Sequential Data

So far, all tasks assumed *stationary* data

Neither all data, nor all tasks are stationary though
you can be cool

but never a parrot wearing a hoodie cool

what
you can be cool

but never a parrot wearing a hoodie cool

What about
Sequential Data: Text

What about inputs that appear in sequences, such as text? Could a neural network handle such modalities?
Memory needed

What about inputs that appear in sequences, such as text? Could a neural network handle such modalities?

\[
Pr(x) = \prod_i Pr(x_i | x_1, ..., x_{i-1})
\]
Sequential data: Video
Quiz: Other sequential data?
Quiz: Other sequential data?

Time series data
- Stock exchange
- Biological measurements
- Climate measurements
- Market analysis

Speech/Music

User behavior in websites
Applications
Machine Translation

The phrase in the source language is one sequence
 – “Today the weather is good”

The phrase in the target language is also a sequence
 – “Погода сегодня хорошая”

Encoder

Decoder
An image is a thousand words, literally!
Pretty much the same as machine translation
Replace the encoder part with the output of a Convnet
– E.g. use Alexnet or a VGG16 network
Keep the decoder part to operate as a translator
Demo

Click to go to the video in Youtube

a man in a suit and tie standing in front of a building

NeuralTalk and Talk, recognition, text description of the image while walking
Question answering

Bleeding-edge research, no real consensus
- Very interesting open, research problems

Again, pretty much like machine translation

Again, Encoder-Decoder paradigm
- Insert the question to the encoder part
- Model the answer at the decoder part

Question answering with images also
- Again, bleeding-edge research
- How/where to add the image?
- What has been working so far is to add the image only in the beginning

Q: what are the people playing?
A: They play beach football

Q: John entered the living room, where he met Mary. She was drinking some wine and watching a movie. What room did John enter?
A: John entered the living room.
Demo

Click to go to the website

CloudCV: Visual Question Answering (VQA)

More details about the VQA dataset can be found [here](#).

State-of-the-art VQA model and code available [here](#).

CloudCV can answer questions you ask about an image

Browsers currently supported: Google Chrome, Mozilla Firefox

Try CloudCV VQA: Sample Images

Click on one of these images to send it to our servers (Or upload your own images below)
Hi Motherboard readers!

This entire post was hand written by a neural network.

It probably writes better than you.)

Of course, a neural network doesn't actually have hands.

And the original text was typed by me, a human.

So what's going on here?

A neural network is a program that can learn to follow a set of rules.

But it can't do it alone. It needs to be trained.

This neural network was trained on a corpus of writing samples.

And it can use this knowledge to generate handwritten notes from inputted text.

It can create its own style, or mimic another's.

No two notes are the same.

The work of Alex Graves at the University of Toronto

And you can try it too!
Sequences

Next data depend on previous data
Roughly equivalent to predicting what comes next

\[\Pr(x) = \prod_{i} \Pr(x_i \mid x_1, \ldots, x_{i-1}) \]

What about inputs that appear in sequences, such as text? Could a neural network handle such modalities?
Why sequences?

Parameters are reused → Fewer parameters → Easier modelling

Generalizes well to arbitrary lengths → Not constrained to specific length

\[
\text{RecurrentModel}(\text{I think, therefore, I am!}) \\
\equiv \\
\text{RecurrentModel}(\text{Everything is repeated, in a circle. History is a master because it teaches us that it doesn't exist. It's the permutations that matter.})
\]

However, often we pick a “frame” \(T \) instead of an arbitrary length

\[
\Pr(x) = \prod_i \Pr(x_i | x_{i-T}, ..., x_{i-1})
\]
Quiz: What is really a sequence?

Data inside a sequence are … ?

I am Bond, James Bond.

McGuire

Bond

tired

am!

?
Quiz: What is really a sequence?

Data inside a sequence are non i.i.d.
- Identically, independently distributed

The next “word” depends on the previous “words”
- Ideally on all of them

We need **context**, and we need **memory**!

How to model context and memory?

I am Bond, James Bond

McGuire

Bond

tired

am

!
\[x_i \equiv \text{One-hot vectors} \]

A vector with all zeros except for the active dimension

12 words in a sequence \(\rightarrow\) 12 One-hot vectors

After the one-hot vectors apply an embedding

- Word2Vec, GloVE

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>One-hot vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>I</code></td>
<td>0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td><code>am</code></td>
<td>0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td><code>Bond</code></td>
<td>0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td><code>James</code></td>
<td>0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td><code>tired</code></td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td><code>McGuire</code></td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td><code>!</code></td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Quiz: Why not just indices?

