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Lecture 9: Unsupervised, Generative & Adversarial Networks
Deep Learning @ UvA
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o Recurrent Neural Networks (RNN) for sequences

o Backpropagation Through Time

o Vanishing and Exploding Gradients and Remedies

o RNNs using Long Short-Term Memory (LSTM)

o Applications of Recurrent Neural Networks

Previous Lecture
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o Latent space data manifolds

o Autoencoders and Variational Autoencoders

o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks

Lecture Overview
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The manifold 
hypothesis
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Data in theory

o One image: 256 256×256×3

◦ 256 height, 256 width, 3 RGB channels, 256 pixel intensities

o Each of these images is like the one in the background

o For text the equivalent would be generating random letter sequences

dakndfqblznqrnbecaojdwlzbirnxxbesjntxapkklsndtuwhc
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Data in theory

o One image: 256 256×256×3

◦ 256 height, 256 width, 3 RGB channels, 256 pixel intensities

o Each of these images is like the one in the background

o For text the equivalent would be generating random letter sequences

qgkhlkjijxskmbisuwephrhudskneyaeajdzhowieyqwhfnago
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Data in theory

o One image: 256 256×256×3

◦ 256 height, 256 width, 3 RGB channels, 256 pixel intensities

o Each of these images is like the one in the background

o For text the equivalent would be generating random letter sequences

tpxvdcxwgebouyvqaekqzgwvqfuakuhodsapxzbfsizgobtpjb



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    UNSUPERVISED, GENERATIVE & ADVERSARIAL NETWORKS - 8

o Data live in manifolds

o A manifold is a latent structure of much
lower dimensionality
dim𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 ≪ dim𝑑𝑎𝑡𝑎

o Nobody “forces” the data
to be on the manifold, they
just are

o The manifold occupies only
a tiny fraction of the possible space

Data in reality: The manifold hypothesis
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o The trajectory defines
transformations/variances

o Rotation
◦ E.g. the faces turns

Data in reality: The manifold hypothesis
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o The trajectory defines
transformations/variances

o Rotation
◦ E.g. the faces turns

o Global appearance changes
◦ E.g., Different face

Data in reality: The manifold hypothesis
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o The trajectory defines
transformations/variances

o Rotation
◦ E.g. the faces turns

o Global appearance changes
◦ E.g., Different face

o Or even local appearance change
◦ E.g., eyes open/closed

Data in reality: The manifold hypothesis
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o Each image is a either a set of
coordinates in the full data space

Data in reality: The manifold hypothesis

Image=

0.1
−0.2
0.8
0.3
−0.5
−0.3
0.8
0.1
−0.4
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o Or a smaller set of intrinsic
manifold coordinates

Data in reality: The manifold hypothesis

Image taken from Pascal Vincent, Deep Learning Summer School, 2015
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o Manifold  Data distribution

o Learning the manifold  Learning data distribution and data variances

o How to learn the these variances automatically?

o Unsupervised and/or generative learning

So what?
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Unsupervised 
and Generative
Learning
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o Latent space manifolds

o Autoencoders and Variational Autoencoders

o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks

What is unsupervised learning? 
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o Much more unlabeled than labeled data
◦ Large data  better models

◦ Ideally not pay for annotations

o What is even the correct annotation for 
learning data distribution and/or data variances

o Discovering structure
◦ What are the important features in the dataset

Why unsupervised learning?
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o Latent space manifolds

o Autoencoders and Variational Autoencoders

o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks

What are generative models? 
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o Force models to go beyond surface statistical regularities of existing data
◦ Go beyond direct association of observable inputs to observable outputs

◦ Avoid silly predictions (adversarial examples)

o Understand the world

o Understand data variances, disentangle and recreate them

o Detect unexpected events in your data

o Pave the way towards reasoning and decision making

Why generative?



