
Unsupervised	learning,	representa1on	
and	genera1ve	models	

Deep	Learning	
23/11/17	

Giorgio	Patrini	
g.patrini@uva.nl	

	

Overview	

•  Introduc1on,	manifolds,	PCA	(Goodfellow’s	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objec1ve,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contrac1ve	auto-encoders	

	
•  Genera1ve	models	(parts	of	20)	
–  Varia1onal	auto-encoder	(20.9,	20.10.3)	
–  Genera1ve	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evalua1on	(20.10.7,	20.14)		

Supervised	vs.	unsupervised	learning	

•  Supervised	
– Data		
– Goals	
– Classifica1on	(discrete)	or	regression	(con1nuous)	

D = {X,T }
f(x) ⇡ t, p(t|x)

Supervised	vs.	unsupervised	learning	

•  Supervised	
– Data		
– Goals	
– Classifica1on	(discrete)	or	regression	(con1nuous)	

•  Unsupervised	
– Data	
– Goals		
– E.g.	density	es1ma1on,	dimensionality	reduc1on,	
clustering,	feature	learning,	genera1on	

D = {X,T }

D = {X}

f(x) ⇡ t, p(t|x)

p(x), p(h|x) or p(x|h)

High	dimensional	spaces	and		
the	manifold	hypothesis	

•  Manifold	hypothesis:	
natural	data	lives	in	a	low-
dimensional	non-linear	
manifold	

	
	
	
	
	

High	dimensional	spaces	and		
the	manifold	hypothesis	

•  Manifold	hypothesis:	
natural	data	lives	in	a	low-
dimensional	non-linear	
manifold	

•  Or	equivalently,	data	is	
concentrated	with	high	
probability	in	a	small	non-
linear	region	of	the	high-
dimensional	space	

•  See	Goodfellow’s	5.11.3	

	
	
	
	
	

High	dimensional	spaces	and		
the	manifold	hypothesis	

•  Take	the	spaces	of	all	possible	images	
of	size	256	x	256	x	3	pixels	(3	is	given	
by	RGB	encoding)	

•  An	image	sampled	uniformly	from	the	
pixel	space	looks	like	this	->	

	

	

High	dimensional	spaces	and		
the	manifold	hypothesis	

•  Take	the	spaces	of	all	possible	images	
of	size	256	x	256	x	3	pixels	(3	is	given	
by	RGB	encoding)	

•  An	image	sampled	uniformly	from	the	
pixel	space	looks	like	this	->	

	
•  To	hear	“random	noise”:	hbps://goo.gl/AZZ6z9	
•  Text:	random	lebers	or	random	words	
•  The	distribu1on	of	natural	high	dimensional	data	has	
support	over	an	unknown	low	dimensional	manifold		

	

Example:	images	of	faces	
Example:	all	face	images	of	one	person	
•  3	x	256	x	256	pixels	=	3	x	256^2	dimensions	=~	196K	

[LeCun&Ranzato’13]	

Example:	images	of	faces	
Example:	all	face	images	of	one	person	
•  3	x	256	x	256	pixels	=	3	x	256^2	dimensions	=~	196K	

But:	
•  Faces	have	3	Cartesian	coordinates	

(transla1ons)	and	3	Euler	angles	
(rota1ons)	and	humans	have	less	
than	about	50	muscles	in	the	face	

•  Hence	the	manifold	of	face	images	
for	a	person	has	<=	56	dimensions		

[LeCun&Ranzato’13]	

Example:	images	of	faces	
Example:	all	face	images	of	one	person	
•  3	x	256	x	256	pixels	=	3	x	256^2	dimensions	=~	196K	

But:	
•  Faces	have	3	Cartesian	coordinates	

(transla1ons)	and	3	Euler	angles	
(rota1ons)	and	humans	have	less	
than	about	50	muscles	in	the	face	

