
Recurrent Neural Networks
Deep Learning – Lecture 5

Efstratios Gavves



Sequential Data

So far, all tasks assumed stationary data

Neither all data, nor all tasks are stationary though



Sequential Data: Text

What 



Sequential Data: Text

What about 



Sequential Data: Text

What about inputs that appear in 

sequences, such as text? Could neural 

network handle such modalities?

a



Memory needed

What about inputs that appear in 

sequences, such as text? Could neural 

network handle such modalities?

a

Pr 𝑥 =ෑ

𝑖

Pr 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)



Sequential data: Video



Quiz: Other sequential data?



Quiz: Other sequential data?

Time series data

 Stock exchange

 Biological measurements

 Climate measurements

Market analysis

Speech/Music

User behavior in websites

...



Applications
Click to go to the video in Youtube Click to go to the website

https://www.youtube.com/watch?v=8BFzu9m52sc
https://www.youtube.com/watch?v=8BFzu9m52sc
http://cloudcv.org/vqa/
http://cloudcv.org/vqa/
https://www.youtube.com/watch?v=8BFzu9m52sc
http://cloudcv.org/vqa/
http://www.codeproject.com/KB/TipsnTricks/788739/tsneplot.jpg
http://www.codeproject.com/KB/TipsnTricks/788739/tsneplot.jpg


Machine Translation

The phrase in the source language is one sequence 

– “Today the weather is good”

The phrase in the target language is also a sequence

– “Погода сегодня хорошая”

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Today the weather is good <EOS> Погода сегодня хорошая

Погода сегодня <EOS>

Encoder Decoder

хорошая



Image captioning

An image is a thousand words, literally!

Pretty much the same as machine transation

Replace the encoder part with the output of a Convnet

– E.g. use Alexnet or a VGG16 network

Keep the decoder part to operate as a translator

LSTM LSTM LSTM LSTM LSTM LSTM

Today the weather is good

Today the weather is good <EOS>

Convnet



Demo

Click to go to the video in Youtube

https://www.youtube.com/watch?v=8BFzu9m52sc


Question answering

Bleeding-edge research, no real consensus
– Very interesting open, research problems

Again, pretty much like machine translation

Again, Encoder-Decoder paradigm
– Insert the question to the encoder part

– Model the answer at the decoder part

Question answering with images also
– Again, bleeding-edge research

– How/where to add the image?

– What has been working so far is to add the image 

only in the beginning
Q: what are the people playing?

A: They play beach football

Q: John entered the living room, 
where he met Mary. She was 
drinking some wine and watching 

a movie. What room did John enter?
A: John entered the living room.



Demo

Click to go to the website

http://cloudcv.org/vqa/


Handwriting

Click to go to the website

http://www.cs.toronto.edu/~graves/handwriting.html


Recurrent Networks

Recurrent
connections

NN Cell
State

Input

Output



Sequences

Next data depend on previous data

Roughly equivalent to predicting what comes next

Pr 𝑥 =ෑ

𝑖

Pr 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)

What about inputs that appear in 

sequences,suc

h 
as text?Could neural 

network handle such modalities?

a



Why sequences?

Parameters are reused  Fewer parameters  Easier modelling

Generalizes well to arbitrary lengths  Not constrained to specific 
length

However, often we pick a “frame” 𝑇 instead of an arbitrary length

Pr 𝑥 =ෑ

𝑖

Pr 𝑥𝑖 𝑥𝑖−𝑇 , … , 𝑥𝑖−1)

I think, therefore, I am!

Everything is repeated, in a circle. History is a master because it 

teaches us that it doesn't exist. It's the permutations that matter.

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙(

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙(

)

)

≡



Quiz: What is really a sequence?

Data inside a sequence are … ?

I am Bond , James

Bond

McGuire

tired

am

!

Bond



Quiz: What is really a sequence?

Data inside a sequence are non i.i.d.

– Identically, independently distributed

The next “word” depends on the previous “words”

– Ideally on all of them

We need context, and we need memory!

How to model context and memory ?

I am Bond , James

Bond

McGuire

tired

am

!