One-hot representation

```
1  am James McGuire
1  0  0  0
0  1  0  0
0  0  0  0
0  0  1  0
0  0  0  0
0  0  0  0
0  0  0  1
0  0  0  0
0  0  0  0
```

\[x_{t=1,2,3,4} = \]

Index representation

```
1  am James McGuire
x"I" = 1
x"am" = 2
x"James" = 4
x"McGuire" = 7
```
Quiz: Why not just indices?

One-hot representation

<table>
<thead>
<tr>
<th></th>
<th>am</th>
<th>James</th>
<th>McGuire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Index representation

<table>
<thead>
<tr>
<th></th>
<th>am</th>
<th>James</th>
<th>McGuire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
distance(x_{am}, x_{McGuire}) = 1\]
\[
distance(x_{I}, x_{am}) = 1\]

OR?

\[
distance(q_{am}, q_{McGuire}) = 5\]
\[
distance(q_{I}, q_{am}) = 1\]

No, because then some words get closer together for no good reason (artificial bias between words)
Memory

A representation of the past

A memory must project information at timestep t on a latent space c_t using parameters θ

Then, re-use the projected information from t at $t + 1$

$$c_{t+1} = h(x_{t+1}, c_t; \theta)$$

Memory parameters θ are shared for all timesteps $t = 0, ...$

$$c_{t+1} = h(x_{t+1}, h(x_t, h(x_{t-1}, ... h(x_1, c_0; \theta); \theta); \theta); \theta)$$
Memory as a Graph

Simplest model

- Input with parameters U
- Memory embedding with parameters W
- Output with parameters V
Memory as a Graph

Simplest model

- Input with parameters U
- Memory embedding with parameters W
- Output with parameters V
Memory as a Graph

Simplest model

- Input with parameters U
- Memory embedding with parameters W
- Output with parameters V
Folding the memory

Unrolled/Unfolded Network

Folded Network
Recurrent Neural Network (RNN)

Only two equations

\[c_t = \tanh(U x_t + W c_{t-1}) \]
\[y_t = \text{softmax}(V c_t) \]
RNN Example

Vocabulary of 5 words

A memory of 3 units
- Hyperparameter that we choose like layer size
- $c_t: [3 \times 1], W: [3 \times 3]$

An input projection of 3 dimensions
- $U: [3 \times 5]$

An output projections of 10 dimensions
- $V: [10 \times 3]$

$$U \cdot x_{t=4} = \begin{bmatrix}
0.1 & -0.3 & 1.2 & 0.6 & -0.8 \\
-0.2 & 0.4 & 0.5 & 0.9 & -0.1 \\
-0.1 & 0.2 & -0.7 & -0.8 & 0.3
\end{bmatrix} \cdot \begin{bmatrix}
0 \\
0 \\
1 \\
0
\end{bmatrix} = \begin{bmatrix}
0.6 \\
0.9 \\
-0.8
\end{bmatrix} = U^{(4)}$$

$$c_t = \tanh(U \cdot x_t + W \cdot c_{t-1})$$

$$y_t = \text{softmax}(V \cdot c_t)$$
Rolled Network vs. MLP?

What is really different?

- Steps instead of layers
- Step parameters shared in Recurrent Network
- In a Multi-Layer Network parameters are different
Rolled Network vs. MLP?

What is really different?

- Steps instead of layers
- Step parameters shared in Recurrent Network
- In a Multi-Layer Network parameters are different

3-gram Unrolled Recurrent Network

3-layer Neural Network
Rolled Network vs. MLP?

What is really different?

– Steps instead of layers
– Step parameters shared in Recurrent Network
– In a Multi-Layer Network parameters are different

Sometimes intermediate outputs are not even needed.
Removing them, we almost end up to a standard Neural Network.
Rolled Network vs. MLP?

