X

]

X

UNIVERSITEIT VAN AMSTERDAM

Unsupervised learning, representation
and generative models

Overview

* Introduction, manifolds, PCA (Goodfellow’s 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)
— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)

Generative models in this lecture

In case you don’t know ...

e Variational Auto-Encoder (VAE) and Generative
Adversarial Network (GAN) are very new research
contributions. Everything in the lecture is at most 4
years old.

— VAE [Kingma&Welling’13, Rezende et al."14]
— GAN [Goodfellow et al.”13]

 VAE was co-invented at UvA in 2013/2014 !

Generative models in this lecture

Therefore:
— Those techniques are changing fast

— We don’t understand everything / don’t know
how to fix all current issues yet

— Opportunity to make interesting contributions
(e.g. with a good Master thesis)

Auto-encoders for generation?

 Training an auto-encoder, we get a decoder p(x|z)

Auto-encoders for generation?

 Training an auto-encoder, we get a decoder p(x|z)

* Can we use it as a generator?

Auto-encoders for generation?

Training an auto-encoder, we get a decoder p(x|z)

Can we use it as a generator?

Not really... How to sample first z ~ p(z) ? We
haven’t specified a prior. No guarantee to map onto
the manifold for any z

z needs to come from p(z|x) ?

Auto-encoders for generation?

* To be fair: there are ways to extend denoising/
contractive auto-encoders for generation. But they don’t
work as well as more recent ideas.

Auto-encoders for generation?

* To be fair: there are ways to extend denoising/

contractive auto-encoders for generation. But they don’t
work as well as more recent ideas.

* Focus on training
a generator:

unit gaussian

generative
model

(neural net)

generated distribution

true-data distribution

p(x)

image space

v
. |loss| ,/

image space

Auto-encoders for generation?

To be fair: there are ways to extend denoising/
contractive auto-encoders for generation. But they don’t
work as well as more recent ideas.

generated distribution trae-data distribution

p(x)

unit gaussian

Focus on training

generative

model

w®
(neural net) :

a generator: z

/7
—=
r9

image space image space

VAE and GAN exploit different auxiliary networks for the
job; either an encoder (VAE) or a discriminator (GAN)

Similar to standard auto-encoders, where we train
encoder/decoder pair and then keep the encoder.

Manifold hypothesis and
generative models

When | cannot create, | cannot understand. R.Feynman

generated distribution true-data distribution

p(x)

unit gaussian

generative

model
(neural net)

A S

,
pa——
Cg

image space image space

* |In order to generate realistic data, i.e. lying on the
manifold, the generator must learn a map (chart) for
navigating the manifold from a simple latent space.

[https://go0.gl/i5v9VQ OpenAl blog]

Are neural networks capable of
generation?

* An experiment of supervised learning demonstrated it is
possible to navigate the “chairs manifold” with a CNN
[Dosovitskiy et al.”15]

Are neural networks capable of
generation?

* An experiment of supervised learning demonstrated it is
possible to navigate the “chairs manifold” with a CNN
[Dosovitskiy et al.”15]

 Use a 3D graphical engine to generate chairs by
parameters such as: chair type, rotations, etc.

 Then train a CNN (with de-convolutions) as a chair
generator from the engine coordinates

Are neural networks capable of
generation?

* An experiment of supervised learning demonstrated it is
possible to navigate the “chairs manifold” with a CNN

[Dosovitskiy et al.”15]

 Use a 3D graphical engine to generate chairs by
parameters such as: chair type, rotations, etc.

 Then train a CNN (with de-convolutions) as a chair
generator from the engine coordinates

2

%

&

3

-

:
| Interpolate between

s
i

h

iy

il

i

f

angles
il

Are neural networks capable of

generation?

* An experiment of supervised learning demonstrated it is

 Then train a CNN (with de-convolutions) as a chair
generator from the engine coordinates

possible to navigate the “chairs manifold” with a CNN

[Dosovitskiy et al.”15]

 Use a 3D graphical engine to generate chairs by
parameters such as: chair type, rotations, etc.