Bond

Bond



𝑥𝑖 ≡ One-hot vectors

A vector with all zeros except for the active dimension

12 words in a sequence  12 One-hot vectors

After the one-hot vectors apply an embedding

Word2Vec, GloVE

I

am

Bond

,

James

McGuire

tired

!

I

am

Bond

,

James

McGuire

tired

!

I

am

Bond

,

James

McGuire

tired

!

I

am

Bond

,

James

McGuire

tired

!

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0I

am

Bond

,

James

McGuire

tired

!

tired

Vocabulary

0 0 0 0

One-hot vectors



Quiz: Why not just indices?

I am James McGuire

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

I am James McGuire

One-hot representation Index representation

𝑥𝑡=1,2,3,4 =

OR?

𝑥"𝐼" = 1

𝑥"𝑎𝑚" = 2

𝑥"𝐽𝑎𝑚𝑒𝑠" = 4

𝑥"𝑀𝑐𝐺𝑢𝑖𝑟𝑒" = 7



Quiz: Why not just indices?

No, because then some words get closer together for no 

good reason (artificial bias between words)

I am James McGuire

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

I am James McGuire

One-hot representation Index representation

𝑥"𝐼"

OR?

𝑞"𝐼" = 1

𝑞"𝑎𝑚" = 2

𝑞"𝐽𝑎𝑚𝑒𝑠" = 4

𝑞"𝑀𝑐𝐺𝑢𝑖𝑟𝑒" = 7

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞"𝑎𝑚", 𝑞"𝑀𝑐𝐺𝑢𝑖𝑟𝑒") = 5

𝑥"𝑎𝑚"

𝑥"𝐽𝑎𝑚𝑒𝑠"

𝑥"𝑀𝑐𝐺𝑢𝑖𝑟𝑒"

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞"𝐼", 𝑞"𝑎𝑚") = 1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥"𝑎𝑚", 𝑥"𝑀𝑐𝐺𝑢𝑖𝑟𝑒") = 1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥"𝐼", 𝑥"𝑎𝑚") = 1



Memory

A representation of the past

A memory must project information at timestep 𝑡 on a 

latent space 𝑐𝑡 using parameters 𝜃

Then, re-use the projected information from 𝑡 at 𝑡 + 1
𝑐𝑡+1 = ℎ(𝑥𝑡+1, 𝑐𝑡; 𝜃)

Memory parameters 𝜃 are shared for all timesteps 𝑡 = 0,…
𝑐𝑡+1 = ℎ(𝑥𝑡+1, ℎ(𝑥𝑡 , ℎ(𝑥𝑡−1, … ℎ 𝑥1, 𝑐0; 𝜃 ; 𝜃); 𝜃); 𝜃)



Memory as a Graph

Simplest model

– Input with parameters 𝑈

– Memory embedding with parameters 𝑊

– Output with parameters 𝑉

𝑥𝑡

𝑦𝑡

𝑈

𝑉

𝑊

Output parameters

Input parameters

Memory

parameters

Input

Output

𝑐𝑡
Memory



Memory as a Graph

Simplest model

– Input with parameters 𝑈

– Memory embedding with parameters 𝑊

– Output with parameters 𝑉

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

𝑈

𝑉

𝑊

Output parameters

Input parameters Input

Output

𝑈

𝑉

𝑊
Memory

parameters
𝑐𝑡 𝑐𝑡+1

Memory



Memory as a Graph

Simplest model

– Input with parameters 𝑈

– Memory embedding with parameters 𝑊

– Output with parameters 𝑉

𝑥𝑡

𝑦𝑡

𝑥𝑡+1 𝑥𝑡+2 𝑥𝑡+3

𝑦𝑡+1 𝑦𝑡+2 𝑦𝑡+3

𝑈

𝑉

𝑊𝑐𝑡 𝑐𝑡+1 𝑐𝑡+2 𝑐𝑡+3

Output parameters

Input parameters 𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

Memory

Input

Output

𝑈

𝑉

𝑊
Memory

parameters



Folding the memory

𝑥𝑡

𝑦𝑡

𝑥𝑡+1 𝑥𝑡+2

𝑦𝑡+1 𝑦𝑡+2

𝑈

𝑉

𝑊

𝑈

𝑐𝑡 𝑐𝑡+1 𝑐𝑡+2

𝑈

𝑉

𝑊

𝑥𝑡

𝑦𝑡

𝑊
𝑉

𝑈

𝑐𝑡
(𝑐𝑡−1)

