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Unsupervised learning, representation
and generative models



Overview

* Introduction, manifolds, PCA (Goodfellow’s 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)
— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)



Supervised vs. unsupervised learning

e Supervised
—Data D ={X,T}
— Goals f(x) ~ t, p(t|x)
— Classification (discrete) or regression (continuous)



Supervised vs. unsupervised learning

e Supervised
—Data D ={X,T}
— Goals f(x) ~ t, p(t|x)
— Classification (discrete) or regression (continuous)

* Unsupervised
—Data D ={X}
— Goals p(x),p(h|x) or p(x|h)
— E.g. density estimation, dimensionality reduction,
clustering, feature learning, generation



High dimensional spaces and
the manifold hypothesis

 Manifold hypothesis:
natural data lives in a low-
dimensional non-linear
manifold

(c) Twinpeaks dataset. (d) Broken Swiss roll dataset.



High dimensional spaces and
the manifold hypothesis

Manifold hypothesis:
natural data lives in a low-
dimensional non-linear
manifold

Or equivalently, data is
concentrated with high
probability in a small non-
linear region of the high-
dimensional space

See Goodfellow’s 5.11.3

(c) Twinpeaks dataset. (d) Broken Swiss roll dataset.



High dimensional spaces and
the manifold hypothesis

* Take the spaces of all possible images
of size 256 x 256 x 3 pixels (3 is given
by RGB encoding)

* Animage sampled uniformly from the
pixel space looks like this ->




High dimensional spaces and
the manifold hypothesis

Take the spaces of all possible images
of size 256 x 256 x 3 pixels (3 is given
by RGB encoding)

An image sampled uniformly from the
pixel space looks like this ->

To hear “random noise”: https://go00.gl/AZZ629

Text: random letters or random words

The distribution of natural high dimensional data has
support over an unknown low dimensional manifold



Example: images of faces

Example: all face images of one person
e 3x256x 256 pixels =3 x 256”2 dimensions =~ 196K
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Example: images of faces

Example: all face images of one person
e 3x256x 256 pixels =3 x 256”2 dimensions =~ 196K

But:
e Faces have 3 Cartesian coordinates 3 - - 5
(translations) and 3 Euler angles > I‘ » / ’ /, > /

(rotations) and humans have less
than about 50 muscles in the face

 Hence the manifold of face images @ @
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Example: images of faces

Example: all face images of one person
e 3x256x 256 pixels =3 x 256”2 dimensions =~ 196K

But:

* Faces have 3 Cartesian coordinates
(translations) and 3 Euler angles @ {1 @ @
(rotations) and humans have less _ /‘ ;A
than about 50 muscles in the face : 4 - -

* Hence the manifold of face images =} /' @ @ ‘ /
for a person has <= 56 dimensions | ] ‘

 We should be able “to navigate” all {a @ (‘ O
the data distribution with 56 non-

linear coordinates, but we don’t
know them. .. [LeCun&Ranzato’13]




Example: images of faces
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Figure 5.13: Training examples from the QMUL Multiview Face Dataset (Gong et al., 2000)

for which the subjects were asked to move in such a way as to cover the two-dimensional

manifold corresponding to two angles of rotation. We would like learning algorithms to

be able to discover and disentangle such manifold coordinates. Fig. 20.6 illustrates such a
feat.




An ideal feature extractor

[LeCun&Ranzato’13]
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An ideal feature extractor

[LeCun&Ranzato’13]

‘Pixel n

Ideal
-p-| Feature = B
Extractor

Pixel 2

Expression
Pixel 1

Problem: we have to discover those features, “the new
coordinates”, automatically.

We cannot use supervised learning to regress them...
Unsupervised learning



PCA for manifold learning

* (You should remember that) PCA defines a (linear)
projection f(a) onto a low M-dimensional space that
preserves most of the variance of the original data.



PCA for manifold learning

* (You should remember that) PCA defines a (linear)
projection f(a) onto a low M-dimensional space that
preserves most of the variance of the original data.