%
i

\-

ALAPAFIF

Interpolate between

chair types
L e AN o

<y

=

=

=

=

7

al

al

u

A

Overview

* Introduction, manifolds, PCA (Goodfellow’s 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)

— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)

Variational auto-encoder (VAE)

* A fully probabilistic (Bayesian) view of auto-encoders
* Model the data generating distribution as

pe(x,z) = pe(x|2)p(2)

Variational auto-encoder (VAE)

A fully probabilistic (Bayesian) view of auto-encoders
Model the data generating distribution as

pe(x,z) = pe(x|2)p(2)

Assume a simple prior p(z) | 4
Sampling (generation): @ /
— z ~p(z)
- x ~ pg(x|z) v’/
-
N

Variational auto-encoder (VAE)

A fully probabilistic (Bayesian) view of auto-encoders
Model the data generating distribution as

pe(x,z) = pe(x|2)p(2)

Assume a simple prior p(z) 5

Sampling (generation): - /

-z~ p(2)

- x ~ pg(x|z) v’/
-

pe(x|z)is the generator (decoder), N

parametrized by a neural net

Variational auto-encoder (VAE)

Inference (=learning):
 The marginal data distribution: pe(x) = /pg(w\z)p(z)

Variational auto-encoder (VAE)

Inference (=learning):

* The marginal data distribution: pg(x) = /pg(w\z)p(z)
* Objective: max log likelihood

p@(ma Z)

pe(z|x)

log pe(x) = log

Variational auto-encoder (VAE)

Inference (=learning):
* The marginal data distribution: pg(x) = /pg(w\z)p(z)
* Objective: max log likelihood

pe(x, 2)

pe(z|x)

* In order to compute the likelihood, we need the
posterior distribution po(x, 2)

pe(x)

log pe(x) = log

pe(z|z) =

Variational auto-encoder (VAE)

Inference (=learning):
* The marginal data distribution: pg(x) = /pg(w\z)p(z)
* Objective: max log likelihood

log pe () = log Po(®, 2)
pe(z|x)
* In order to compute the likelihood, we need the
posterior distribution po(x, 2)
pe(z|z) =

pe(x)
* Unfortunately, the posterior is analytically
intractable. This is usual for any interesting model.

Variational auto-encoder (VAE)

e Bayesian learning: we model distributions, we don’t
take a MAP (point estimate) approximation

Variational auto-encoder (VAE)

e Bayesian learning: we model distributions, we don’t
take a MAP (point estimate) approximation

* Variational inference: since the posterior is
intractable, approximate it with a parametric model:

qp(2|x) ~ po(z|z)

Variational auto-encoder (VAE)

Bayesian learning: we model distributions, we don’t
take a MAP (point estimate) approximation

Variational inference: since the posterior is
intractable, approximate it with a parametric model:

q¢(z|T) ~ po(z|T)
This turns inference into an optimization problem

Note: ¢4 (2z|x) has the probabilistic form of a
parametric encoder... hence VAE name

Assume Gaussian prior and
approximate posterior

* Typical choice (but not limiting)
— prior is multivariate Normal p(z) = N (0, 1)
— approximate posterior is Gaussian with diagonal

covariance, with mean and covariance
parametrized by a deterministic encoder f(x)

Assume Gaussian prior and
approximate posterior

* Typical choice (but not limiting)
— prior is multivariate Normal p(z) = N (0, 1)

— approximate posterior is Gaussian with diagonal
covariance, with mean and covariance
parametrized by a deterministic encoder f(x)

(n(x),0%(x)) = f()
z ~ qp(z|x) = N(2; p(z), D1aG(o7(2)))

Different parameters per point, as function of f(x)
Although Gaussian, very flexible parametrization.

Re-parametrization trick

Encoder and decoder of VAE

Prior distribution: pe(z)

z-space
<
Encoder: q,(z|x) Decoder: pe(x|z)
A
X-space

Dataset: D

[Kingma PhD thesis]

The VAE objective

log pe(T) =

The VAE objective

logpg() IEC’q<p(z|:13) logpe()

pe(x, 2)
=K, (22 10
10219 98)

The VAE objective

The VAE objective

1ng9() IEchb(zkc) 1ngg()

The VAE objective

logpe(x) = Eqy, (2| log pe ()

By definition of KL

The VAE objective

log pe () = Ey, (2|2) log pe(x)

pg(a:,z)
=K, (22 10
9 (2|T) gpg(z\a:)
po(x, z) qp(2|x)
=K, . (z12) l0g
12 7S gs(2|7) po(2lT)
pe(x, 2) g (2|
=Ky, (z|2) log - z|@) 10g
Defined T (2|) q¢(z‘w) 16(2[) pO(Z‘w)
erey = ELBOg g () + K L(qg(2|z)|Ipe(2|2))
difference By definition of KL

ELBOg 4(x) = log po(2) — K L(qs(z|x)|Ips(z|2))

The variational lower bound

 We obtained a variational lower bound (also called
Evidence Lower BOund = ELBO) of the log likelihood:

ELBOg 4(z) = log po(@) — K L(qs(=|)|Ipe(z|z))