•  Hence	the	manifold	of	face	images	
for	a	person	has	<=	56	dimensions		

•  We	should	be	able	“to	navigate”	all	
the	data	distribu1on	with	56	non-
linear	coordinates,	but	we	don’t	
know	them…	 [LeCun&Ranzato’13]	

Example:	images	of	faces	

An	ideal	feature	extractor	
[LeCun&Ranzato’13]	

An	ideal	feature	extractor	

Problem:	we	have	to	discover	those	features,	“the	new	
coordinates”,	automa1cally.	
We	cannot	use	supervised	learning	to	regress	them…	
Unsupervised	learning	

[LeCun&Ranzato’13]	

PCA	for	manifold	learning	

•  (You	should	remember	that)	PCA	defines	a	(linear)	
projec1on										onto	a	low	M-dimensional	space	that	
preserves	most	of	the	variance	of	the	original	data.	

f(x)

PCA	for	manifold	learning	

•  (You	should	remember	that)	PCA	defines	a	(linear)	
projec1on										onto	a	low	M-dimensional	space	that	
preserves	most	of	the	variance	of	the	original	data.	

•  In	par1cular,	PCA	can	be	obtained	as	pair	of	
encoder/decoder	func1ons	minimizing	the	
reconstruc1on	error:	

	where	encoder	and	decoder	are	respec1vely				

f(x) = W>(x� µ), g(x) = V f(x) + b

E
x⇠p(x)[kx� g(f(x))k22]

f(x)

PCA	for	manifold	learning	
•  At	op1mum,	it	holds	that			
–  	 	
–  	the	columns	of								form	an	orthonormal	basis	
spanning	the	subspace	of	the	top	M	eigenvectors	
of	the	covariance	matrix		

–  	the	reconstruc1on	error	is	the	sum	of	eigenvalues	
of	the	D	-	M	discarded	components	

W

V = W,µ = b = E
x

[x]

E
x

[(x� µ)(x� µ)>]

PCA	for	manifold	learning	
•  At	op1mum,	it	holds	that			
–  	 	
–  	the	columns	of								form	an	orthonormal	basis	
spanning	the	subspace	of	the	top	M	eigenvectors	
of	the	covariance	matrix		

–  	the	reconstruc1on	error	is	the	sum	of	eigenvalues	
of	the	D	-	M	discarded	components	

•  PCA	can	be	seen	as	a	manifold	learning	algorithm,	
which	encoder				projects					onto	a	M-dimensional	
linear	subspace	that	preserves	most	of	the	variance	
of	the	data.	

W

V = W,µ = b = E
x

[x]

E
x

[(x� µ)(x� µ)>]

f x

PCA	on	a	spiral	manifold	

PCA	on	a	spiral	manifold	

Overview	

•  Introduc1on,	manifolds,	PCA	(Goodfellow	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objec1ve,	undercomplete	/	regularized	auto-encoders	

–  Denoising	auto-encoders,	contrac1ve	auto-encoders	
	
•  Genera1ve	models	(parts	of	20)	
–  Varia1onal	auto-encoder	(20.9,	20.10.3)	
–  Genera1ve	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evalua1on	(20.10.7,	20.14)		

Auto-encoders	
•  Non-linear	generaliza1on	of	PCA	
•  Encoder/decoder																					and																					where						
is	the	low-dimensional	representa1on	of						and						is	
its	reconstruc1on		

•  				names:	features,	representa4on,		
				code,	embedding,	latent	variables	
•  Encoder	and	decoder	are	both		
				neural	nets	
	

h = f(x) r = g(h)
x

h
r

h

Auto-encoder	objec1ve	

•  Minimize	a	loss	func1on	(=dissimilarity)	between	
input	and	reconstruc1on:	

1

N

NX

n=1

L(xn, rn) =
1

N

NX

n=1

L(xn, g(f(xn)))

Auto-encoder	objec1ve	

•  Minimize	a	loss	func1on	(=dissimilarity)	between	
input	and	reconstruc1on:	