* |n particular, PCA can be obtained as pair of

encoder/decoder functions minimizing the
reconstruction error:

where encoder and decoder are respectively
fl@)=W"(x—p), glx)=Vf(x)+b



PCA for manifold learning

e At optimum, it holds that
— V=W, u=0b=E,|x]
— the columns of W form an orthonormal basis

spanning the subspace of the top M eigenvectors
of the covariance matrix E,[(x — p)(x — p)']

— the reconstruction error is the sum of eigenvalues
of the D - M discarded components



PCA for manifold learning

e At optimum, it holds that
— V=W, u=0b=E,|x]
— the columns of W form an orthonormal basis

spanning the subspace of the top M eigenvectors
of the covariance matrix E,[(x — p)(x — p)']

— the reconstruction error is the sum of eigenvalues
of the D - M discarded components

 PCA can be seen as a manifold learning algorithm,
which encoder f projects x onto a M-dimensional
linear subspace that preserves most of the variance
of the data.



PCA on a spiral manifold
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PCA on a spiral manifold
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Overview

* Introduction, manifolds, PCA (Goodfellow 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders

— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)

— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)



Auto-encoders

Non-linear generalization of PCA

Encoder/decoder h = f(x) and » = g(h) where h
is the low-dimensional representation of © and 7 s

Its reconstruction

h names: features, representation,

code, embedding, latent variables

Encoder and decoder are both ! g

neural nets



Auto-encoder objective

 Minimize a loss function (=dissimilarity) between
input and reconstruction:

%z:: (2,7, = %ZlL(a:n,g(f(wn)))
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input and reconstruction:
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The loss function is often the squared Euclidean
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Use cross-entropy when input is binary



Auto-encoder objective

 Minimize a loss function (=dissimilarity) between
input and reconstruction:

N

%z:: (2,7, = ;VZL(a:mg(f(wn)))

n=1

* The loss function is often the squared Euclidean
2
norm |x, — 7,|5

e Use cross-entropy when input is binary

* Find the parameters of encoder and decoder by
back-propagation / SGD.



Auto-encoder architecture

-

Original
input

Encoder
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Compressed

Decoder —>

Reconstructed

input

representation [https://g00.21/9kCxgz Chollet]




Auto-encoder architecture

—> Encoder

Original
input
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Compressed

representation
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Reconstructed

input

[https://go0.gl/9kCxqgz Chollet]

 Example: one layer encoder/one layer decoder:
f(x) =ReLUWx +b), g(x) =0c(V f(x)+ c)

 |f input/output are binary, o is a sigmoid. If they are
real valued, use a linear activation.



Auto-encoder architecture

—> Encoder

Original
input

-

Compressed

representation

Decoder

al

Reconstructed

input

[https://go0.gl/9kCxqgz Chollet]

 Example: one layer encoder/one layer decoder:
f(x) =ReLUWx +b), g(x) =0c(V f(x)+ c)

 |f input/output are binary, o is a sigmoid. If they are
real valued, use a linear activation.

 Sometimes, weights are tied: W' =V



Justifying the auto-encoder objective

e Goal of auto-encoder: learn a good representation™
p(h|x) (encoder) of the manifold

*What is a “good” representation in general? Question is very broad... Read Chapter
15 if interested



Justifying the auto-encoder objective

e Goal of auto-encoder: learn a good representation™
p(h|x) (encoder) of the manifold

 The viewpoint of auto-encoders: a representation is
good if it preserves most of the information of the
input. The mutual information of input and code:

I(w; h) = / pla,h)log 2

*What is a “good” representation in general? Question is very broad... Read Chapter
15 if interested



Auto-encoders maximize the
mutual information

* Find encoder with parameter @ to maximize information

argmax I (x; h) = argmax H(x) — H(x|h)
0 0

= argmax —H (x|h)
0

= argmax K, » p) log p(z|h)
0

Full proof in [Vincent et al’10]



Auto-encoders maximize the
mutual information

* Find encoder with parameter @ to maximize information

argmax I (x; h) = argmax H(x) — H(x|h)
0 0

= argmax —H (x|h)
0

= argmax K, » p) log p(z|h)
0

* Approximate p(x|h) with a parametric decoder and use a
deterministic encoder. The log-likelihood is:

ar%Ig/aX Ep(a:) lOg pdecoder(w’h — f9 (w)a 0/)