< log pg(x)
* This is a lower bound because KL is non-negative

The variational lower bound

 We obtained a variational lower bound (also called
Evidence Lower BOund = ELBO) of the log likelihood:

ELBOg 4(z) = log po(@) — K L(qs(=|)|Ipe(z|z))

< log pg(x)
* This is a lower bound because KL is non-negative

 Two meanings of maximizing the ELBO:
— The lower bound approaches the log likelihood log pg(x)
=> better generator
— The approximate posterior approaches the true posterior
94 (2z|x) = pe(z|x) => better latent representation

The variational lower bound

e Variational objective per data point:
ELBOQ@(CE)

= Eq, (z|2) log pe (T, 2) — Eq, (2|2 log g4 (2|)

The variational lower bound

e Variational objective per data point:
ELBOQ@(CE)

= Eq, (z|2) log pe (T, 2) — Eq, (2|2 log g4 (2|)

* Question: can we solve this by gradient ascent?

The variational lower bound

e Variational objective per data point:

ELBOQ@(CE)

= Eq, (z|2) log pe (T, 2) — Eq, (2|2 log g4 (2|)

* Question: can we solve this by gradient ascent?

* There is a problem: how to compute gradients of the
encoder? (Note: decoder is OK)

Vollzngs(z|m)
Ezrge(zlz) Ve

log pe(x, z) — q¢(2

log pe(x, z2) — qp (2

z)

| #

x)

Question: why don’t we just
compute this gradient as is?

 Try implement this and you will understand:

* You have samples... now what? No parameters anymore
* Instead, re-parametrize and keep dependencies on mu

Code from
£00.81/2CZQm8

Question: why don’t we just
compute this gradient as is?

Consider a simple univariate Gaussian
<~ N(:“? 1)
How to compute derivate with respect to i ?
d

—z ="

s
But we could re-parameterize it and make it
possible:

z=pu+€e=N(u,1) with e ~ N(0,1)

Now d
—z=1
dp

Re-parameterization trick

* Consider the case of Normal prior and Gaussian
variational posterior.

* Original form: cannot compute derivative
z ~ qg(z|z) = N(2z; p(x), D1aG(0*(x)))

Re-parameterization trick

Consider the case of Normal prior and Gaussian
variational posterior.

Original form: cannot compute derivative

z ~ qg(z|z) = N(2z; p(x), D1aG(0*(x)))
Rewrite the variational posterior via a change of
variable

2 = gol,€) = p(w) + (@) O €
e ~N(0,T)

element-wise product

Re-parameterization trick

* We write the ELBO as
Eqy (za) 108 Po (@, 2) — qp(2[2)] =
Ee [logpe(x, z2) — qp(z|x)]
with z=pu(x) +o(x) ©€

Re-parameterization trick

* We write the ELBO as
Eqy (za) 108 Po (@, 2) — qp(2[2)] =
Ee [logpe(x, z2) — qp(z|x)]
with z=pu(x) +o(x) ©€

* Now we can access ELBO’s derivatives by a Monte
Carlo estimate (=sample and average)

VeEe [logpe(x, z) — qp(2z|x)] =
EcVg [logpe(x, z) — qp(z|2)]

Re-parameterization trick

back-prop: NO

Original graph 9o (Z|T) ~-ai--+p9(a:z)

z ~ N(z; p(x), Diac(c?(x)))

Re-paremetrized |qe(2|®)--»> p(x), 0% () back-prop: OK

\\N ..
) = -->.p9($|Z)

4

e~N(O,I) z=plx)+o(x)Oe

a function, after sampling €

Re-parameterization trick in general

The same trick can be used for several distributions:
* Location-scale transforms

— Normal, Laplace, Student t’s, Logistic, etc.
* |nverse of CDF

— Cauchy, Rayleight, Pareto, etc
e Other strategies exist

— Gamma, Dirichlet, Beta, Chi-Squared, etc

[Kingma&Welling’14]

Re-parameterization trick in general

Original form

Reparameterized form

l

f
T
vz f zZ = g(¢ax7€
T
X

L 0w

Backprop

: Deterministic node

‘ : Random node

—— : Evaluation of f

=3 : Differentiation of f

[Kingma PhD thesis]

REINFORCE: back-prop
through discrete variables

* The re-parameterization trick only works when
— Both encoder and decoder are differentiable
— and latent variables are continuous

REINFORCE: back-prop
through discrete variables

* The re-parameterization trick only works when
— Both encoder and decoder are differentiable
— and latent variables are continuous

* We can use REINFORCE [Williams’92] when those
hypotheses are not satisfied.