•  The	loss	func1on	is	oqen	the	squared	Euclidean	
norm:	

•  Use	cross-entropy	when	input	is	binary	

1

N

NX

n=1

L(xn, rn) =
1

N

NX

n=1

L(xn, g(f(xn)))

kxn � rnk22

Auto-encoder	objec1ve	

•  Minimize	a	loss	func1on	(=dissimilarity)	between	
input	and	reconstruc1on:	

•  The	loss	func1on	is	oqen	the	squared	Euclidean	
norm		

•  Use	cross-entropy	when	input	is	binary	
•  Find	the	parameters	of	encoder	and	decoder	by	
back-propaga1on	/	SGD.	

1

N

NX

n=1

L(xn, rn) =
1

N

NX

n=1

L(xn, g(f(xn)))

kxn � rnk22

Auto-encoder	architecture	

[hbps://goo.gl/9kCxqz	Chollet]	

Auto-encoder	architecture	

•  Example:	one	layer	encoder/one	layer	decoder:	
	
•  If	input/output	are	binary,					is	a	sigmoid.	If	they	are	
real	valued,	use	a	linear	ac1va1on.	

[hbps://goo.gl/9kCxqz	Chollet]	

f(x) = ReLU(Wx+ b), g(x) = �(V f(x) + c)

�

Auto-encoder	architecture	

•  Example:	one	layer	encoder/one	layer	decoder:	
	
•  If	input/output	are	binary,					is	a	sigmoid.	If	they	are	
real	valued,	use	a	linear	ac1va1on.	

•  Some1mes,	weights	are	1ed:		W> = V

[hbps://goo.gl/9kCxqz	Chollet]	

f(x) = ReLU(Wx+ b), g(x) = �(V f(x) + c)

�

Jus1fying	the	auto-encoder	objec1ve	

•  Goal	of	auto-encoder:	learn	a	good	representa1on*																										
	 		 		(encoder)	of	the	manifold		

	

	
	
	
	
*What	is	a	“good”	representa4on	in	general?	Ques4on	is	very	broad…	Read	Chapter	
15	if	interested	

p(h|x)

Jus1fying	the	auto-encoder	objec1ve	

•  Goal	of	auto-encoder:	learn	a	good	representa1on*																										
	 		 		(encoder)	of	the	manifold		

•  The	viewpoint	of	auto-encoders:	a	representa1on	is	
good	if	it	preserves	most	of	the	informa1on	of	the	
input.	The	mutual	informa1on	of	input	and	code:	

	
	
	
*What	is	a	“good”	representa4on	in	general?	Ques4on	is	very	broad…	Read	Chapter	
15	if	interested	

	

p(h|x)

I(x;h) =

Z
p(x,h) log

p(x,h)

p(x)p(h)

•  Find	encoder	with	parameter					to	maximize	informa1on	

	

Auto-encoders	maximize	the		
mutual	informa1on	

Full	proof	in	[Vincent	et	al’10]	

✓

argmax

✓

I(x;h) = argmax

✓

H(x)�H(x|h)

= argmax

✓

�H(x|h)

= argmax

✓

Ep(x,h) log p(x|h)

•  Find	encoder	with	parameter					to	maximize	informa1on	

•  Approximate														with	a	parametric	decoder	and	use	a	
determinis1c	encoder.	The	log-likelihood	is:	

	

Auto-encoders	maximize	the		
mutual	informa1on	

Full	proof	in	[Vincent	et	al’10]	

p(x|h)

✓

argmax

✓

I(x;h) = argmax

✓

H(x)�H(x|h)

= argmax

✓

�H(x|h)

= argmax

✓

Ep(x,h) log p(x|h)

argmax

✓,✓0
Ep(x) log pdecoder(x|h = f

✓

(x);✓

0
)