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    UNSUPERVISED, GENERATIVE & ADVERSARIAL NETWORKS - 20

o Autoencoders and Variational Autoencoders

o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks

Unsupervised & generative learning of the manifold 
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Autoencoders
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o 𝑧 is usually after a non-linearity
◦ E.g. 𝑧 = ℎ 𝑊𝑥 + 𝑏 , ℎ ≡ 𝜎 ⋅ , tanh(⋅)

o Reconstruction error ℒ

o Often error is the Euclidean loss

Standard Autoencoder

Encoder 𝒉

Decoder 𝒈

Latent space 𝒛Error ℒ

Input: 𝑥

Output: reconstruction ො𝑥

ℒ =෍

𝑑

ℓ 𝑥, 𝑔 ℎ 𝑥

ℓ = 𝑥 − ො𝑥 2
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o The latent space should have fewer dimensions than input
◦ Undercomplete representation

◦ Bottleneck architecture

o Otherwise (overcomplete) autoencoder might learn the identity function

𝑊 ∝ 𝐼 ⟹ ෤𝑥 = 𝑥 ⟹ ℒ = 0
◦ Assuming no regularization

◦ Often in practice still works though

o Also, if 𝑧 = 𝑊𝑥 + 𝑏 (linear) autoencoder learns same subspace as PCA

Standard Autoencoder
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o Stacking layers on top of each other 

o Bigger depth  higher level abstractions

o Slower training 

Stacking Autoencoders
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o Add random noise to input
◦ Dropout, gaussian

o Loss includes expectation
over noise distribution

Denoising Autoencoder

Error ℒ

Corrupted input: ෤𝑥

Output: reconstruction ො𝑥

Input: 𝑥

Noise 𝜀: 𝑞( ෤𝑥|𝑥, 𝜀)

Encoder 𝒉

Decoder 𝒈

Latent space 𝒛

ℒ =෍

𝑑

Ε𝑞( ෤𝑥|𝑥)ℓ 𝑥, 𝑔 ℎ ෤𝑥
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o The network does not overlearn the data
◦ Can even use overcomplete latent spaces

o Model forced to learn more intelligent, robust representations
◦ Learn to ignore noise or trivial solutions(identity)

◦ Focus on “underlying” data generation process

Denoising Autoencoder



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    UNSUPERVISED, GENERATIVE & ADVERSARIAL NETWORKS - 27

o Instead of invariant to input noise, invariant output representations
◦ Similar input with different sampled noise  similar outputs

o Regularization term over noisy reconstructions

Stochastic Contractive Autoencoders

ℒ =෍

𝑑

ℓ 𝑥, 𝑔 ℎ ෤𝑥 + 𝜆Ε𝑞( ෤𝑥|𝑥)[ ℎ 𝑥 − ℎ ෤𝑥 2]

Reconstruction error Regularization error
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o Instead of invariant to input noise, invariant output representations
◦ Similar input with different sampled noise  similar outputs

o Regularization term over noisy reconstructions

o Trivial solution?

Stochastic Contractive Autoencoders

ℒ =෍

𝑑

ℓ 𝑥, 𝑔 ℎ ෤𝑥 + 𝜆Ε𝑞( ෤𝑥|𝑥)[ ℎ 𝑥 − ℎ ෤𝑥 2]

Reconstruction error Regularization error
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o Instead of invariant to input noise, invariant output representations
◦ Similar input with different sampled noise  similar outputs

o Regularization term over noisy reconstructions

o Trivial solution?
◦ ℎ 𝑥 = 0

◦ To avoid make sure the encoder and decoder weights are shared 𝑊𝑑 = 𝑊𝑒
𝑇

Stochastic Contractive Autoencoders

ℒ =෍

𝑑

ℓ 𝑥, 𝑔 ℎ ෤𝑥 + 𝜆Ε𝑞( ෤𝑥|𝑥)[ ℎ 𝑥 − ℎ ෤𝑥 2]