REINFORCE: back-prop
through discrete variables

The re-parameterization trick only works when
— Both encoder and decoder are differentiable
— and latent variables are continuous

We can use REINFORCE [Williams’92] when those
hypotheses are not satisfied.

Idea: approximate an average gradient without
computing the derivative. (See 20.9.1)

Problem: this estimator has high variance.

Training VAE

Data:
D: Dataset
4¢(z|x): Inference model
pe(x,z): Generative model
Result:
0, ¢: Learned parameters

(0, ¢) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

e ~ p(e) (Random noise for every datapoint in M)

Compute Lo 4(M, €) and its gradients Vg 4Lg 4(M, €)

Update 0 and ¢ using SGD optimizer

end The ELBO’s gradients

[}

VAE: navigate the latent space
bbbl lOOOOOOOOOOOOS
Qabboo2aa22200000000002
4242222222856500000002
482222223355566000602
994843222223333558668857
994232223333 35555557
999993333333 33555557
9999993333333 33555577
19999993333 33388585877
7999999888833 88¢8¢858757
7T999999%¢€880888888¢8v5/7
79999998886066666¢6¢65¢57
79999998868666666¢6¢6¢57
799999998866666¢6¢6¢6¢¢5 s
79999999986 666606¢6¢6¢¢57s
79999997988 0066¢6¢¢6¢¢/
799997711V VV L ECE6Eéédy
779997711 vy VL bbbt/
777777711y v v bbb b1/
7777777y v by

(a) Learned Frey Face mani- (b) Learned MNIST manifold

fold

Figure 2.7: Visualizations of learned data manifold for generative models
with two-dimensional latent space, learned with AEVB. Since the prior of
the latent space is Gaussian, linearly spaced coordinates on the unit square
were transformed through the inverse CDF of the Gaussian to produce val-
ues of the latent variables z. For each of these values z, we plotted the
corresponding generative pg(x|z) with the learned parameters 6.

VAE: random face generation

Trained with
convolutions

Application of VAE:
natural language synthesis

“ i want to talk to you . ”

“ want to be with you . ”

“ do n’t want to be with you .
1 do n’t want to be with you .
she did n’t want to be with him .

)

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Figure 2.D.2: An application of VAEs to interpolation between pairs of sen-
tences, from [Bowman et al., 2015]. The intermediate sentences are gram-
matically correct, and the topic and syntactic structure are typically locally
consistent.

Application of VAE:
image (re)-synthesis

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

Application of VAE:
image (re)-synthesis

Smile vector:
mean smiling faces -
mean no-smile faces

Latent space arithmetic

Figure 2.D.3: VAEs can be used for image re-synthesis. In this example by
White [2016], an original image (left) is modified in a latent space in the
direction of a smile vector, producing a range of versions of the original, from
smiling to sadness. Notice how changing the image along a single vector in
latent space, modifies the image in many subtle and less-subtle ways in pixel
space.

Application of VAE:
representation for chemical design

b
d L
. O
clcceecl
Discrete Structure ~ ENCODER CONTINUOUSMOLECULAR ' DECODER ~ Discrete Structure
SMILES Neural Network REPRESENTATION Neural Network SMILES
Latent Space Most Probable Decoding

argmax p(*lz)

Figure 2.D.1: Example application of a VAE in [GOmez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f(z).

VAE link to auto-encoders

* Per data point objective:
ELBOg 4(x)
=Eq, (z|a) logpg(x,z) — Eq (z]a) 108 9 (2|T)
= Eyy(212) log po(x|2) + Eqy (2]a) 108 P(2) — Eg, (2)2) l0g ¢ (2|2)

VAE link to auto-encoders

* Per data point objective:
ELBOg 4(x)
= Ky, (zx) l0gPo (T, 2) — By (2)2) l0g g (2])
= Eq, (zx) logpe(x|2) + By, (210) logp(2) — Eg, (z|2) log g4 (2|)
p(2)
o (2|)
= By, (z|z) logpo(x|z) — K L(gp(2|z)||p(2))

= Eqy(zlz) logpo(x|2) + Eq (2)2) 108

Reconstruction error Latent space ~ prior

VAE main points

Bayesian deep learning: probabilistic graphical
models + neural networks

Variational inference: approximate the intractable
posterior with a parametric family by optimization

Re-parameterization trick: allow SGD on
computational graphs with stochastic nodes

Explicit density model

Overview

* Introduction, manifolds, PCA (Goodfellow’s 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)
— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)
— PixelRNN, models evaluation (20.10.7, 20.14)

The idea of GAN

 Can we learn the generator alone (no encoder) ?

generated distribution trie-data distribution
A
p(x)

unit gaussian

generative

model
(neural net)

image space

* How do we judge its quality?

