


Previous Lecture

o Recurrent Neural Networks (RNN) for sequences
o Backpropagation Through Time

o Vanishing and Exploding Gradients and Remedies
o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks
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Lecture Overview

o Latent space data manifolds

o Autoencoders and Variational Autoencoders
o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks
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The manifold
hypothesis
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Manifold Learning with 1000 points, 10 neighbors

LLE (0.21 sec)

LTSA (0.75 sec)

Hessian LLE (0.51 sec) Modified LLE (0.42 sec)
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So what?

o Manifold = Data distribution
o Learning the manifold = Learning data distribution and data variances
o How to learn the these variances automatically?

o Unsupervised and/or generative learning
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What is unsupervised learning?

o Latent space manifolds

o Autoencoders and Variational Autoencoders
o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks
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tSNE dimensions colored by digit

Why unsupervised learning?

10-

o Much more unlabeled than labeled data
o Large data =2 better models -
° |deally not pay for annotations

o What is even the correct annotation for
learning data distribution and/or data variances

o Discovering structure
> What are the important features in the dataset
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What are generative models?

o Latent space manifolds

o Autoencoders and Variational Autoencoders
o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks
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Why generative?

o Force models to go beyond surface statistical regularities of existing data
> Go beyond direct association of observable inputs to observable outputs
> Avoid silly predictions (adversarial examples)

o Understand the world
o Understand data variances, disentangle and recreate them
o Detect unexpected events in your data

o Pave the way towards reasoning and decision making
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Unsupervised & generative learning of the manifold

o Autoencoders and Variational Autoencoders
o Boltzmann Machines
o Adversarial Networks

o Self-Supervised Networks
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Autoencoders
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Standard Autoencoder

Output: reconstructionX
—

o z is usually after a non-linearity
cE.g.z=h(Wx+b), h=oc(:),tanh()

o Reconstruction error L

I = z y (x,g(h(x))) Error £
d

o Often error is the Euclidean loss

Latent space z

ncoder h

? = |x — &|?
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Standard Autoencoder

o The latent space should have fewer dimensions than input
> Undercomplete representation
> Bottleneck architecture

o Otherwise (overcomplete) autoencoder might learn the identity function

Wxl = x=x = L=0
o Assuming no regularization
o Often in practice still works though

o Also, if z=Wx + b (linear) autoencoder learns same subspace as PCA
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Stacking Autoencoders

o Stacking layers on top of each other

o Bigger depth = higher level abstractions

s

o Slower training
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Denoising Autoencoder Output: reconstruction £
T~ T~

o Add random noise to input
o Dropout, gaussian

o Loss includes expectation
over noise distribution Error L Latent space z
~ Encoder h
L= ) Eyznf (x, g(h(x)))
d . ~
Corrupted input: X , g —7 —3—
NOISG E. q(flx, g) a2lizzzizkezszzzzE==zitoooT
Input: x

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES UNSUPERVISED, GENERATIVE & ADVERSARIAL NETWORKS - 25



Denoising Autoencoder

o The network does not overlearn the data
o Can even use overcomplete latent spaces

o Model forced to learn more intelligent, robust representations
o Learn to ignore noise or trivial solutions(identity)

> Focus on “underlying” data generation process
DAE Increasing noise

s i
IIIII

(d) Neuron A (0%, 10%, 20%, 50% corruption)

on B (0%, 10%, 20%, 50% corruption)
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Stochastic Contractive Autoencoders

o Instead of invariant to input noise, invariant output representations
o Similar input with different sampled noise = similar outputs

o Regularization term over noisy reconstructions

£=) £(xg(h(®)) + g [IhG) — R
d

Reconstruction error Regularization error
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Stochastic Contractive Autoencoders

o Instead of invariant to input noise, invariant output representations
o Similar input with different sampled noise = similar outputs

o Regularization term over noisy reconstructions

o Trivial solution?

£=) £(xg(h(®)) + g [IhG) — R
d

Reconstruction error Regularization error
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Stochastic Contractive Autoencoders

o Instead of invariant to input noise, invariant output representations
o Similar input with different sampled noise = similar outputs

o Regularization term over noisy reconstructions

o Trivial solution?
ch(x) =0
> To avoid make sure the encoder and decoder weights are shared W; = W,F

£=) £(xg(h(®)) + g [IhG) — R
d

Reconstruction error Regularization error
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Stochastic =2 Analytic Regularization

o Taylor series expansion about a pointy = a
h(y) =h(a) + h'(a)(y —a) + 0.5 k" (a)(y — a)? + ...

o Fory = ¥ = x + &, where e~N (0, a%]) the (first order) Taylor

(%) = h(x + £) = h(x) + %g
- oh ||° ahll?
Eqzio[lh(x) — h(E)[*] = —e|| 52 —
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Stochastic =2 Analytic Regularization

o Taylor series expansion about a pointy = a
h(y) =h(a) + ' (a)(y —a) + 0.5 k" (a)(y — a)? + ...

o Fory = ¥ = x + &, where e~N (0, a%]) the (first order) Taylor

h(xX) =h(x+¢)=nh(x)+ %8

, 0x
dh oh
Eqan[1h(x) — RG] = ||—¢| < o® ||

o Higher order expansions also possible although computationally expensive
> Alternative: compute higher order derivatives stochastically
> Analytic and stochastic regularization
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Some geometric intuition

o Gradients show sensitivity of function around a point ., ==

2 3
dh =)