What is really different?
- Steps instead of layers
- Step parameters shared in Recurrent Network
- In a Multi-Layer Network parameters are different

3-gram Unrolled Recurrent Network

3-layer Neural Network
Training Recurrent Networks

Cross-entropy loss

\[
P = \prod_{t,k} y_{tk}^{l_t} \Rightarrow \mathcal{L} = - \log P = \sum_t \mathcal{L}_t = - \frac{1}{T} \sum_t l_t \log y_t
\]

Backpropagation Through Time (BPTT)

- Again, chain rule
- Only difference: Gradients survive over time steps
Training RNNs is hard

Vanishing gradients
 – After a few time steps the gradients become almost 0

Exploding gradients
 – After a few time steps the gradients become huge

Can’t capture long-term dependencies
Alternative formulation for RNNs

An alternative formulation to derive conclusions and intuitions

\[c_t = W \cdot \tanh(c_{t-1}) + U \cdot x_t + b \]

\[\mathcal{L} = \sum_t \mathcal{L}_t(c_t) \]
Another look at the gradients

\[\mathcal{L} = L(c_T(c_{T-1}(... (c_1(x_1, c_0; W); W); W); W)) \]

\[\frac{\partial \mathcal{L}_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W} \]

\[\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} = \frac{\partial \mathcal{L}}{\partial c_t} \cdot \frac{\partial c_t}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot ... \cdot \frac{\partial c_{\tau+1}}{\partial c_\tau} \leq \eta^{t-\tau} \frac{\partial \mathcal{L}_t}{\partial c_t} \]

\[\text{Rest} \rightarrow \text{short-term factors} \quad t \gg \tau \rightarrow \text{long-term factors} \]

The RNN gradient is a recursive product of \[\frac{\partial c_t}{\partial c_{t-1}} \]
Exploding/Vanishing gradients

\[
\frac{\partial \mathcal{L}}{\partial c_t} = \frac{\partial \mathcal{L}}{\partial c_T} \cdot \frac{\partial c_T}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdots \frac{\partial c_{t+1}}{\partial c_{t}} < 1 \quad \frac{\partial \mathcal{L}}{\partial w} \ll 1 \Rightarrow \text{Vanishing gradient}
\]

\[
\frac{\partial \mathcal{L}}{\partial c_t} = \frac{\partial \mathcal{L}}{\partial c_T} \cdot \frac{\partial c_T}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdots \frac{\partial c_1}{\partial c_{c_t}} > 1 \quad \frac{\partial \mathcal{L}}{\partial w} \gg 1 \Rightarrow \text{Exploding gradient}
\]
Vanishing gradients

The gradient of the error w.r.t. to intermediate cell

\[
\frac{\partial L_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial L_r}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W}
\]

\[
\frac{\partial c_t}{\partial c_\tau} = \prod_{t \geq k \geq t} \frac{\partial c_k}{\partial c_{k-1}} = \prod_{t \geq k \geq \tau} W \cdot \partial \tanh(c_{k-1})
\]
Vanishing gradients

The gradient of the error w.r.t. to intermediate cell

\[
\frac{\partial L_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial L_r}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W}
\]

\[
\frac{\partial c_t}{\partial c_\tau} = \prod_{t \geq k \geq \tau} \frac{\partial c_k}{\partial c_{k-1}} = \prod_{t \geq k \geq \tau} W \cdot \partial \tanh(c_{k-1})
\]

Long-term dependencies get exponentially smaller weights
Gradient clipping for exploding gradients

Scale the gradients to a threshold

Pseudocode

1. \(g \leftarrow \frac{\partial \mathcal{L}}{\partial w} \)
2. if \(\|g\| > \theta_0 \):
 \[g \leftarrow \frac{\theta_0}{\|g\|} g \]
 else:
 print(‘Do nothing’)

Simple, but works!
Rescaling vanishing gradients?

Not good solution

Weights are shared between timesteps → Loss summed over timesteps

\[\mathcal{L} = \sum_{t} \mathcal{L}_t \implies \frac{\partial \mathcal{L}}{\partial W} = \sum_{t} \frac{\partial \mathcal{L}_t}{\partial W} \]

\[\frac{\partial \mathcal{L}_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_t}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_t}{\partial c_{t}} \frac{\partial c_t}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W} \]

Rescaling for one timestep \(\left(\frac{\partial \mathcal{L}_t}{\partial W} \right) \) affects all timesteps

- The rescaling factor for one timestep does not work for another
More intuitively

\[
\frac{\partial L}{\partial w} = \frac{\partial L_1}{\partial w} + \frac{\partial L_2}{\partial w} + \frac{\partial L_3}{\partial w} + \frac{\partial L_4}{\partial w} + \frac{\partial L_5}{\partial w}
\]
More intuitively

Let's say \(\frac{\partial L_1}{\partial W} \propto 1, \frac{\partial L_2}{\partial W} \propto 1/10, \frac{\partial L_3}{\partial W} \propto 1/100, \frac{\partial L_4}{\partial W} \propto 1/1000, \frac{\partial L_5}{\partial W} \propto 1/10000 \)

\[
\frac{\partial L}{\partial W} = \sum_r \frac{\partial L_r}{\partial W} = 1.1111
\]