Gaussian	<->	squared	Euclidean	norm	

•  Assume	that	the	likelihood	has	Gaussian	density:	
	 p

decoder

(x|h = f✓(x);✓
0) = N(g✓0(f✓(x)),�

2I)

Gaussian	<->	squared	Euclidean	norm	

•  Assume	that	the	likelihood	has	Gaussian	density:	
	
•  Then		

p
decoder

(x|h = f✓(x);✓
0) = N(g✓0(f✓(x)),�

2I)

Ep(x) log pdecoder(x|h;✓0
)

= Const� 1

2�2

Ep(x)kx� g
✓

0
(f

✓

(x))k2
2

Gaussian	<->	squared	Euclidean	norm	

•  Assume	that	the	likelihood	has	Gaussian	density:	
	
•  Then		

•  Therefore,	connec1ng	the	mutual	informa1on,	

p
decoder

(x|h = f✓(x);✓
0) = N(g✓0(f✓(x)),�

2I)

max

✓

I(x;h) ⇡ min

✓,✓0
Ep(x)kx� g

✓

0
(f

✓

(x))k22

Ep(x) log pdecoder(x|h;✓0
)

= Const� 1

2�2

Ep(x)kx� g
✓

0
(f

✓

(x))k2
2

Max	informa1on	is	not	enough	

•  Ques1on:	what	if	encoder	and	decoder	are	func1ons	
so	flexible	that	can	learn	an	iden1ty	map?		

	

Max	informa1on	is	not	enough	

•  Ques1on:	what	if	encoder	and	decoder	are	func1ons	
so	flexible	that	can	learn	an	iden1ty	map?		

•  Keep	in	mind:	our	goal	is	to	learn	an	encoder	such	
that	we	get	a	useful	representa1on	of	the	input	

•  We	need	addi1onal	constraints	!	

	

Max	informa1on	is	not	enough	

•  Ques1on:	what	if	encoder	and	decoder	are	func1ons	
so	flexible	that	can	learn	an	iden1ty	map?		

•  Keep	in	mind:	our	goal	is	to	learn	an	encoder	such	
that	we	get	a	useful	representa1on	of	the	input	

•  We	need	addi1onal	constraints	!	
•  Undercomplete	auto-encoder:	the	code	dimension	
is	less	than	the	input	dimension	

	

Max	informa1on	is	not	enough	

•  Ques1on:	what	if	encoder	and	decoder	are	func1ons	
so	flexible	that	can	learn	an	iden1ty	map?		

•  Keep	in	mind:	our	goal	is	to	learn	an	encoder	such	
that	we	get	a	useful	representa1on	of	the	input	

•  We	need	addi1onal	constraints	!	
•  Undercomplete	auto-encoder:	the	code	dimension	
is	less	than	the	input	dimension	

•  PCA	is	an	undercomplete	auto-encoder	with	square	
Euclidean	distance	as	loss	and									linear	func1ons	

	

f, g

Learned	filters:		
over	vs.	undercomplete	

[Vincent	et	al.’10]	

Example:	deep	auto-encoder	in	Keras	

•  3-layer	encoder	and	3-layer	decoder,	under	complete.	
•  The	output	is	sigmoid	because	we	want	to	get	black&	white	

images	(on	MNIST).	Other	ac1va1ons	are	ReLU.	
•  Dense	(=fully	connected)	layers.	But	they	can	be	CNN.	

[hbps://goo.gl/9kCxqz	Chollet]	

Example:	deep	auto-encoder	in	Keras	

•  3-layer	encoder	and	3-layer	decoder,	under	complete.	
•  The	output	is	sigmoid	because	we	want	to	get	black&	white	

images	(on	MNIST).	Other	ac1va1ons	are	ReLU.	
•  Dense	(=fully	connected)	layers.	But	they	can	be	CNN.	