The idea of GAN

 Can we learn the generator alone (no encoder) ?

generated distribution trae-data distribution
p(x)

unit gaussian

generative

model
(neural net)

image space image space

* How do we judge its quality?
* The problem seems ill-posed...
— Q: What would be a loss function?

— A: Why don’t we learn the loss as well?

Generative adversarial network (GAN)

e Two neural networks:

— A generator G(2) = « takes a random code as
input and outputs a (fake) image

— A discriminator D(x) € |0, 1] receives an image in
input, real or fake (generated), and estimate its
probability to be real

[Goodfellow et al.”14]

Generative adversarial network (GAN)

e Two neural networks:

— A generator G(2) = « takes a random code as
input and outputs a (fake) image

— A discriminator D(x) € |0, 1] receives an image in
input, real or fake (generated), and estimate its
probability to be real

e Adversarial training:

— The generators aims to fool the discriminator =
generate (fake but) realistic images

— The discriminator attempts to distinguish fake and

real images
[Goodfellow et al.”14]

Adversarial training of GAN

-> Fake or real ?

-2> Fake or real ?

The objective

argmin argmax V (G, D)

G
V(G,D) =

— Ewdiata(m) log D(w) -

D

N IEj’zwp(z) log(l o D(G(Z)))

— Ew’\’pdata(w) log D(CB) -

N Ewrvpc; () log(l o D(CU))

* For afixed G, the loss for D is effectively the binary
cross-entropy. That means: D is a binary classifier for

fake/real images.

A zero-sum non-cooperative game

* Inthe language of game theory:
— Zero-sum: loss of one player = gain of the adversary
— Non-cooperative: agents do not collaborate but compete

* In GANs, the spaces of the agents’ actions are the parameter
spaces of generator and discriminator

A zero-sum non-cooperative game

* Inthe language of game theory:
— Zero-sum: loss of one player = gain of the adversary
— Non-cooperative: agents do not collaborate but compete

* In GANs, the spaces of the agents’ actions are the parameter
spaces of generator and discriminator

e Solution of those problems are the Nash equilibria:

— At a Nash equilibrium, there is no unilateral incentive to
move away, because the objective value would be worse

— In ML terms: we reach convergence of gradient descent
for the joint optimization problem

Theory

* Proposition 1: For any generator G, the optimal
discriminator is

D*(a:) _ pdata,(iv)

Pdata (m) + PG (w)

* Theorem 1: The global optimum is achieved if and

only if
PG (CE) — pdata(m)

Theory

* Proposition 1: For any generator G, the optimal
discriminator is

D*(a:) _ pdata,(iv)

Pdata (m) + PG (w)

* Theorem 1: The global optimum is achieved if and

only if
PG (CE) — pdata(m)

 That means that at optimum:
— G learns the data distribution pG(CU) — pdata(il?)
— D gives same probability to images from both

D*(z) = 1/2

Proof of proposition 1

Fix the generator G. We have:
V(G.D) = [pusale)log D@)dz + [p(a) og(1 ~ Dla))d

— [pausa(@) 0g D(@) + pi(@) log(1 ~ D(@))da

Proof of proposition 1

Fix the generator G. We have:
V(G.D) = [pusale)log D@)dz + [p(a) og(1 ~ Dla))d

- / Panta(®) log D(@) + per(x) log(1 — D(x))dz
Now consider the function in the integral:

y — alog(y) + blog(1l — y)
lts maximum is ¥ = a/(a + b)

Proof of proposition 1

Fix the generator G. We have:
V(G.D) = [pusale)log D@)dz + [p(a) og(1 ~ Dla))d

_ / Pnta(@) log D(x) + p(@) log(1 — D())da
Now consider the function in the integral:
y — alog(y) + blog(1 — y)
Its maximum is ¥ = a/(a + b)
Therefore

argmax V (G, D) = D" (x) = Pdata()
D

Pdata (33) + PG (ZB)

Theory

* Proposition 1: For any generator G, the optimal
discriminator is

D*(a:) _ pdata,(iv)

Pdata (m) + PG (w)

* Theorem 1: The global optimum is achieved if and

only if
PG (CE) — pdata(m)

Proof of theorem 1

If pg() = pdata(x) then D*(x) = 1/2 , therefore

min V (G, D*) =
G

= Eorpaaea(@) 108 D™ () + Egop, (2) log(1 — D™ ()
— Eacwpdata(az) 10g(1/2) + Ea}fvpg () log(l/z) - 10g(4)