Reconstruction error Regularization error
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o Taylor series expansion about a point 𝑦 = 𝑎
ℎ 𝑦 = ℎ 𝑎 + ℎ′ 𝑎 𝑦 − 𝑎 + 0.5 ℎ′′ 𝑎 𝑦 − 𝑎 2 + …

o For 𝑦 = ෤𝑥 = 𝑥 + 𝜀, where 𝜀~𝑁(0, 𝜎2𝛪) the (first order) Taylor

ℎ ෤𝑥 = ℎ 𝑥 + 𝜀 = ℎ 𝑥 +
𝜕h

𝜕𝑥
𝜀

Stochastic  Analytic Regularization

Ε𝑞( ෤𝑥|𝑥)[ ℎ 𝑥 − ℎ ෤𝑥 2] =
𝜕h

𝜕𝑥
𝜀

2

∝ 𝜎2
𝜕h

𝜕𝑥

2
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o Taylor series expansion about a point 𝑦 = 𝑎
ℎ 𝑦 = ℎ 𝑎 + ℎ′ 𝑎 𝑦 − 𝑎 + 0.5 ℎ′′ 𝑎 𝑦 − 𝑎 2 + …

o For 𝑦 = ෤𝑥 = 𝑥 + 𝜀, where 𝜀~𝑁(0, 𝜎2𝛪) the (first order) Taylor

ℎ ෤𝑥 = ℎ 𝑥 + 𝜀 = ℎ 𝑥 +
𝜕h

𝜕𝑥
𝜀

o Higher order expansions also possible although computationally expensive
◦ Alternative: compute higher order derivatives stochastically

◦ Analytic and stochastic regularization

Stochastic  Analytic Regularization

Ε𝑞( ෤𝑥|𝑥)[ ℎ 𝑥 − ℎ ෤𝑥 2] =
𝜕h

𝜕𝑥
𝜀

2

∝ 𝜎2
𝜕h

𝜕𝑥

2
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o Gradients show sensitivity of function around a point

ℒ =෍

𝑑

ℓ 𝑥, 𝑔 ℎ ෤𝑥 + 𝜆
𝜕h

𝜕𝑥

2

o Regularization term penalizes sensitivity to all directions

o Reconstruction term enforces sensitivity only to direction of manifold

Some geometric intuition
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o Let’s try to check where the gradients are sensitive around our manifold

o Gradients  Jacobian 

o Strongest directions of Jacobian  Compute SVD of Jacobian
𝜕ℎ

𝜕𝑥
= 𝑈𝑆𝑉𝑇

o Take strongest singular values in 𝑆 and respective vectors from U
◦ These are our strongest tangents  directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

Some geometric intuition: let’s get real
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o Let’s try to check where the gradients are sensitive around our manifold

o Gradients  Jacobian 

o Strongest directions of Jacobian  Compute SVD of Jacobian
𝜕ℎ

𝜕𝑥
= 𝑈𝑆𝑉𝑇

o Take strongest singular values in 𝑆 and respective vectors from U
◦ These are our strongest tangents  directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check? 

Some geometric intuition: let’s get real
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o Let’s try to check where the gradients are sensitive around our manifold

o Gradients  Jacobian 

o Strongest directions of Jacobian  Compute SVD of Jacobian
𝜕ℎ

𝜕𝑥
= 𝑈𝑆𝑉𝑇

o Take strongest singular values in 𝑆 and respective vectors from U
◦ These are our strongest tangents  directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check? Visualize!!

Some geometric intuition: let’s get real
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o Let’s try to check where the gradients are sensitive around our manifold

o Gradients  Jacobian 

o Strongest directions of Jacobian  Compute SVD of Jacobian
𝜕ℎ

𝜕𝑥
= 𝑈𝑆𝑉𝑇

o Take strongest singular values in 𝑆 and respective vectors from U
◦ These are our strongest tangents  directions of Jacobian of most sensitivity

o Hopefully the tangents sensitive to direction of the manifold, not random

o How to check? Visualize!!

Some geometric intuition: let’s get real
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Strongest tangents
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o We want to model the data distribution

𝑝 𝑥 = න𝑝𝜃 𝑧 𝑝𝜃 𝑥 𝑧 𝑑𝑧

o Posterior 𝑝𝜃 𝑧 𝑥 is intractable for complicated likelihood functions 
𝑝𝜃 𝑥 𝑧 , e.g. a neural network  𝑝 𝑥 is also intractable

o Introduce an inference machine 𝑞𝜑 𝑧 𝑥 (e.g. another neural network) 
that learns to approximate the posterior 𝑝𝜃 𝑧 𝑥
◦ Since we cannot know 𝑝𝜃 𝑧 𝑥 define a variational lower bound to optimize instead