L= z 4 (x,g(h(i))) + A E
~ =

o Regularization term penalizes sensitivity to all d

o Reconstruction term enforces sensitivity only to direction of manifold
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Some geometric intuition: let’s get real

o Let’s try to check where the gradients are sensitive around our manifold
o Gradients = Jacobian

o Strongest directions of Jacobian = Compute SVD of Jacobian

oh
— =USsvT
dx

o Take strongest singular values in § and respective vectors from U
> These are our strongest tangents = directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random
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Some geometric intuition: let’s get real

o Let’s try to check where the gradients are sensitive around our manifold
o Gradients = Jacobian

o Strongest directions of Jacobian = Compute SVD of Jacobian

oh
— =USsvT
dx

o Take strongest singular values in § and respective vectors from U
> These are our strongest tangents = directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check?
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Some geometric intuition: let’s get real

o Let’s try to check where the gradients are sensitive around our manifold
o Gradients = Jacobian

o Strongest directions of Jacobian = Compute SVD of Jacobian

oh
— =USsvT
dx

o Take strongest singular values in § and respective vectors from U
> These are our strongest tangents = directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check? Visualize!l
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Some geometric intuition: let’s get real

o Let’s try to check where the gradients are sensitive around our manifold
o Gradients = Jacobian

o Strongest directions of Jacobian = Compute SVD of Jacobian

oh
— =USsvT
dx

o Take strongest singular values in § and respective vectors from U
> These are our strongest tangents = directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check? Visualize!l
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Strongest tangents

Input Point Tangents

—
- —

Local PCA (as e.g. in Manifold Parzen)
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Variational Autoencoder

o We want to model the data distribution

p(x) = j po (2)pe (x|2)dz

o Posterior pg(z|x) is intractable for complicated likelihood functions
po(x|z), e.g. a neural network = p(x) is also intractable

o Introduce an inference machine g, (z|x) (e.g. another neural network)

that learns to approximate the posterior pg (z|x)
> Since we cannot know pg (z|x) define a variational lower bound to optimize instead

L(O,p,x) = _DKL(CI<p (z|x)|lpe (Z)) + Eq¢(Z|x) (logpe(x|z))
Regularization term Reconstruction term
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Variational Autoencoder

o Since we cannot know pg(z|x) define a variational lower bound to
optimize instead

o Optimize inference machine q,(z|x) and likelihood machine pg(x|z)
> q4(z|x) should follow a Gaussian distribution

o Reparamerization trick
° Instead of z being stochastic, introduce stochastic noise variable &
° Then, think of z as deterministic, where z = u,(x) + €o,(x)
> Simultaneous optimization of g, (z|x) and pg(x|z) now possible

£(8,9,%) = —Dy1 (4, @10)pa(2)) + Eq, (2% (log po (x|2))
Regularization term Reconstruction term
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Examples
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.
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Adversarial
Networks
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Generative Adversarial Networks

o So far we were trying to express the pdf of the data p(x)
o Why bother? Is that really necessary? Is that limiting?

o Can we model directly the sampling of data”?
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Generative Adversarial Networks

o So far we were trying to express the pdf of the data p(x)
o Why bother? Is that really necessary? Is that limiting?

o Can we model directly the sampling of data”?

o Yes, by modelling sampling as a “Thief vs. Police” game
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Generative Adversarial Networks

o Composed of two successive networks Discriminator
> Generator network (like upper half of autoencoders)
> Discriminator network (like a convent)

o Learning
> Sample “noise” vectors z
o Per z the generator produces a sample x

> Make a batch where half samples are real,
half are the generated ones

> The discriminator needs to predict what is real
and what is fake Generator
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“Police vs Thief”

o Generator and discriminator networks optimized together
> The generator (thief) tries to fool the discriminator
> The discriminator (police) tries to not get fooled by the generator

o Mathematically

mGjn max V(G,D) = Exep,.. x)10gD(x) + E;pp_yl0g(1 — D(G(2)))
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A graphical interpretation

!
8
LT
& L

1 EL T
L 8

/I Y/ N/

(@ (b) (© (d)

LR N L

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p» from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of @. The upward arrows show how the mapping @ = G(z) imposes the non-uniform distribution py on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: pg is similar to pgas and D is a partially accurate classifier.

(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =
Pdaia | T
pdala(m)‘l'pg (=) -
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because py = paaa. The discriminator 1s unable to differentiate between

the two distributions, i.e. D(z) = 3.

(c) After an update to GG, gradient of D has guided (G(z) to flow to regions that are more likely
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Adversarial network hardships

Discriminator

o This is (very) fresh research
o As such the theory behind adversarial
networks is by far not mature

o Moreoever, GANs are quite unstable \\ v
S 4

o Optimal solution is a saddle point
o Easy to mess up, little stability

W

o Solutions?

> Not great ones yet, although several
researchers are actively working on that

Generator
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Examples of generated images
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Image “arithmetics”

. =
s —]
.
smiling neutral ' man man
neutral smiling man wesia wo i
; ; : man with glasses
woman woman man g with glasses without glasses without glasses g
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o Latent space data manifolds

o Autoencoders and Variational Autoencoders
Summary o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks
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Reading material & references

o http://www.deeplearningbook.org/
o Part Il: Chapter 10

o Excellent blog post on Backpropagation Through Time

o http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-
rnns/

o http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-
language-model-rnn-with-python-numpy-and-theano/

o http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-
through-time-and-vanishing-gradients/

o Excellent blog post explaining LSTMs
o http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[Pascanu2013] Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks, JMLR, 2013
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http://www.deeplearningbook.org/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

o Memory networks

o Advanced applications of Recurrent and
Next lecture Memory Networks
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