 T ow  “ow 1)

¢, = tanh(U x; + Wce_q)
y: = softmax(Vc;)

L= _zltlogyt =th
t t
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Recursively

dcz _ . 0 -

O P C, + 3 ; .

. dcp _ o+ dcy . dcy _ dcs dcy . 0L _ 0L30y3 0c3 dc¢y
ow ow ow £ dc, oW oW - dys dcy dcy OW
ey _ .y 0% ) -

Caw T 0T ow _

y1, L1 V2, Lo V3, L3

¢y = tanh(U x; + Wcp_1)
y: = softmax(Vc;)

L= _zltlogyt =th
t t
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What makes RNNSs tick?

o The latent memory space is composed of multiple dimensions

o A subspace of the memory state space can store information if multiple
basins €p of attraction in some dimensions exist

o Gradients must be strong near the basin boundaries
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raining RNNs is hard

o Vanishing gradients
o After a few time steps the gradients become almost O

o Exploding gradients
o After a few time steps the gradients become huge

o Can’t capture long-term dependencies
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Alternative formulation for RNNSs

o An alternative formulation to derive conclusions and intuitions

cg =W -tanh(c;_1) + U - x; + b

L= Lic)
t
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Another look at the gradients

o L=L(cr(cr_1(. (c1(xp,co; WY, W), W), W)

o % . t aLt 6ct aCT
ow ~ “T=1jc, 9c, 0w
. 0L dcy _ 0L Ocy  0Ocp—q 0Cri+1 < t—7 0Lt
dcy dc;  dcy OCi—q OCi—o  dcy oct
\_ J

Rest — short-termn factors > T = long-term factors
n determines the

dc; norm of the gradients

o The RNN gradient is a recursive product of =
t—-1
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RNN gradients in 1D

0L 0L aCT aCT_l

- 6_ct - aCT . aCT_l aCT_z
<1 <1
N oL _ 0L dcr Ocr—g

dcy - dcr . dct—1 O0CT—_>

>1 > 1

] OCt+1
dcc,

<1

661

dcc,

>1 _

j—‘ff « 1 = Vanishing gradient

;—‘f/ >»> 1 = Exploding gradient
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RNN gradients in N-D

dcy . .
o When ¢ € RVthen — “is a Jacobian
t—1
0L 0L dcr Ocr_q OCryq
O — = : : o oL .y .
dc; dct Odcr_q OcT_o ocy > o K1= Vanishing gradient
<1 <1 <1 _
N 0L _ 9L dcy  Odcr—y 0Cryq1 )
dc; dcy dcr_q Ocr—p . dc =

g—g »> 1= Exploding gradient

> 1 > 1 >1 _J
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he Jacobian

€ R4, x € R3: —
Y dx |ay®@ ay®@ ay@
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RNN gradients in N-D

aCt

o When ¢ € RVthen is a Jacobian

dCt—1

o Spectral radius p (~largest eigenvalue) of Jacobian is important

oL 0L dcy Ocr_q 0Crrq1 )
O — = . . S oL i<hi Ji
dcy dct OcTr—q1 OCT—> dcc, >~ a—ct<<1=~ Vanishing gradient
p<l1 p<l1 p<1
L 9L _ 9L dcr  dero 0Criq |
dce  dcy dep—y der— T dce = 22551 = Exploding gradient
6ct

p>1 p>1 p>1_J
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Gradient clipping for exploding gradients

o Scale the gradients to a threshold

Pseudocode
1. o 9L oL
5 ow
2, if ||g|| > 0,
& ||g||g
else:
print( ‘Do nothing’)

o Simple, but works!
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Vanishing gradients

o The gradient of the error w.r.t. to intermediate cell
t
0Ly 0L, 0y, dc; dc;
ow — 0y, Oc, dc; OW

T

act_l—[ dcy _HW 3 tanh
aCT _ aCk_]_ _ all (Ck—l)

t=k=>t t=k=>t1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 38



Vanishing gradients

oFort=1,r=2 = —

o Fort=1,r=3 = —

oFort=1,r=4 = —

9L,
oW
9L3
oW
9Ly
oW

ocy

661

ocy

661

oc

061

663

6C2

662

664

acl

aC3

662

aC3

662

6C1
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Vanishing gradients

o The gradient of the error w.r.t. to intermediate cell
t
0Ly 0L, 0y, dc; dc;
ow — 0y, Oc, dc; OW

