
Unsupervised	learning,	representation	
and	generative	models	

Deep	Learning	

27/11/17	
Giorgio	Patrini	
g.patrini@uva.nl	

	

Overview	

•  Introduction,	manifolds,	PCA	(Goodfellow’s	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objective,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contractive	auto-encoders	

	
•  Generative	models	(parts	of	20)	
–  Variational	auto-encoder	(20.9,	20.10.3)	
–  Generative	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evaluation	(20.10.7,	20.14)		

Generative	models	in	this	lecture	
In	case	you	don’t	know…	

•  Variational	Auto-Encoder	(VAE)	and	Generative	
Adversarial	Network	(GAN)	are	very	new	research	
contributions.	Everything	in	the	lecture	is	at	most	4	

years	old.	

–  VAE	[Kingma&Welling’13,	Rezende	et	al.’14]	
–  GAN	[Goodfellow	et	al.’13]	

•  VAE	was	co-invented	at	UvA	in	2013/2014	!	
	

Generative	models	in	this	lecture	
Therefore:	
– Those	techniques	are	changing	fast	
– We	don’t	understand	everything	/	don’t	know	
how	to	fix	all	current	issues	yet	

– Opportunity	to	make	interesting	contributions	
(e.g.	with	a	good	Master	thesis)	

•  Training	an	auto-encoder,	we	get	a	decoder		

	
	
	

Auto-encoders	for	generation?	

p(z|x)

p(x|z)

p(x|z)

Auto-encoders	for	generation?	

•  Training	an	auto-encoder,	we	get	a	decoder		

	
•  Can	we	use	it	as	a	generator?		
	

p(z|x)

p(x|z)

p(x|z)

Auto-encoders	for	generation?	

•  Training	an	auto-encoder,	we	get	a	decoder		

	
•  Can	we	use	it	as	a	generator?		
•  Not	really…			How	to	sample	first																				?	We	
haven’t	specified	a	prior.	No	guarantee	to	map	onto	
the	manifold	for	any						

•  				needs	to	come	from		

z ⇠ p(z)

p(x|z)

p(z|x)

?
?

z

p(x|z)

z p(z|x)

p(x|z)

Auto-encoders	for	generation?	

•  To	be	fair:	there	are	ways	to	extend	denoising/
contractive	auto-encoders	for	generation.	But	they	don’t	
work	as	well	as	more	recent	ideas.	

	

Auto-encoders	for	generation?	

•  To	be	fair:	there	are	ways	to	extend	denoising/
contractive	auto-encoders	for	generation.	But	they	don’t	
work	as	well	as	more	recent	ideas.	

•  Focus	on	training		
	a	generator:	

Auto-encoders	for	generation?	

•  To	be	fair:	there	are	ways	to	extend	denoising/
contractive	auto-encoders	for	generation.	But	they	don’t	
work	as	well	as	more	recent	ideas.	

•  Focus	on	training		
	a	generator:	

	
•  VAE	and	GAN	exploit	different	auxiliary	networks	for	the	

job;	either	an	encoder	(VAE)	or	a	discriminator	(GAN)	
•  Similar	to	standard	auto-encoders,	where	we	train	

encoder/decoder	pair	and	then	keep	the	encoder.	
	

Manifold	hypothesis	and		
generative	models	

When	I	cannot	create,	I	cannot	understand.	R.Feynman	

•  In	order	to	generate	realistic	data,	i.e.	lying	on	the	
manifold,	the	generator	must	learn	a	map	(chart)	for	
navigating	the	manifold	from	a	simple	latent	space.	

[https://goo.gl/i5v9VQ	OpenAI	blog]	

Are	neural	networks	capable	of	
generation?	

•  An	experiment	of	supervised	learning	demonstrated	it	is	
possible	to	navigate	the	“chairs	manifold”	with	a	CNN	
[Dosovitskiy	et	al.’15]	

Are	neural	networks	capable	of	
generation?	

•  An	experiment	of	supervised	learning	demonstrated	it	is	
possible	to	navigate	the	“chairs	manifold”	with	a	CNN	
[Dosovitskiy	et	al.’15]	

•  Use	a	3D	graphical	engine	to	generate	chairs	by	
parameters	such	as:	chair	type,	rotations,	etc.	

•  Then	train	a	CNN	(with	de-convolutions)	as	a	chair	
generator	from	the	engine	coordinates	

Are	neural	networks	capable	of	
generation?	

•  An	experiment	of	supervised	learning	demonstrated	it	is	
possible	to	navigate	the	“chairs	manifold”	with	a	CNN	
[Dosovitskiy	et	al.’15]	

•  Use	a	3D	graphical	engine	to	generate	chairs	by	
parameters	such	as:	chair	type,	rotations,	etc.	

•  Then	train	a	CNN	(with	de-convolutions)	as	a	chair	
generator	from	the	engine	coordinates	

Interpolate	between	
angles	

Are	neural	networks	capable	of	
generation?	

•  An	experiment	of	supervised	learning	demonstrated	it	is	
possible	to	navigate	the	“chairs	manifold”	with	a	CNN	
[Dosovitskiy	et	al.’15]	

•  Use	a	3D	graphical	engine	to	generate	chairs	by	
parameters	such	as:	chair	type,	rotations,	etc.	