Unrolled/Unfolded Network Folded Network

𝑊



Recurrent Neural Network (RNN)

Only two equations

𝑥𝑡

𝑦𝑡

𝑊
𝑉

𝑈

𝑐𝑡

(𝑐𝑡−1)

𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

𝑦𝑡 = softmax(𝑉 𝑐𝑡)



RNN Example

Vocabulary of 5 words

A memory of 3 units

– Hyperparameter that we choose like layer size

– 𝑐𝑡: 3 × 1 ,W: [3 × 3]

An input projection of 3 dimensions

– U: [3 × 5]

An output projections of 10 dimensions

– V: [10 × 3]

𝑐𝑡 = tanh(𝑈 𝑥𝑡 +𝑊𝑐𝑡−1)

𝑦𝑡 = softmax(𝑉 𝑐𝑡)

𝑈 ⋅ 𝑥𝑡=4 =



Rolled Network vs. MLP?

What is really different?

– Steps instead of layers

– Step parameters shared in Recurrent Network

– In a Multi-Layer Network parameters are different

𝑦1 𝑦2 𝑦3

𝐿
𝑎
𝑦
𝑒𝑟

1

𝐿
𝑎
𝑦
𝑒𝑟

2

𝐿
𝑎
𝑦
𝑒𝑟

3

3-gram Unrolled Recurrent Network 3-layer Neural Network

Final output

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊1 𝑊2 𝑊3
𝑦

“Layer/Step” 1 “Layer/Step” 2 “Layer/Step” 3

𝑊
𝑥 𝑥



Rolled Network vs. MLP?

What is really different?

– Steps instead of layers

– Step parameters shared in Recurrent Network

– In a Multi-Layer Network parameters are different

𝑦1 𝑦2 𝑦3

𝐿
𝑎
𝑦
𝑒𝑟

1

𝐿
𝑎
𝑦
𝑒𝑟

2

𝐿
𝑎
𝑦
𝑒𝑟

3

3-gram Unrolled Recurrent Network 3-layer Neural Network

“Layer/Step” 1 “Layer/Step” 2 “Layer/Step” 3

Final output

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊1 𝑊2𝑊 𝑊3
𝑥 𝑥

𝑦



Rolled Network vs. MLP?

What is really different?

– Steps instead of layers

– Step parameters shared in Recurrent Network

– In a Multi-Layer Network parameters are different

• Sometimes intermediate outputs are not even needed
• Removing them, we almost end up to a standard 

Neural Network

𝑦1 𝑦2 𝑦3

𝐿
𝑎
𝑦
𝑒𝑟

1

𝐿
𝑎
𝑦
𝑒𝑟

2

𝐿
𝑎
𝑦
𝑒𝑟

3

3-gram Unrolled Recurrent Network 3-layer Neural Network

“Layer/Step” 1 “Layer/Step” 2 “Layer/Step” 3

Final output

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊1 𝑊2𝑊 𝑊3
𝑥 𝑥

𝑦



Rolled Network vs. MLP?

What is really different?

– Steps instead of layers

– Step parameters shared in Recurrent Network

– In a Multi-Layer Network parameters are different

𝑦

𝐿
𝑎
𝑦
𝑒𝑟

1

𝐿
𝑎
𝑦
𝑒𝑟

2

𝐿
𝑎
𝑦
𝑒𝑟

3

3-gram Unrolled Recurrent Network 3-layer Neural Network

“Layer/Step” 1 “Layer/Step” 2 “Layer/Step” 3 Final output

𝑈

𝑊

𝑈

𝑊

𝑈

𝑉

𝑊2𝑊 𝑊3
𝑥 𝑥

𝑦𝑊1



Training Recurrent Networks

Cross-entropy loss

𝑃 =ෑ

𝑡,𝑘

𝑦𝑡𝑘
𝑙𝑡𝑘 ⇒ ℒ = − log 𝑃 =෍

𝑡

ℒ𝑡 =−
1

𝑇
෍

𝑡

𝑙𝑡 log 𝑦𝑡

Backpropagation Through Time (BPTT)