If \(\frac{\partial L}{\partial W} \) rescaled to 1 \(\Rightarrow \frac{\partial L_5}{\partial W} \propto 10^{-5} \)

Longer-term dependencies negligible

- Weak recurrent modelling
- Learning focuses on the short-term only

\[
\frac{\partial L}{\partial W} = \frac{\partial L_1}{\partial W} + \frac{\partial L_2}{\partial W} + \frac{\partial L_3}{\partial W} + \frac{\partial L_4}{\partial W} + \frac{\partial L_5}{\partial W}
\]
Recurrent networks \propto Chaotic systems

Figure 4. This diagram illustrates how the change in x_t, Δx_t, can be large for a small Δx_0. The blue vs red (left vs right) trajectories are generated by the same maps F_1, F_2, \ldots for two different initial states.

Figure 5. Illustrates how one can break apart the maps $F_1, \ldots F_t$ into a constant map \tilde{F} and the maps U_1, \ldots, U_t. The dotted vertical line represents the boundary between basins of attraction, and the straight dashed arrow the direction of the map \tilde{F} on each side of the boundary. This diagram is an extension of Fig. 4.
Fixing vanishing gradients

Regularization on the recurrent weights
– Force the error signal not to vanish

\[\Omega = \sum_t \Omega_t = \sum_t \left(\left| \frac{\partial L}{\partial c_{t+1}} \frac{\partial c_{t+1}}{\partial c_t} \right| - 1 \right)^2 \]

Advanced recurrent modules
Long-Short Term Memory module
Gated Recurrent Unit module

Pascanu et al., On the difficulty of training Recurrent Neural Networks, 2013
Advanced Recurrent Nets

\[f_t \]
\[i_t \]
\[\tilde{c}_t \]
\[o_t \]
\[\sigma \]
\[\sigma \]
\[\sigma \]
\[\sigma \]
\[\text{tanh} \]
\[\text{Output} \]
How to fix the vanishing gradients?

Error signal over time must have not too large, not too small norm

Let’s have a look at the loss function

\[
\frac{\partial L_t}{\partial W} = \sum_{\tau=1}^{t} \left(\frac{\partial L_r}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W} \right)
\]

\[
\frac{\partial c_t}{\partial c_\tau} = \prod_{t \geq k \geq \tau} \frac{\partial c_k}{\partial c_{k-1}}
\]
How to fix the vanishing gradients?

Error signal over time must have not too large, not too small norm

Let’s have a look at the loss function

\[
\frac{\partial L_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial L_r}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W}
\]

\[
\frac{\partial c_t}{\partial c_\tau} = \prod_{t \geq k \geq \tau} \frac{\partial c_k}{\partial c_{k-1}}
\]
How to fix the vanishing gradients?

Error signal over time must have not too large, not too small norm

Solution: have an activation function with gradient equal to 1

\[
\frac{\partial L_t}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial L_r}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \frac{\partial c_\tau}{\partial W}
\]

\[
\frac{\partial c_t}{\partial c_\tau} = \prod_{t \geq k \geq \tau} \frac{\partial c_k}{\partial c_{k-1}}
\]

- Identify function has a gradient equal to 1

By doing so, gradients do not become too small not too large
Long Short-Term Memory
LSTM: Beefed up RNN

Simple RNN
\[c_t = W \cdot \tanh(c_{t-1}) + U \cdot x_t + b \]

LSTM
\[i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)}) \]
\[f = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)}) \]
\[o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)}) \]
\[\tilde{c}_t = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)}) \]
\[c_t = c_{t-1} \odot f + \tilde{c}_t \odot i \]
\[m_t = \tanh(c_t) \odot o \]

- The previous state \(c_{t-1} \) is connected to new \(c_t \) with no nonlinearity (identity function).
- The only other factor is the forget gate \(f \) which rescales the previous LSTM state.