•  Then	train	a	CNN	(with	de-convolutions)	as	a	chair	
generator	from	the	engine	coordinates	

Interpolate	between	
angles	

Interpolate	between	
chair	types	

Overview	

•  Introduction,	manifolds,	PCA	(Goodfellow’s	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objective,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contractive	auto-encoders	

	
•  Generative	models	(parts	of	20)	
–  Variational	auto-encoder	(20.9,	20.10.3)	
–  Generative	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evaluation	(20.10.7,	20.14)		

Variational	auto-encoder	(VAE)	

•  A	fully	probabilistic	(Bayesian)	view	of	auto-encoders	
•  Model	the	data	generating	distribution	as		
	 p✓(x, z) = p✓(x|z)p(z)

Variational	auto-encoder	(VAE)	

•  A	fully	probabilistic	(Bayesian)	view	of	auto-encoders	
•  Model	the	data	generating	distribution	as		
	
•  Assume	a	simple	prior		
•  Sampling	(generation):	
–  		
–  		

		

z ⇠ p(z)
x ⇠ p✓(x|z)

p✓(x, z) = p✓(x|z)p(z)
p(z)

Variational	auto-encoder	(VAE)	

•  A	fully	probabilistic	(Bayesian)	view	of	auto-encoders	
•  Model	the	data	generating	distribution	as		
	
•  Assume	a	simple	prior		
•  Sampling	(generation):	
–  		
–  		

•  																is	the	generator	(decoder),	
	parametrized	by	a	neural	net	

z ⇠ p(z)
x ⇠ p✓(x|z)

p✓(x|z)

p✓(x, z) = p✓(x|z)p(z)
p(z)

Variational	auto-encoder	(VAE)	

Inference	(=learning):	
•  The	marginal	data	distribution:	p✓(x) =

Z
p✓(x|z)p(z)

Variational	auto-encoder	(VAE)	

Inference	(=learning):	
•  The	marginal	data	distribution:	
•  Objective:	max	log	likelihood	

	

log p✓(x) = log
p✓(x, z)

p✓(z|x)

p✓(x) =

Z
p✓(x|z)p(z)

Variational	auto-encoder	(VAE)	

Inference	(=learning):	
•  The	marginal	data	distribution:	
•  Objective:	max	log	likelihood	

•  In	order	to	compute	the	likelihood,	we	need	the	
posterior	distribution	

	

log p✓(x) = log
p✓(x, z)

p✓(z|x)

p✓(z|x) =
p✓(x, z)

p✓(x)

p✓(x) =

Z
p✓(x|z)p(z)

Variational	auto-encoder	(VAE)	

Inference	(=learning):	
•  The	marginal	data	distribution:	
•  Objective:	max	log	likelihood	

•  In	order	to	compute	the	likelihood,	we	need	the	
posterior	distribution	

	
•  Unfortunately,	the	posterior	is	analytically	
intractable.	This	is	usual	for	any	interesting	model.	

log p✓(x) = log
p✓(x, z)

p✓(z|x)

p✓(z|x) =
p✓(x, z)

p✓(x)

p✓(x) =

Z
p✓(x|z)p(z)

Variational	auto-encoder	(VAE)	

•  Bayesian	learning:	we	model	distributions,	we	don’t	
take	a	MAP	(point	estimate)	approximation	

	

Variational	auto-encoder	(VAE)	

•  Bayesian	learning:	we	model	distributions,	we	don’t	
take	a	MAP	(point	estimate)	approximation	

•  Variational	inference:	since	the	posterior	is	
intractable,	approximate	it	with	a	parametric	model:	

q�(z|x) ⇡ p✓(z|x)

Variational	auto-encoder	(VAE)	

•  Bayesian	learning:	we	model	distributions,	we	don’t	
take	a	MAP	(point	estimate)	approximation	

•  Variational	inference:	since	the	posterior	is	
intractable,	approximate	it	with	a	parametric	model:	

•  This	turns	inference	into	an	optimization	problem	
•  Note:																	has	the	probabilistic	form	of	a	
parametric	encoder…	hence	VAE	name	

q�(z|x)

q�(z|x) ⇡ p✓(z|x)

Assume	Gaussian	prior	and	
approximate	posterior	

•  Typical	choice	(but	not	limiting)	
– prior	is	multivariate	Normal		
– approximate	posterior	is	Gaussian	with	diagonal	
covariance,	with	mean	and	covariance	
parametrized	by	a	deterministic	encoder			

	
	
	
	

p(z) = N(0, I)

f(x)

Assume	Gaussian	prior	and	
approximate	posterior	

•  Typical	choice	(but	not	limiting)	
– prior	is	multivariate	Normal		
– approximate	posterior	is	Gaussian	with	diagonal	
covariance,	with	mean	and	covariance	
parametrized	by	a	deterministic	encoder			

	
	
	

Different	parameters	per	point,	as	function	of				
Although	Gaussian,	very	flexible	parametrization.	