T

act_l—[ dcy _HW 3 tanh
aCT _ aCk_]_ _ all (Ck—l)

t=k=>t t=k=>t1

o Long-term dependencies get exponentially smaller weights
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Rescaling vanishing gradients?

o Not good solution

o Weights are shared between timesteps 9 Loss summed over timesteps

0L,

L= ZL ¢ = aW oW
0L, 6£t dc, OLt dc; dc,
oW ~ Ludc, oW L. dc, dc, oW

=1 =1

0L,
o Rescaling for one timestep ( W) affects all timesteps

> The rescaling factor for one timestep does not work for another
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More intuitively

0L,
oW

aL;

QD
g

\%
61:4 dLs W

AL _ 3Ly | 9Ly 8L

_+_ 6[,4
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More intuitively

0L 0L 0L 0L 0L
Letssay Lo 1,22 0 1/10,22 ¢ 1/100, 2% o 1/1000, 22 o< 1/10000
OL
0 == =3,=r=11111
0L _ 0L
0 If—rescaled tol=>—0o 107> 47
ow ow
o Longer-term dependencies negligible
o Weak recurrent modelling
o Learning focuses on the short-term only
\
01: _ 01:1 + 0L2+6L3 _I_%_l_% W\‘i % 0Ls
ow ~ aw | aw ow oW oW W Jow
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Recurrent networks &< Dynamical systems

o Inthe figures x; « ¢; and x; « F(Wx;_1 + Uu; + b)

o e
— Y e Xt

Figure 4. This diagram illustrates how the change in x,
Ax;, can be large for a small Axg. The blue vs red
(left vs right) trajectories are generated by the same maps
Fi1, Fs, ... for two different initial states.

Xt A.Tt Xt
-- - o
--._ e ® -
W Fat ™ 1,
Uy c-—w ® -

o ® -
FA.‘;[}T

Figure 5. Illustrates how one can break apart the maps
Fi, .. F}; into a constant map F and the maps Ui, .., U;. The
dotted vertical line represents the boundary between basins
of attraction, and the straight dashed arrow the direction
of the map F on each side of the boundary. This diagram
is an extension of Fig. 4.
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Fixing vanishing gradients

o Regularization on the recurrent weights
o Force the error signal not to vanish

0=y 0=

0L 0cCsqq
dCry1 OCt

0L
0Ct41

—1

o Advanced recurrent modules
o Long-Short Term Memory module

o Gated Recurrent Unit mgggln% et al., On the diculty of training Recurrent Neural Networks, 2013

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 45



Advanced RNNSs
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How to fix the vanishing gradients?

o Error signal over time must have not too large, not too small norm

o Solution: have an activation function with derivative equal to 1
° |dentify function

o By doing so, gradients do not become too small not too large
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Long Short-Term Memory (LSTM: Beefed up RNN)

[ = O-(xtU(l) + mt_lw(i)) Ct—1 m /_I-_\ Ct
N ”
f — o'(xtU(f) + mt_1W(f)) 2
» » tanh
o=o(x,U° +m,_ W
( ‘ - ) ft le O¢
& = tanh(x, U9 + m,_,W9) . .
. Ct
cGc=C_10Of+cOI
oo ‘ o 0 ||tanh|| O
m; = tanh(c;) © o
mt—l A m;

More info at:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

mp ut

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 48


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

o The cell state carries the essential information over time

Cell stote Line

Ct—1 Ct
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LSTM nonlinearities

o o € (0,1): control gate — something like a switch

o tanh € (=1, 1): recurrent nonlinearity

i = O-(xtU(l) + mt_lw(i)) Ct_l m /_I-_\ Ct
O ”
f = O'(xtU(f) + mt_1W(f)) 7 Y
. » tanh
o=o(x;U° +m,_ W _
( g - ) ft le O¢
& = tanh(x, U9 + m,_,W9) * *
. Ct
cGc=C_10Of+cOI
o ‘ o o ||tanh|| O
m; = tanh(c;) © o
mt-l A m;
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LSTM Step-by-Step: Step (1)

o E.g. Model the sentence “Yesterday she slapped me. Today she loves me.”

o Decide what to forget and what to remember for the new memory
> Sigmoid 1 = Remember everything

° Sigmoid O = Forget everything

fe
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LS

M Step-by-Step: Step (2)

o Decide what new information should you add to the new memory
> Modulate the input i;
> Generate candidate memories ¢;

it = O-(xtU(l) + mt_lw(i))