More info at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Cell state

The cell state carries the essential information over time

\[i = \sigma(x_tU^{(i)} + m_{t-1}W^{(i)}) \]
\[f = \sigma(x_tU^{(f)} + m_{t-1}W^{(f)}) \]
\[o = \sigma(x_tU^{(o)} + m_{t-1}W^{(o)}) \]
\[\tilde{c}_t = \tanh(x_tU^{(g)} + m_{t-1}W^{(g)}) \]
\[c_t = c_{t-1} \odot f + \tilde{c}_t \odot i \]
\[m_t = \tanh(c_t) \odot o \]
LSTM nonlinearities

\(\sigma \in (0, 1) \): control gate – something like a switch
\(\tanh \in (-1, 1) \): recurrent nonlinearity

\[
\begin{align*}
i &= \sigma(x_t U^{(i)} + m_{t-1} W^{(i)}) \\
f &= \sigma(x_t U^{(f)} + m_{t-1} W^{(f)}) \\
o &= \sigma(x_t U^{(o)} + m_{t-1} W^{(o)}) \\
\tilde{c}_t &= \tanh(x_t U^{(g)} + m_{t-1} W^{(g)}) \\
c_t &= c_{t-1} \odot f + \tilde{c}_t \odot i \\
m_t &= \tanh(c_t) \odot o
\end{align*}
\]
LSTM Step-by-Step: Step (1)

E.g. LSTM on “Yesterday she slapped me. Today she loves me.”

Decide what to forget and what to remember for the new memory
- Sigmoid 1 → Remember everything
- Sigmoid 0 → Forget everything

\[
\begin{align*}
 i_t &= \sigma(x_t U^{(i)} + m_{t-1} W^{(i)}) \\
 f_t &= \sigma(x_t U^{(f)} + m_{t-1} W^{(f)}) \\
 o_t &= \sigma(x_t U^{(o)} + m_{t-1} W^{(o)}) \\
 \tilde{c}_t &= \tanh(x_t U^{(g)} + m_{t-1} W^{(g)}) \\
 c_t &= c_{t-1} \odot f + \tilde{c}_t \odot i \\
 m_t &= \tanh(c_t) \odot o
\end{align*}
\]
LSTM Step-by-Step: Step (2)

Decide what new information is relevant from the new input and should be add to the new memory

- Modulate the input i_t
- Generate candidate memories \tilde{c}_t

\[
i_t = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})
\]
\[
f_t = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)})
\]
\[
o_t = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})
\]
\[
\tilde{c}_t = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})
\]
\[
c_t = c_{t-1} \odot f + \tilde{c}_t \odot i
\]
\[
m_t = \tanh(c_t) \odot o
\]
LSTM Step-by-Step: Step (3)

Compute and update the current cell state c_t
- Depends on the previous cell state
- What we decide to forget
- What inputs we allow
- The candidate memories

\[
\begin{align*}
i_t &= \sigma(x_t U^{(i)} + m_{t-1} W^{(i)}) \\
f_t &= \sigma(x_t U^{(f)} + m_{t-1} W^{(f)}) \\
o_t &= \sigma(x_t U^{(o)} + m_{t-1} W^{(o)}) \\
\tilde{c}_t &= \tanh(x_t U^{(g)} + m_{t-1} W^{(g)}) \\
c_t &= c_{t-1} \odot f + \tilde{c}_t \odot i \\
m_t &= \tanh(c_t) \odot o
\end{align*}
\]
LSTM Step-by-Step: Step (4)

Modulate the output
- Does the new cell state relevant? → Sigmoid 1
- If not → Sigmoid 0

Generate the new memory

\[
\begin{align*}
 i_t &= \sigma(x_t U^{(i)} + m_{t-1} W^{(i)}) \\
 f_t &= \sigma(x_t U^{(f)} + m_{t-1} W^{(f)}) \\
 o_t &= \sigma(x_t U^{(o)} + m_{t-1} W^{(o)}) \\
 \tilde{c}_t &= \tanh(x_t U^{(g)} + m_{t-1} W^{(g)}) \\
 c_t &= c_{t-1} \odot f + \tilde{c}_t \odot i \\
 m_t &= \tanh(c_t) \odot o
\end{align*}
\]
LSTM Unrolled Network

Macroscopically very similar to standard RNNs.
The engine is a bit different (more complicated)
- Because of their gates LSTMs capture long and short term dependencies.
Beyond RNN & LSTM

LSTM with peephole connections
- Gates have access also to the previous cell states c_{t-1} (not only memories)
- Coupled forget and input gates, $c_t = f_t \odot c_{t-1} + (1 - f_t) \odot \tilde{c}_t$
- Bi-directional recurrent networks

Gated Recurrent Units (GRU)

Deep recurrent architectures

Recursive neural networks
- Tree structured

Multiplicative interactions

Generative recurrent architectures
Take-away message

Recurrent Neural Networks (RNN) for sequences

Backpropagation Through Time

Vanishing and Exploding Gradients and Remedies

RNNs using Long Short-Term Memory (LSTM)

Applications of Recurrent Neural Networks
Thank you!