Proof of theorem 1

If pg() = pdata(x) then D*(x) = 1/2 , therefore

min V (G, D*) =
G

= Eorpaaea(@) 108 D™ () + Egop, (2) log(1 — D™ ()
— Eacwpdata(az) 10g(1/2) + Ea}fvpg () log(l/z) - 10g(4)

* This is the objective value when pg(x) = pgata(x)

* We need to prove that this is also the minimum of
the objective. (It is a argmin for G)

Proof of theorem 1
pdata(fB)

Pdata(®) + pa(x)

2 . pdata(m)

Emdiata (CC) log

Proof of theorem 1

pdata(m)
pdata(w) + PG (.’L‘)
2 pdata(w)

= Egrpa,. () lOg = -
paata(®) 108 5 " 0 (@) + po (@)

2 - ata
Pdat (ZU) _log 2]
pdata(m) _I_pG(w)

pdata2_|_ PG > o lOg 9

Ewdiata (w) log

— Ew’\’pdata (m) llog

= KL (pdata

Proof of theorem 1

pdata(w)
Ermpyon () 10
Pasia(®) 108 3, (@) + pa (@)
2 pdata(w)
= Egrpa,. () lOg = -
Piea(® 89 pgatal®) + pa(@)
2 - pdata(w)]
= Egrpa.. () |10Og — log 2
Pdata () [Pasta(®) + pa(®)

And likewise:

pa(z)
pdata(w) + PG (CU)

Ew,\,pG (x) log

ZKL<pG 9

Pdata + PG) ~log 2

Proof of theorem 1

Hence the objective is:
V(G,D") =

Full proofs in [Goodfellow et al.”14]

Proof of theorem 1

Hence the objective is:

V(G,D") =
KT (pdata pdata2"|_ PG) KL (pG pdata2_|_ PG > log4
Which is minimized when both
L Pdata + PG L Pdata + PG
Pdata — 9 and PG = 9

Therefore pg(®) = Pdata(x) and the minimum value
is again — log(4)

Full proofs in [Goodfellow et al.”14]

A word of caution with the result

 We have proved that the generator will fit the
distribution of the real data

A word of caution with the result

 We have proved that the generator will fit the
distribution of the real data

* But in practice:

— Finite sample size: training set is finite, not the full
distribution

— Parametric limit: the generator has limit capacity, i.e.
cannot perfectly represent any distribution

— Optimization error: optimizers can get stuck in local
optima or never exactly converge to global optima

A word of caution with the result

We have proved that the generator will fit the
distribution of the real data

But in practice:

— Finite sample size: training set is finite, not the full
distribution

— Parametric limit: the generator has limit capacity, i.e.
cannot perfectly represent any distribution

— Optimization error: optimizers can get stuck in local
optima or never exactly converge to global optima

Note: those three sources of approximation are
always present in machine learning

Optimizing the joint objective

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(}), ... z(™} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... £(™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo2 3" [log D (29) +10g (1- D (@ (29)))].

=1

end for
e Sample minibatch of m noise samples {z(V), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3 tos (1= (6 ().

end for

Practical issues with training GANSs

\ saddle

e Difficult to train in practice: j«/ ‘..
— Saddle point problem
* Harder than finding a minima/maxima

— Balance of updates of D and G:
* D too weak: no gradient for G to improve
* D too strong: too hard for G to find a direction to fool it

* The choice of the loss function in the min-max games
matters a lot for convergence. Much research
activity on this area.

Deep Convolutional (DC)GAN

e Convolutional layers for the discriminator.

* De-convolutional layers for the generator:

512
|

1024
|

4(1
100 2 — i

- 32
5 ==

]

5—\\ -+

1Y
Y

\l‘\‘\\ o
k’
%!ii?——
a
=
1
[
)
=1
=
)
N
a
T
)
]
I\
H—
]
| VA
I\
I
o

: 5
_ . 1 T
Code Project and Stride 2 3 Stride 2
reshape Deconv 1
Deconv 2 64
Deconv 3
Deconv 4
Image

[Radford et al.”15]

DCGAN: random bedroom generation

[Radford et al.”15]

DCGAN: bedroom space interpolation

[Radford et al.”15]

DCGAN: latent face arithmetic

man man woman
with glasses without glasses without glasses

woman with glasses

[Radford et al.”15]

DCGAN: result on ImageNet

* ImageNet dataset:
— 1.2M images of 1K classes

Image from [Salisman et al.”16]

Application of GAN: image to image
translation (conditional generation)

Input Ground truth Output

Labels to Street Scene

Figure 7: Isola et al. (2016) created a concept they called image to image translation,
encompassing many kinds of transformations of an image: converting a satellite photo
into a map, coverting a sketch into a photorealistic image, etc. Because many of these
conversion processes have multiple correct outputs for each input, it is necessary to
use generative modeling to train the model correctly. In particular, Isola et al. (2016)
use a GAN. Image to image translation provides many examples of how a creative
algorithm designer can find several unanticipated uses for generative models. In the
future, presumably many more such creative uses will be found.