Full proof in [Vincent et al’10]



Gaussian <-> squared Euclidean norm

* Assume that the likelihood has Gaussian density:
pdecoder(w’h — f@(m); 6/) — N(ge’(fe(m))7 021)



Gaussian <-> squared Euclidean norm

* Assume that the likelihood has Gaussian density:

pdecoder(w’h — f@(m); 6/) — N(ge’(fe(m))v 021)
* Then

IE’p(a}) log Pdecoder (m ‘ h'; 0/)
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Gaussian <-> squared Euclidean norm

* Assume that the likelihood has Gaussian density:

pdecoder(w’h — f@(m); 6/) — N(ge’(fe(m))v 021)
* Then

IE’p(a}) log Pdecoder (m ‘ h'; 0/)

|
= Const — o Eyo) | — gor (fo(@))|3

* Therefore, connecting the mutual information,

max I(z; ) ~ win By | — gor(fo ()



Max information is not enough

e Question: what if encoder and decoder are functions
so flexible that can learn an identity map?
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so flexible that can learn an identity map?

Keep in mind: our goal is to learn an encoder such
that we get a useful representation of the input

We need additional constraints !
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Keep in mind: our goal is to learn an encoder such
that we get a useful representation of the input

We need additional constraints !

Undercomplete auto-encoder: the code dimension
is less than the input dimension



Max information is not enough

Question: what if encoder and decoder are functions
so flexible that can learn an identity map?

Keep in mind: our goal is to learn an encoder such
that we get a useful representation of the input

We need additional constraints !

Undercomplete auto-encoder: the code dimension
is less than the input dimension

PCA is an undercomplete auto-encoder with square
Euclidean distance as loss and f, g linear functions



Figure 5:

Learned filters:
over vs. undercomplete

[Vincent et al.”10]
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Regular autoencoder trained on natural image patches. Left: some of the 12 x 12 image
patches used for training. Middle: filters learnt by a regular under-complete autoencoder
(50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a
regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtained in the over-
complete case have no recognizable structure, looking entirely random.



Example: deep auto-encoder in Keras

input img Input (shape=(784,))

encoded Dense (128, activation='relu') (input img)
encoded Dense (64, activation='relu') (encoded)
encoded Dense(32, activation='relu') (encoded)

decoded Dense (64, activation='relu') (encoded)
decoded Dense(128, activation='relu') (decoded)
decoded Dense(784, activation='sigmoid') (decoded)

[https://go0.gl/9kCxqz Chollet]

3-layer encoder and 3-layer decoder, under complete.

The output is sigmoid because we want to get black& white
images (on MNIST). Other activations are RelLU.

Dense (=fully connected) layers. But they can be CNN.



Example: deep auto-encoder in Keras

input img Input (shape=(784,))

encoded Dense (128, activation='relu') (input img)
encoded Dense (64, activation='relu') (encoded)
encoded Dense(32, activation='relu') (encoded)

decoded Dense (64, activation='relu') (encoded)
decoded Dense(128, activation='relu') (decoded)
decoded Dense(784, activation='sigmoid') (decoded)

[https://go0.gl/9kCxqz Chollet]

3-layer encoder and 3-laver decoder. under complete.
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Regularized auto-encoders

* Alternative to undercomplete: use a regularizer 2 to

constraint the obJectlve

—ZLwn,g n))) + Q(h)



Regularized auto-encoders

* Alternative to undercomplete: use a regularizer 2 to
constraint the objective

5 O L g(f (@) + Q)

* In supervised learning regularizers reduce the capacity of
the model to overfit the training set

* In unsupervised learning we need them to be invariant
to nuisance factors (=irrelevant noise) in the data... it is
actually the same thing!



Regularized auto-encoders

Alternative to undercomplete: use a regularizer {2 to
constraint the objective

5 O L g(f (@) + Q)

In supervised learning regularizers reduce the capacity of
the model to overfit the training set

In unsupervised learning we need them to be invariant
to nuisance factors (=irrelevant noise) in the data... it is
actually the same thing!