– Again, chain rule

– Only difference: Gradients survive over time steps



Training RNNs is hard

Vanishing gradients

– After a few time steps the gradients become almost 0

Exploding gradients

– After a few time steps the gradients become huge

Can’t capture long-term dependencies



Alternative formulation for RNNs

An alternative formulation to derive conclusions and 

intuitions

𝑐𝑡 = 𝑊 ⋅ tanh(𝑐𝑡−1) + 𝑈 ⋅ 𝑥𝑡 + 𝑏

ℒ =෍

𝑡

ℒ𝑡(𝑐𝑡)



Another look at the gradients

ℒ = 𝐿(𝑐𝑇(𝑐𝑇−1 … 𝑐1 𝑥1, 𝑐0;𝑊 ;𝑊 ;𝑊 ;𝑊)

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕ℒ

𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

=
𝜕ℒ

𝜕ct
⋅
𝜕𝑐𝑡
𝜕ct−1

⋅
𝜕𝑐𝑡−1
𝜕ct−2

⋅ … ⋅
𝜕𝑐𝜏+1
𝜕cτ

≤ 𝜂𝑡−𝜏
𝜕ℒ𝑡
𝜕𝑐𝑡

The RNN gradient is a recursive product of 
𝜕𝑐𝑡

𝜕ct−1

𝑅𝑒𝑠𝑡 → short-term factors 𝑡 ≫ 𝜏 → long-term factors 



Exploding/Vanishing gradients

𝜕ℒ

𝜕𝑐𝑡
=

𝜕ℒ

𝜕cT
⋅
𝜕𝑐𝑇
𝜕cT−1

⋅
𝜕𝑐𝑇−1
𝜕cT−2

⋅ … ⋅
𝜕𝑐𝑡+1
𝜕c𝑐𝑡

𝜕ℒ

𝜕𝑐𝑡
=

𝜕ℒ

𝜕cT
⋅
𝜕𝑐𝑇
𝜕cT−1

⋅
𝜕𝑐𝑇−1
𝜕cT−2

⋅ … ⋅
𝜕𝑐1
𝜕c𝑐𝑡

< 1 < 1 < 1

𝜕ℒ

𝜕𝑊
≪ 1⟹ Vanishing 

gradient

> 1 > 1 > 1

𝜕ℒ

𝜕𝑊
≫ 1⟹ Exploding 

gradient



Vanishing gradients

The gradient of the error w.r.t. to intermediate cell

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑟
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕𝑐𝑡
𝜕𝑐𝜏

= ෑ

𝑡≥𝑘≥𝜏

𝜕𝑐𝑘
𝜕𝑐𝑘−1

= ෑ

𝑡≥𝑘≥𝜏

𝑊 ⋅ 𝜕 tanh(𝑐𝑘−1)



Vanishing gradients

The gradient of the error w.r.t. to intermediate cell

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑟
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕𝑐𝑡
𝜕𝑐𝜏

= ෑ

𝑡≥𝑘≥𝜏

𝜕𝑐𝑘
𝜕𝑐𝑘−1

= ෑ

𝑡≥𝑘≥𝜏

𝑊 ⋅ 𝜕 tanh(𝑐𝑘−1)

Long-term dependencies get exponentially smaller weights



Gradient clipping for exploding gradients

Scale the gradients to a threshold

1. g ←
𝜕ℒ

𝜕𝑊

2. if 𝑔 > 𝜃0:

g ←
𝜃0

𝑔
𝑔

else:

print(‘Do nothing’)

Simple, but works!

𝜃0

g

𝜃0
𝑔

𝑔

Pseudocode



Rescaling vanishing gradients?