[hbps://goo.gl/9kCxqz	Chollet]	

Regularized	auto-encoders	
•  Alterna1ve	to	undercomplete:	use	a	regularizer						to	

constraint	the	objec1ve	
	
	

1

N

NX

n=1

L(xn, g(f(xn))) + ⌦(h)

⌦

Regularized	auto-encoders	
•  Alterna1ve	to	undercomplete:	use	a	regularizer						to	

constraint	the	objec1ve	
	
	
•  In	supervised	learning	regularizers	reduce	the	capacity	of	

the	model	to	overfit	the	training	set	
•  In	unsupervised	learning	we	need	them	to	be	invariant	

to	nuisance	factors	(=irrelevant	noise)	in	the	data…	it	is	
actually	the	same	thing!	

1

N

NX

n=1

L(xn, g(f(xn))) + ⌦(h)

⌦

Regularized	auto-encoders	
•  Alterna1ve	to	undercomplete:	use	a	regularizer						to	

constraint	the	objec1ve	
	
	
•  In	supervised	learning	regularizers	reduce	the	capacity	of	

the	model	to	overfit	the	training	set	
•  In	unsupervised	learning	we	need	them	to	be	invariant	

to	nuisance	factors	(=irrelevant	noise)	in	the	data…	it	is	
actually	the	same	thing!	

•  Interpreta1on:	those	are	boHlenecks	that	allows	us	to	
compress	the	data	into	a	useful	representa1on,	robust	to	
irrelevant	varia1ons	of	the	training	data	

1

N

NX

n=1

L(xn, g(f(xn))) + ⌦(h)

⌦

Sparse	auto-encoder	

•  Sparsity-inducing	regularizer:	

•  Analogue	to	use	the	L1-norm	in	supervised	learning.	
Effect:	pushes	many	components	to	exact	0	

•  Probabilis1c	interpreta1on:	train	the	auto-encoder	
with	maximum	likelihood	with	a	Laplace	prior	on	the	
code					(the	latent	variable):	

1

N

NX

n=1

L(xn, g(f(xn))) + �khk1

h

p(h) =
�

2
e��khk1

Filters	of	a	sparse	auto-encoder	

[Makhazani&Frey’14]	
On	MNIST	

Filters	of	a	sparse	auto-encoder	

[Makhazani&Frey’14]	

On	CIFAR10	
On	MNIST	

m
or
e	
sp
ar
sit
y	

Applica1on:	dimensionality	reduc1on	

•  Fix	the	representa1on	size	to	M.	Then	we	can	reduce	
the	dimensionality	of	the	data	to	M.	

•  Advantages:	
–  Less	memory	
–  Less	1me	consump1on	for	any	following	algorithm	(e.g.	
supervised	learning)	

Applica1on:	dimensionality	reduc1on	

•  Fix	the	representa1on	size	to	M.	Then	we	can	reduce	
the	dimensionality	of	the	data	to	M.	

•  Advantages:	
–  Less	memory	
–  Less	1me	consump1on	for	any	following	algorithm	(e.g.	
supervised	learning)	

•  With	respect	to	PCA:	
–  Pro:	more	meaningful	representa1on,	less	informa1on	
discarded	

–  Cons:	harder	and	slower	to	train	

Applica1on:	visualiza1on	
•  Dimensionality	reduc1on	onto	2D	or	3D	for	visualiza1on	

[Hinton&Salakhutdinov’06]	

Overview	

•  Introduc1on,	manifolds,	PCA	(Goodfellow	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objec1ve,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contrac1ve	auto-encoders	

	
•  Genera1ve	models	(parts	of	20)	
–  Varia1onal	auto-encoder	(20.9,	20.10.3)	
–  Genera1ve	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evalua1on	(20.10.7,	20.14)		

Denoising	auto-encoder	

•  Introduce	a	bobleneck	by	injec1ng	noise	in	the	input	

•  Noise	could	be	addi1ve	Gaussian	or	Dropout	(=part	
of	the	input	is	set	to	0	uniformly	at	random)	