Interpretation: those are bottlenecks that allows us to
compress the data into a useful representation, robust to
irrelevant variations of the training data



Sparse auto-encoder

e Sparsity-inducing regularizer:

% nz::l L(zn, g(f(zn))) + Allb|

* Analogue to use the L1-norm in supervised learning.
Effect: pushes many components to exact 0

* Probabilistic interpretation: train the auto-encoder
with maximum likelihood with a Laplace prior on the
code h (the latent variable):

A
p(h) = e MMl



Filters of a sparse auto-encoder

i On MNIST
[Makhazani&Frey’14]



Filters of a sparse auto-encoder

1!

more sparsity

On CIFAR10

§ On MNIST

[Makhazani&Frey’14]



Application: dimensionality reduction

* Fix the representation size to M. Then we can reduce
the dimensionality of the data to M.

* Advantages:

— Less memory

— Less time consumption for any following algorithm (e.g.
supervised learning)



Application: dimensionality reduction

* Fix the representation size to M. Then we can reduce
the dimensionality of the data to M.

* Advantages:

— Less memory
— Less time consumption for any following algorithm (e.g.
supervised learning)

* With respect to PCA:

— Pro: more meaningful representation, less information

discarded
— Cons: harder and slower to train



Application: visualization

* Dimensionality reduction onto 2D or 3D for visualization

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

DOEONOOPOSHEWLWUN-O

[Hinton&Salakhutdinov’06]



Overview

* Introduction, manifolds, PCA (Goodfellow 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)

— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)



Denoising auto-encoder

* Introduce a bottleneck by injecting noise in the input

N = Hang(f@n)

* Noise could be additive Gaussian or Dropout (=part
of the input is set to 0 uniformly at random)



Denoising auto-encoder

Introduce a bottleneck by injecting noise in the input
N
1 .
N D L@, g(f (@)
n=1

Noise could be additive Gaussian or Dropout (=part
of the input is set to 0 uniformly at random)

Auto-encoder learns a denoising map to reconstruct
the original input

Auto-encoder can be overcomplete. In fact, this is an
implicit regularizer



Denoising auto-encoder

Noisiy input

Encoder —>E—> Decoder

- A

Compressed
representation

|

The feature we want to
extract from the image

Denoised image




Denoising auto-encoder

 More noise => network is forced to learn more
robust representation; feature resembles strokes
and bubbles more often

DAE Increasing noise

(d) Neuron A (0%, 10%,20%, 50% corruption)

on B (0%, 10%, 20%, 50% corruption)




Denoising auto-encoder revisited

* Introduce the noisy transition as
a stochastic operation in the
computational graph

1. Sample @ from the data

2. Sample a corrupted version x
by C'(z|x)

3. Train the auto-encoder to
reconstruct




Denoising auto-encoder revisited

* Introduce the noisy transition as
a stochastic operation in the
computational graph

1. Sample @ from the data

2. Sample a corrupted version x
by C'(z|x)

3. Train the auto-encoder to
reconstruct

* The loss function as negative log likelihood is:

_Emfvp(m)EaﬁmC(fﬂw) 1ngdecoder(m‘h — f(fij))



Denoising auto-encoders learn to map
onto the manifold

Figure 14.4: A denoising autoencoder is trained to map a corrupted data point zz back to

the original data point . We illustrate training examples x as red crosses lying near a

low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
process C (Z | ) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
|lg(f(&)) —z||?, the reconstruction g(f (&)) estimates Ey zp,... (x)c(x/x)X | £]. The vector
9(f(Zx)) —& points approximately towards the nearest point on the manifold, sinceg(f(Z))

estimates the center of mass of the clean points® which could have given rise to <



Application of denoising auto-encoder:
|mage denmsmg

 Apply the whole auto-encoder to [https://g00.gl/SkCxqz Chollet]
real images that are affected by
noise => output denoised images.

* To work well, the real noise has to
be similar to Gaussian though



Manifolds and tangent planes

* At each point x of a d-dimensional manifold, a
tangent plane is given by d basis vectors spanning
the local directions of variation of the manifold

Tangent plane in pixel space
Grey pixel: no variation
Black/white: large variation




Auto-encoders and manifolds

e Do auto-encoders learn the manifold structure?