—
Ct
o ||tanh
& = tanh(x, U9 + m,_, W)

me_q
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LSTM Step-by-Step: Step (3)

o Compute and update the current cell state ¢;
> Depends on the previous cell state
> What we decide to forget

°c What inputs we allow
. ) Ct—1 Ct
> The candidate memories ‘ >

ft Lt

ct=C1Of+cOI
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LSTM Step-by-Step: Step (4)

o Modulate the output
> Does the cell state contain something relevant? = Sigmoid 1

o Generate the new memory

Ot = O-(xtU(O) + mt_lw(o))

A
Mme—q my

m; = tanh(c;) © o Xt
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LSTM Unrolled Network

o Macroscopically very similar to standard RNNs

o The engine is a bit different (more complicated)
o Because of their gates LSTMs capture long and short term dependencies

v

\ 4

v

\4
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Beyond RNN & LSTM

o LSTM with peephole connections
o Gates have access also to the previous cell states ¢;_1 (not only memories)
> Coupled forget and input gates, ¢; = f; O ¢c;—1 + (1 — f;) O C;
° Bi-directional recurrent networks

o Gated Recurrent Units (GRU) T : :

o Deep recurrent architectures LSTM (2) LSTM (2) 1STM (2) | ——

A A A

\ 4

A 4

o Recursive neural networks
° Tree structured LSTM (1)

\ 4

A 4

LSTM (1) LSTM (1) [—

o Multiplicative interactions

o Generative recurrent architectures
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Applications of
Recurrent Networks
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ranslation

Machine

o The phrase in the source language is one sequence
> “Today the weather is good”

o The phrase in the target language is also a sequence
> “Vandaag is het weer goed”

o Problems
> no perfect word alignment, sentence length might differ
o Solution
> Encoder-decoder scheme vandaag LS het weer goed  <EOS>
LSTM |—{ LSTM [—> LSTM [—* LSTM [—{ LSTM » LSTM » LSTM —{ LSTM [— LSTM [—* LSTM [— LSTM
Today the weatheyr Ls ooout <EOS>  Vawndaag Ls het weer ooedt
Encooer Decooer
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ranslation

Better Machine

o It might even pay off reversing the source sentence
o The first target words will be closer to their respective source words

o The encoder and decoder parts can be modelled with different LSTMs

o Deep LSTM
vandaag Ls het weer ooed <Eos>
T T T T T T
LSTM —> LSTM LSTM —| LSTM —{ LSTM [—{ LSTM | LSTM —> LSTM —| LSTM [—*{ LSTM [—* LSTM
T T T T T T T T T T T
ooot Ls weather the Today  <BOS> vandang oe weer Ls heel
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Image captioning

o Animage is a thousand words, literally!
o Pretty much the same as machine transation

o Replace the encoder part with the output of a Convnet
o E.g. use Alexnet or a VGG16 network

o Keep the decoder part to operate as a translator

Today the weather Ls oood  <EOS>
T T T T T T
Convnet LSTM |—{ LSTM [—* LSTM [—| LSTM —* LSTM —> LSTM
T T T T T
Today the weather Ls 0000
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Question answering

o Bleeding-edge research, no real consensus
> Very interesting open, research problems

o Again, pretty much like machine translation

o Again, Encoder-Decoder paradigm
° Insert the question to the encoder part

> Model the answer at the decoder part

o Question answering with images also
o Again, bleeding-edge research
> How/where to add the image?

> What has been working so far is to add the image
only in the beginning

Q: Johwn entered the Living room, where
he met Mary. She was drtniking some
wine and watching a movie. What room

did Johwm enter?
A Johwn entered the Living roomn.

@ what are the people playing?
A: They play beach football
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o Recurrent Neural Networks (RNN) for sequences
o Backpropagation Through Time

Summary o Vanishing and Exploding Gradients and
Remedies

o RNNSs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks
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Reading material & references

o http://www.deeplearningbook.org/
o Part Il: Chapter 10

o Excellent blog post on Backpropagation Through Time

o http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-
rnns/

o http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-
language-model-rnn-with-python-numpy-and-theano/

o http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-
through-time-and-vanishing-gradients/

o Excellent blog post explaining LSTMs
o http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[Pascanu2013] Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks, JMLR, 2013
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o Memory networks

o Recursive networks

Next lecture
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