Application of GAN: image to image
translation (conditional generation)

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

Application of GAN: image super
resolution (conditional generation)

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

4 N " é ~
>

¢ -f .

el

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4 X upscaling]

[Ledig et al.”17]

GAN main points

* Adversarial training: train generator to fool the
discriminator

* Form of consistency: it is possible in principle to
recover the true data distribution

* Implicit density model: density and likelihood not
defined. Instead, optimize “realism”

Application: semi-supervised learning

e Both VAE and GAN can be extended for semi-
supervised learning:

—Data Dy, = {XL,Y} and DU = {XU}
— Goal p(y|x) (same as with supervised learning)
— Classification or regression

Application: semi-supervised learning

.

Main ideas:
:) .

e GAN [Salisman et al.”16]: discriminator

D is multi-class classifier + fake class.

With many unlabelled images, D learns

better features simply by setting CEE G5

unlabelled = any class but fake. I

[Colah https://goo.gl/TgvnH1] .

Application: semi-supervised learning

.
Main ideas:
:) L
e GAN [Salisman et al.”16]: discriminator
D is multi-class classifier + fake class.
With many unlabelled images, D learns
better features simply by setting ST [T
unlabelled = any class but fake. I
[Colah https://goo.gl/TgvnH1]
(€ «hass)) (Z tnoise))
* VAE [ngma etal. 16] label is part of Inference model Generative model

the latent space. If known, use it to | |
condition the decoder; else, it is ! , “\f
inferred. Part of the encoder becomes |

. O ©
the classifier: ¢(y|x) .
qly[x

= classifier

[Kingma https://goo.gl/a76HyH]

Application of semi-supervised VAE:
class-conditional generation

class-conditional generation; vary z

U

“f
“f
“
L‘
L{
L{
A
&‘

a!

&/
¢
o
o
L‘
¥
¥
q
;{
;‘

¢ ¢

¢
q
4
L’
y
|
y
..‘
4

&f

LLLLLL

L€ L LTI
e T U U U U

7
7

99090900000,
0900000 0mhnmhoghogon
00000000

AR, IV, BV, R, I, I, I

AR A B A R AR L I R R

AN VKKK OKOKK K
QBB GB G GGGk
DG GGG GGG
A R G RGOS

M99 N 00604

P
4

Generative model

¥

Figure 3.2: Visualization of handwriting styles learned by the model with
2D z-space. The images are obtained by fixing the class label, varying the
2D latent variable z, and generating the corresponding image x through the
decoder.

Application of semi-supervised VAE:
analogy making

Generative model

\

z-fixed generation; vary y. Style vs. content

(b) Synthetic analogies of SVHN images.

Figure 3.1: Analogical reasoning with generative semi-supervised models
using a high-dimensional z-space. The leftmost columns show images from
the test set. The other columns show analogical fantasies of x by the genera-
tive model, where the latent variable z of each row is set to the value inferred
from the test-set image on the left by the inference network. Each column
corresponds to a class label y.

Overview

* Introduction, manifolds, PCA (Goodfellow’s 5.11.3,
13.5)

* Auto-encoders (14)
— Objective, undercomplete / regularized auto-encoders
— Denoising auto-encoders, contractive auto-encoders

* Generative models (parts of 20)

— Variational auto-encoder (20.9, 20.10.3)
— Generative adversarial network (20.10.4, 20.10.6)

— PixelRNN, models evaluation (20.10.7, 20.14)

Auto-regressive models

* Auto-regressive generative models: generate pixel
by pixel, conditionally to the previously generated

,n2

°'°ﬁ§° p(x) = [[p(zilz1, ..., zio1)

1=1

* PixelRNN [van den Oord et al.”16] is
auto-regressive

* |t runs a deep recurrent neural
network pixel by pixel, row by row.

Tp2

PixelRNN

n
* No latent variables: p(x) = Hp(ibz'\m,---,xi—ﬂ
i=1

e Learn by maximizing exact log likelihood

argmax [E,, log pg(x)
0

* Generate by conditional sampling, pixel by pixel

- QN
B e Gy B e

Application of PixelRNN:
image completion or inpainting

occluded completions original

. 4 |l b

- - : - : :
: N =

Figure 1. Image completions sampled from a PixeIRNN.