1

N

NX

n=1

L(xn, g(f(x̃n)))

Denoising	auto-encoder	

•  Introduce	a	bobleneck	by	injec1ng	noise	in	the	input	

•  Noise	could	be	addi1ve	Gaussian	or	Dropout	(=part	
of	the	input	is	set	to	0	uniformly	at	random)	

•  Auto-encoder	learns	a	denoising	map	to	reconstruct	
the	original	input		

•  Auto-encoder	can	be	overcomplete.	In	fact,	this	is	an	
implicit	regularizer	

1

N

NX

n=1

L(xn, g(f(x̃n)))

Denoising	auto-encoder	

Denoising	auto-encoder	

•  More	noise	=>	network	is	forced	to	learn	more	
robust	representa1on;	feature	resembles	strokes	
and	bubbles	more	oqen	

Denoising	auto-encoder	revisited	

•  Introduce	the	noisy	transi1on	as	
a	stochas1c	opera1on	in	the	
computa1onal	graph	

1.  Sample					from	the	data	
2.  Sample	a	corrupted	version						

by				
3.  Train	the	auto-encoder	to	

reconstruct			

	

C(x̃|x)
x̃

x

x

Denoising	auto-encoder	revisited	

•  Introduce	the	noisy	transi1on	as	
a	stochas1c	opera1on	in	the	
computa1onal	graph	

1.  Sample					from	the	data	
2.  Sample	a	corrupted	version						

by				
3.  Train	the	auto-encoder	to	

reconstruct			

	

C(x̃|x)
x̃

x

x

•  The	loss	func1on	as	nega1ve	log	likelihood	is:	
�E

x⇠p(x)E˜

x⇠C(

˜

x|x) log pdecoder(x|h = f(x̃))

Denoising	auto-encoders	learn	to	map	
onto	the	manifold	

Applica1on	of	denoising	auto-encoder:	
image	denoising	

[hbps://goo.gl/9kCxqz	Chollet]	•  Apply	the	whole	auto-encoder	to	
real	images	that	are	affected	by	
noise	=>	output	denoised	images.	

•  To	work	well,	the	real	noise	has	to	
be	similar	to	Gaussian	though	

Manifolds	and	tangent	planes	

•  At	each	point					of	a	d-dimensional	manifold,	a	
tangent	plane	is	given	by	d	basis	vectors	spanning	
the	local	direc1ons	of	varia1on	of	the	manifold	

x

Tangent	plane	in	pixel	space	
Grey	pixel:	no	varia1on	
Black/white:	large	varia1on	

Auto-encoders	and	manifolds	

•  Do	auto-encoders	learn	the	manifold	structure?	

•  Training	combines	two	forces:	
– Reconstruc1on:	represent						by																				such	
that					can	be	decoded	through			

– Limited	capacity:	the	encoder																				cannot	
represent	any	possible	func1on	

•  Neither	would	be	enough	alone	

h = f(x)
x

x

g(h)

h = f(x)

Auto-encoders	and	manifolds	

•  Compromise:	
– The	auto-encoder	can	only	afford	to	model	the	
varia1ons	needed	to	reconstruct	the	training	data	

•  If	the	data	concentrates	near	a	manifold,	only	the	
varia%ons	tangent	to	the	manifold	around					need	to	
correspond	to	changes	in		

•  Auto-encoders	learn	a	representa1on	that	captures	a	
local	coordinate	system	of	the	manifold	

	

h = f(x)
x

Contrac1ve	auto-encoder	

More	explicit	model	of	the	manifold	in	the	objec1ve:	

where	the	regularizer	is		

It	penalizes	the	squared	Frobenius	norm	of	the	
Jacobian	of	the	encoder	
=>	it	forces	the	encoder	to	learn	a	representa1on	that	
doesn’t	change	much	around	the	training	examples	

1

N

NX

n=1

L(xn, g(f(xn))) + ⌦(h,x)

⌦(h,x) = �

����
@f(x)

@x

����
2

F

Contrac1ve	auto-encoder	

•  The	compromise	here:	
–  Contrac1ve:	resist	to	local	perturba1ons	of	the	input	by	
squashing	their	representa1on	through	the	encoder.	