ℒ 𝜃, 𝜑, 𝑥 = −𝐷𝐾𝐿 𝑞𝜑 𝑧 𝑥 ԡ𝑝𝜃 𝑧 + 𝐸𝑞𝜑 𝑧 𝑥 (log 𝑝𝜃(𝑥|𝑧))

Variational Autoencoder

Reconstruction termRegularization term



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    UNSUPERVISED, GENERATIVE & ADVERSARIAL NETWORKS - 39

o Since we cannot know 𝑝𝜃 𝑧 𝑥 define a variational lower bound to 
optimize instead

o Optimize inference machine 𝑞𝜑 𝑧 𝑥 and likelihood machine 𝑝𝜃(𝑥|𝑧)
◦ 𝑞𝜑 𝑧 𝑥 should follow a Gaussian distribution

o Reparamerization trick
◦ Instead of 𝑧 being stochastic, introduce stochastic noise variable 𝜀

◦ Then, think of 𝑧 as deterministic, where   𝑧 = 𝜇𝑧 𝑥 + 𝜀𝜎𝑧 𝑥

◦ Simultaneous optimization of 𝑞𝜑 𝑧 𝑥 and 𝑝𝜃(𝑥|𝑧) now possible

ℒ 𝜃, 𝜑, 𝑥 = −𝐷𝐾𝐿 𝑞𝜑 𝑧 𝑥 ԡ𝑝𝜃 𝑧 + 𝐸𝑞𝜑 𝑧 𝑥 (log 𝑝𝜃(𝑥|𝑧))

Variational Autoencoder

Reconstruction termRegularization term
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Examples
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Adversarial 
Networks
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o So far we were trying to express the pdf of the data 𝑝(𝑥)

o Why bother? Is that really necessary? Is that limiting?

o Can we model directly the sampling of data?

Generative Adversarial Networks
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o So far we were trying to express the pdf of the data 𝑝(𝑥)

o Why bother? Is that really necessary? Is that limiting?

o Can we model directly the sampling of data?

o Yes, by modelling sampling as a “Thief vs. Police” game

Generative Adversarial Networks
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o Composed of two successive networks
◦ Generator network (like upper half of autoencoders)

◦ Discriminator network (like a convent)

o Learning
◦ Sample “noise” vectors 𝑧

◦ Per 𝑧 the generator produces a sample 𝑥

◦ Make a batch where half samples are real,
half are the generated ones

◦ The discriminator needs to predict what is real
and what is fake

Generative Adversarial Networks

Generator

Noise 𝒛

Discriminator
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o Generator and discriminator networks optimized together
◦ The generator (thief) tries to fool the discriminator

◦ The discriminator (police) tries to not get fooled by the generator

o Mathematically

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝐷(𝑥) + 𝐸𝑧~𝑝𝑧(𝑧) log(1 − 𝐷 𝐺 𝑧 )

“Police vs Thief”
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A graphical interpretation
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o This is (very) fresh research

o As such the theory behind adversarial
networks is by far not mature

o Moreoever, GANs are quite unstable

o Optimal solution is a saddle point
◦ Easy to mess up, little stability

o Solutions?
◦ Not great ones yet, although several 

researchers are actively working on that

Adversarial network hardships

Generator

Discriminator
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Examples of generated images

Bedrooms
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Image “arithmetics”
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Summary

o Latent space data manifolds

o Autoencoders and Variational Autoencoders

o Boltzmann Machines

o Adversarial Networks

o Self-Supervised Networks
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o http://www.deeplearningbook.org/
◦ Part II: Chapter 10

o Excellent blog post on Backpropagation Through Time
◦ http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-

rnns/
◦ http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-

language-model-rnn-with-python-numpy-and-theano/
◦ http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-

through-time-and-vanishing-gradients/

o Excellent blog post explaining LSTMs
◦ http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[Pascanu2013] Pascanu, Mikolov, Bengio. On the difficulty of training Recurrent Neural Networks, JMLR, 2013

Reading material & references

http://www.deeplearningbook.org/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Next lecture

o Memory networks

o Advanced applications of Recurrent and 
Memory Networks