Qualitative comparison

* VAE:
— Pros: efficient learning and sampling
— Cons: blurry images
* GAN:
— Pros: most realistic samples
— Cons: unstable learning, likely to underfit
* PixelRNN
— Pros: straightforward to train, exact log likelihood

— Cons: no latent representation, slow sampling (no
parallelization)

Quantitative comparison

In supervised learning is easy:

e Learn on trainset, measure performance (e.g. accuracy, AUC)
on testset, compare

Quantitative comparison

In supervised learning is easy:

e Learn on trainset, measure performance (e.g. accuracy, AUC)
on testset, compare

With generative models:

* Visual quality... not enough

 Checkinterpolation in latent space... still a qualitative
measure

Quantitative comparison

In supervised learning is easy:

Learn on trainset, measure performance (e.g. accuracy, AUC)
on testset, compare

With generative models:

Visual quality... not enough

Check interpolation in latent space... still a qualitative
measure

We can compare the log likelihood on testset log p(x). But :

— VAE optimizes a lower bound; GAN has no explicit
likelihood, but it can be approximated.

— How to compare different likelihood approximations ?

Quantitative comparison

With generative models:

* Models can underfit and overfit at the same time:
memorize cat images (overfit) and completely avoid
to learn about dogs (underfit). Very hard to check.

Quantitative comparison

With generative models:

* Models can underfit and overfit at the same time:
memorize cat images (overfit) and completely avoid
to learn about dogs (underfit). Very hard to check.

* A heuristic check for overfitting: given a generated
image, search in the training set the closest one. Are

they “too” similar?

Quantitative comparison

With generative models:

* Models can underfit and overfit at the same time:
memorize cat images (overfit) and completely avoid
to learn about dogs (underfit). Very hard to check.

* A heuristic check for overfitting: given a generated
image, search in the training set the closest one. Are

they “too” similar?
* Log-likelihood is not necessarily related with quality
(realism) of samples [Theis et al.”16]

Quantitative comparison

Evaluation of generative models is an open problem.

A safer approach in applications:

* If the generator is used for a specific application
(e.g. semi-supervised classification, super-
resolution, etc.), evaluate the generator by the final
task performance, not by itself.

Question: GAN vs. adversarial
examples

Answers by lan Goodfellow:
 How do they relate? (this may be rather confusing :-)

https://www.quora.com/In-what-way-are-Adversarial-
Networks-related-or-different-to-Adversarial-Training

* |s adversarial training (aka the GAN way) effective
against adversarial examples?

https://www.quora.com/Is-adversarial-training-
effective-against-adversarial-examples-in-general

1 hour of imaginary celebrities

Progressive GAN by NVIDIA [Carras et al.”18]

e https://www.youtube.com/watch?
v=36IE9tVI9vmO

Material and contact

Lectures material based on:

Goodfellow’s Deep Learning (book)

Efstratios Gavves’s slides from last year

Larochelle deep learning course https://goo.gl/bvNPDt
Auto-encoders tutorial in Keras https://goo.gl/9kCxqz

Durk Kingma PhD thesis (VAE Chapter recommended)
https://www.dropbox.com/s/v6ua3d9yt44vghb3/
cover and thesis.pdf?dl=1

Goodfellow tutorial on GAN, NIPS 2016 (recommended)

For questions & Master thesis projects: g.patrini@uva.nl

Other references (generative models)

Links:

* Generative models by OpenAl, blog post https://goo.gl/i5v9VQ

* Kingma NIPS15 workshop on VAE https://goo.gl/a76HyH

* Blog post on VAE https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
* DCGAN repo with visual results https://github.com/Newmu/dcgan_code
Papers:

* Kingma & Welling: Auto-encoding variational Bayes, ICLR14

* Rezende et al., Stochastic backpropagation and approximate inference in deep generative models
ICML14

* Kingma et al., Semi-supervised learning with deep generative models, NIPS14

* Goodfellow et al., Generative adversarial networks, NIPS14

* Salisman et al., Improved techniques for training GANs, NIPS16

* vanden Oord et al., Pixel recurrent neural network, ICML16

* Theis et al., A note on the evaluation of generative models, ICLR16

* Isola et al., Image to image translation, with conditional adversarial networks, CVPR17

* Ledig et al, Photo-realistic single image super-resolution using a generative adversarial network,
CVPR17

* Carras et al., Progressive growing of GANs for improved quality, stability, and variation, 2018