Not good solution

Weights are shared between timesteps  Loss summed 

over timesteps

ℒ =෍

𝑡

ℒ𝑡 ⟹
𝜕ℒ

𝜕𝑊
=෍

𝑡

𝜕ℒ𝑡
𝜕𝑊

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

=෍

𝜏=1

𝑡
𝜕ℒ𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

Rescaling for one timestep (
𝜕ℒ𝑡

𝜕𝑊
) affects all timesteps

– The rescaling factor for one timestep does not work for another



More intuitively

𝜕ℒ1
𝜕𝑊

𝜕ℒ2
𝜕𝑊

𝜕ℒ3
𝜕𝑊

𝜕ℒ4
𝜕𝑊

𝜕ℒ5
𝜕𝑊

𝜕ℒ

𝜕𝑊
=

𝜕ℒ1

𝜕𝑊
+

𝜕ℒ2

𝜕𝑊
+
𝜕ℒ3

𝜕𝑊
+

𝜕ℒ4

𝜕𝑊
+

𝜕ℒ5

𝜕𝑊



𝜕ℒ1
𝜕𝑊

𝜕ℒ4
𝜕𝑊

𝜕ℒ2
𝜕𝑊 𝜕ℒ3

𝜕𝑊
𝜕ℒ5
𝜕𝑊

More intuitively

Let’s say 
𝜕ℒ1

𝜕𝑊
∝ 1,

𝜕ℒ2

𝜕𝑊
∝ 1/10,

𝜕ℒ3

𝜕𝑊
∝ 1/100, 

𝜕ℒ4

𝜕𝑊
∝ 1/1000,

𝜕ℒ5

𝜕𝑊
∝ 1/10000

𝜕ℒ

𝜕𝑊
=෍

𝑟

𝜕ℒ𝑟
𝜕𝑊

= 1.1111

If 
𝜕ℒ

𝜕𝑊
rescaled to 1 

𝜕ℒ5

𝜕𝑊
∝ 10−5

Longer-term dependencies negligible

– Weak recurrent modelling

– Learning focuses on the short-term only

𝜕ℒ

𝜕𝑊
=

𝜕ℒ1

𝜕𝑊
+

𝜕ℒ2

𝜕𝑊
+
𝜕ℒ3

𝜕𝑊
+

𝜕ℒ4

𝜕𝑊
+

𝜕ℒ5

𝜕𝑊



Recurrent networks ∝ Chaotic systems



Fixing vanishing gradients

Regularization on the recurrent weights

– Force the error signal not to vanish

Ω =෍

𝑡

Ωt =෍

𝑡

𝜕ℒ
𝜕𝑐𝑡+1

𝜕𝑐𝑡+1
𝜕𝑐𝑡

𝜕ℒ
𝜕𝑐𝑡+1

− 1

2

Advanced recurrent modules

Long-Short Term Memory module

Gated Recurrent Unit module

Pascanu et al., On the diffculty of training Recurrent Neural Networks, 2013



Advanced Recurrent Nets

+

𝜎𝜎𝜎

tanh

tanh

Input

Output

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



How to fix the vanishing gradients?

Error signal over time must have not too large, not too small 

norm

Let’s have a look at the loss function

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑟
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕𝑐𝑡
𝜕𝑐𝜏

= ෑ

𝑡≥𝑘≥𝜏

𝜕𝑐𝑘
𝜕𝑐𝑘−1



How to fix the vanishing gradients?

Error signal over time must have not too large, not too small 

norm

Let’s have a look at the loss function

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑟
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕𝑐𝑡
𝜕𝑐𝜏

= ෑ

𝑡≥𝑘≥𝜏

𝜕𝑐𝑘
𝜕𝑐𝑘−1



How to fix the vanishing gradients?