–  But	at	the	same	1me	minimize	the	reconstruc1on	error	
=>	Therefore:	only	the	irrelevant	direc1ons	of	varia1on	of	
the	input	will	be	contracted	by	the	encoder	
	

•  Jacobian	is	expensive,	but	we	can	compute	it	by	
auto-diff	tools	as	usual.	A	finite	difference	
approxima1on	works	too.	

Contrac1ve	auto-encoder	

Does	it	work?	
Check	the	tangent	planes	

•  Given	an	image				,	compute	the	Jacobian	at					.	
•  Obtain	its	eigenvectors	at						by	SVD	decomposi1on.	
Those	are	the	tangent	planes	(they	are	in	pixel	
space):	

x

x

x

Denoising	vs.	contrac1ve		
auto-encoders	

Both	perform	well	but		
•  Denoising:	simpler	to	implement	
–  Few	lines	of	code	more	than	standard	auto-encoder	
–  No	need	to	compute	Jacobian	

•  Contrac1ve:	gradient	is	determinis1c	
– More	stable,	easier	to	monitor	convergence	

•  They	penalise	different	things:	
–  Denoising:	reconstruc1on	(g	+	f)	robust	to	noise	
–  Contrac1ve:	representa1on	(f)	robust	to	noise	

Applica1on:		
unsupervised	feature	learning	

1.	Train	auto-encoder	on	
unlabeled	data	
2.	Add	classifica1on	layer				
to	the	encoder	
3.	Fine-tune	all	with	
supervised	learning	

en
co
de

r	

Applica1on:		
unsupervised	feature	learning	

1.	Train	auto-encoder	on	
unlabeled	data	
2.	Add	classifica1on	layer				
to	the	encoder	
3.	Fine-tune	all	with	
supervised	learning	
	
We	learn	the	features	up				
to	the	second	last	layer	
	
See	transfer	learning	

en
co
de

r	

Applica1on:	seman1c	hashing	

•  Typical	task	of	informa1on	retrieval:	given	a	
database	of	images	and	a	image	query,	return	the	
most	similar	image	in	the	database.	Image	search.	

	

query:	return	the	
most	similar	image	

database	
embedding	

Material	and	contact	
Lectures	material	based	on		
•  Goodfellow’s	Deep	Learning	book		
•  Efstra1os	Gavves’s	slides	from	last	year	
•  Larochelle	deep	learning	course	hbps://goo.gl/bvNPDt	
•  Auto-encoders	tutorial	in	Keras	hbps://goo.gl/9kCxqz	
•  Durk	Kingma	PhD	thesis	(recommended)	

hbps://www.dropbox.com/s/v6ua3d9yt44vgb3/
cover_and_thesis.pdf?dl=1	

•  Goodfellow	tutorial	on	GAN,	NIPS	2016	(recommended)	
	
For	ques1ons	&	Master	thesis	projects:	g.patrini@uva.nl	
	
	

Other	references	(autoencoders)	
•  Hinton	&	Salakhutdinov,	Seman1c	Hashing	2006	
•  Vincent	et	al.,	Stacked	Denoising	Autoencoders:	Learning	Useful	Representa1ons	

in	a	Deep	Network	with	a	Local	Denoising	Criterion,	JMLR	2010	
•  Rifai	et	al.,	Contrac1ve	Auto-Encoders:	Explicit	Invariance	During	Feature	

Extrac1on,	ICML	11	
•  LeCun	&	Ranzato,	Deep	learning	tutorial,	ICML	13	hbps://goo.gl/37GbPS	
•  Makhezani	&	Frey,	k-sparse	autoencoders,	ICLR14	