* Training combines two forces:

— Reconstruction: represent by h = f(x) such
that @ can be decoded through g(h)

— Limited capacity: the encoder h = f(x) cannot
represent any possible function

* Neither would be enough alone



Auto-encoders and manifolds

* Compromise:

— The auto-encoder can only afford to model the
variations needed to reconstruct the training data

* If the data concentrates near a manifold, only the
variations tangent to the manifold around x need to
correspond to changes in h = f(x)

* Auto-encoders learn a representation that captures a
local coordinate system of the manifold



Contractive auto-encoder

More explicit model of the manifold in the objective:

3 L, g(f(@))) + Qb )

where the regularizer is

Q(h,z) = AH

2

Of(x)
ox

F

It penalizes the squared Frobenius norm of the
Jacobian of the encoder

=> it forces the encoder to learn a representation that
doesn’t change much around the training examples



Contractive auto-encoder

* The compromise here:

— Contractive: resist to local perturbations of the input by
squashing their representation through the encoder.

— But at the same time minimize the reconstruction error

=> Therefore: only the irrelevant directions of variation of
the input will be contracted by the encoder

e Jacobian is expensive, but we can compute it by
auto-diff tools as usual. A finite difference
approximation works too.



Contractive auto-encoder

e |[lustration:

encoder doesn't need to be
sensitive to this variation
(not observed in training set)

2= . Y




Does it work?
Check the tangent planes

* Given an image x, compute the Jacobian at .

Obtain its eigenvectors at & by SVD decomposition.

Those are the tangent planes (they are in pixel
space):

Input
point

Tangent vectors

Contractive autoencoder



Denoising vs. contractive
auto-encoders

Both perform well but
* Denoising: simpler to implement
— Few lines of code more than standard auto-encoder

— No need to compute Jacobian

* Contractive: gradient is deterministic
— More stable, easier to monitor convergence

* They penalise different things:
— Denoising: reconstruction (g + f) robust to noise
— Contractive: representation (f) robust to noise



Application:
unsupervised feature learning

1. Train auto-encoder on
unlabeled data

2. Add classification layer
to the encoder

3. Fine-tune all with
supervised learning

Figure 4:
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Fine-tuning of a deep network for classification. After training a stack of encoders as
explained in the previous figure, an output layer is added on top of the stack. The param-
eters of the whole system are fine-tuned to minimize the error in predicting the supervised
target (e.g., class), by performing gradient descent on a supervised cost.



Application:
unsupervised feature learning

1. Train auto-encoder on
unlabeled data

2. Add classification layer
to the encoder

3. Fine-tune all with
supervised learning

We learn the features up
to the second last layer

See transfer learning

Figure 4:
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Fine-tuning of a deep network for classification. After training a stack of encoders as
explained in the previous figure, an output layer is added on top of the stack. The param-
eters of the whole system are fine-tuned to minimize the error in predicting the supervised
target (e.g., class), by performing gradient descent on a supervised cost.



Application: semantic hashing

e Typical task of information retrieval: given a
database of images and a image query, return the
most similar image in the database. Image search.

Y
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database
embedding

query: return the
most similar image



Material and contact

Lectures material based on

Goodfellow’s Deep Learning book

Efstratios Gavves’s slides from last year

Larochelle deep learning course https://goo.gl/bvNPDt
Auto-encoders tutorial in Keras https://goo.gl/9kCxqz

Durk Kingma PhD thesis (recommended)
https://www.dropbox.com/s/vbua3d9yt44vegb3/
cover and thesis.pdf?dl=1

Goodfellow tutorial on GAN, NIPS 2016 (recommended)

For questions & Master thesis projects: g.patrini@uva.nl




Other references (autoencoders)

Hinton & Salakhutdinov, Semantic Hashing 2006

Vincent et al., Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion, JMLR 2010

Rifai et al., Contractive Auto-Encoders: Explicit Invariance During Feature
Extraction, ICML 11

LeCun & Ranzato, Deep learning tutorial, ICML 13 https://goo.gl/37GbPS
Makhezani & Frey, k-sparse autoencoders, ICLR14