Error signal over time must have not too large, not too small 

norm

Solution: have an activation function with gradient equal to 1

𝜕ℒ𝑡
𝜕𝑊

=෍

𝜏=1

t
𝜕ℒ𝑟
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕𝑐𝑡

𝜕𝑐𝑡
𝜕𝑐𝜏

𝜕𝑐𝜏
𝜕𝑊

𝜕𝑐𝑡
𝜕𝑐𝜏

= ෑ

𝑡≥𝑘≥𝜏

𝜕𝑐𝑘
𝜕𝑐𝑘−1

– Identify function has a gradient equal to 1

By doing so, gradients do not become too small not too large



Long Short-Term Memory
LSTM: Beefed up RNN

𝑖 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

Input
Output

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡

More info at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑐𝑡 = 𝑊 ⋅ tanh(𝑐𝑡−1) + 𝑈 ⋅ 𝑥𝑡 + 𝑏

LSTM

Simple

RNN

- The previous state 𝑐𝑡−1 is connected to new 

𝑐𝑡 with no nonlinearity (identity function).

- The only other factor is the forget gate 𝑓
which rescales the previous LSTM state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Cell state

The cell state carries the essential information over time

𝑖 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

Cell state line

+

𝜎𝜎𝜎

tanh

tanh

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM nonlinearities

𝜎 ∈ (0, 1): control gate – something like a switch

tanh ∈ −1, 1 : recurrent nonlinearity

𝑖 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

Input

Output

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM Step-by-Step: Step (1)

E.g. LSTM on “Yesterday she slapped me. Today she loves me.”

Decide what to forget and what to remember for the new memory

– Sigmoid 1  Remember everything

– Sigmoid 0  Forget everything

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM Step-by-Step: Step (2)

Decide what new information is relevant from the new input 

and should be add to the new memory

– Modulate the input 𝑖𝑡
– Generate candidate memories ෥𝑐𝑡

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

+

𝜎𝜎𝜎

tanh

tanh

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM Step-by-Step: Step (3)
Compute and update the current cell state 𝑐𝑡

– Depends on the previous cell state

– What we decide to forget

– What inputs we allow

– The candidate memories

+

𝜎𝜎𝜎

tanh

tanh

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM Step-by-Step: Step (4)

Modulate the output

– Does the new cell state relevant?  Sigmoid 1

– If not  Sigmoid 0

Generate the new memory

+

𝜎𝜎𝜎

tanh

tanh

𝑖𝑡 = 𝜎 𝑥𝑡𝑈
(𝑖) +𝑚𝑡−1𝑊

(𝑖)

𝑓𝑡 = 𝜎 𝑥𝑡𝑈
(𝑓) +𝑚𝑡−1𝑊

(𝑓)

𝑜𝑡 = 𝜎 𝑥𝑡𝑈
(𝑜) +𝑚𝑡−1𝑊

(𝑜)

෥𝑐𝑡 = tanh(𝑥𝑡𝑈
𝑔 +𝑚𝑡−1𝑊

(𝑔))

𝑐𝑡 = 𝑐𝑡−1 ⊙𝑓 + ෥𝑐𝑡 ⊙ 𝑖

𝑚𝑡 = tanh 𝑐𝑡 ⊙𝑜

𝑓𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡𝑖𝑡

෥𝑐𝑡

𝑚𝑡𝑚𝑡−1

𝑥𝑡



LSTM Unrolled Network

Macroscopically very similar to standard RNNs

The engine is a bit different (more complicated)

– Because of their gates LSTMs capture long and short term 

dependencies

× +

𝜎𝜎𝜎

×

tanh

×

tanh

× +

𝜎𝜎𝜎

×

tanh

×

tanh

× +

𝜎𝜎𝜎

×

tanh

×

tanh



Beyond RNN & LSTM

LSTM with peephole connections

– Gates have access also to the previous cell states 𝑐𝑡−1 (not only 
memories)

– Coupled forget and input gates, 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 1 − 𝑓𝑡 ⊙ ෥𝑐𝑡
– Bi-directional recurrent networks

Gated Recurrent Units (GRU)

Deep recurrent architectures

Recursive neural networks

– Tree structured

Multiplicative interactions

Generative recurrent architectures

LSTM (2)

LSTM (1)

LSTM (2)

LSTM (1)

LSTM (2)

LSTM (1)



Take-away message

Recurrent Neural Networks (RNN) for sequences

Backpropagation Through Time

Vanishing and Exploding Gradients and Remedies

RNNs using Long Short-Term Memory (LSTM)

Applications of Recurrent Neural Networks



Thank you!