	

p(z) = N(0, I)

(µ(x),�2(x)) = f(x)

z ⇠ q�(z|x) = N(z;µ(x),Diag(�2(x)))

f(x)

f(x)

Re-parametrization	trick	

z

(µ(x),�2(x)) = f(x)

q�(z|x)

z ⇠ q�(z|x) = N(z;µ(x),Diag(�2(x)))

p✓(x|z)

Encoder	and	decoder	of	VAE	

[Kingma	PhD	thesis]	

The	VAE	objective	
log p✓(x) =

The	VAE	objective	
log p✓(x) = Eq�(z|x) log p✓(x)

= Eq�(z|x) log
p✓(x, z)

p✓(z|x)

The	VAE	objective	
log p✓(x) = Eq�(z|x) log p✓(x)

= Eq�(z|x) log
p✓(x, z)

p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
q�(z|x)
p✓(z|x)

The	VAE	objective	
log p✓(x) = Eq�(z|x) log p✓(x)

= Eq�(z|x) log
p✓(x, z)

p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
q�(z|x)
p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
+ Eq�(z|x) log

q�(z|x)
p✓(z|x)

The	VAE	objective	

By	definition	of	KL	

log p✓(x) = Eq�(z|x) log p✓(x)

= Eq�(z|x) log
p✓(x, z)

p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
q�(z|x)
p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
+ Eq�(z|x) log

q�(z|x)
p✓(z|x)

= ELBO✓,�(x) +KL(q�(z|x)||p✓(z|x))

Defined	
here	by	
the	
difference	

The	VAE	objective	

By	definition	of	KL	

ELBO✓,�(x) = log p✓(x)�KL(q�(z|x)||p✓(z|x))

log p✓(x) = Eq�(z|x) log p✓(x)

= Eq�(z|x) log
p✓(x, z)

p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
q�(z|x)
p✓(z|x)

= Eq�(z|x) log
p✓(x, z)

q�(z|x)
+ Eq�(z|x) log

q�(z|x)
p✓(z|x)

= ELBO✓,�(x) +KL(q�(z|x)||p✓(z|x))

The	variational	lower	bound	

•  We	obtained	a	variational	lower	bound	(also	called	
Evidence	Lower	BOund	=	ELBO)	of	the	log	likelihood:		

•  This	is	a	lower	bound	because	KL	is	non-negative	

ELBO✓,�(x) = log p✓(x)�KL(q�(z|x)||p✓(z|x))
 log p✓(x)

The	variational	lower	bound	

•  We	obtained	a	variational	lower	bound	(also	called	
Evidence	Lower	BOund	=	ELBO)	of	the	log	likelihood:		

•  This	is	a	lower	bound	because	KL	is	non-negative	
•  Two	meanings	of	maximizing	the	ELBO:	
–  The	lower	bound	approaches	the	log	likelihood	
=>	better	generator 	 	 		
–  The	approximate	posterior	approaches	the	true	posterior	

																																												=>	better	latent	representation	

log p✓(x)

ELBO✓,�(x) = log p✓(x)�KL(q�(z|x)||p✓(z|x))
 log p✓(x)

q�(z|x) ⇡ p✓(z|x)

The	variational	lower	bound	

•  Variational	objective	per	data	point:	
ELBO✓,�(x)

= Eq�(z|x) log p✓(x, z)� Eq�(z|x) log q�(z|x)

The	variational	lower	bound	

•  Variational	objective	per	data	point:	

•  Question:	can	we	solve	this	by	gradient	ascent?	

ELBO✓,�(x)

= Eq�(z|x) log p✓(x, z)� Eq�(z|x) log q�(z|x)

The	variational	lower	bound	

•  Variational	objective	per	data	point:	

•  Question:	can	we	solve	this	by	gradient	ascent?	
•  There	is	a	problem:	how	to	compute	gradients	of	the	
encoder?	(Note:	decoder	is	OK)	

ELBO✓,�(x)

= Eq�(z|x) log p✓(x, z)� Eq�(z|x) log q�(z|x)

r�Ez⇠q�(z|x) [log p✓(x, z)� q�(z|x)] 6=
Ez⇠q�(z|x)r� [log p✓(x, z)� q�(z|x)]

Question:	why	don’t	we	just		
compute	this	gradient	as	is?	

•  Try	implement	this	and	you	will	understand:		

	

•  You	have	samples…	now	what?	No	parameters	anymore	
•  Instead,	re-parametrize	and	keep	dependencies	on	mu	

Code	from	
goo.gl/zCZQm8		

Question:	why	don’t	we	just		
compute	this	gradient	as	is?	

•  Consider	a	simple	univariate	Gaussian		
	

•  How	to	compute	derivate	with	respect	to					?	

•  But	we	could	re-parameterize	it	and	make	it	
possible:	

•  Now	

z ⇠ N(µ, 1)
µ

d

dµ
z = ?

d

dµ
z = 1

z = µ+ ✏ = N(µ, 1) with ✏ ⇠ N(0, 1)

Re-parameterization	trick	

•  Consider	the	case	of	Normal	prior	and	Gaussian	
variational	posterior.	

•  Original	form:	cannot	compute	derivative	
z ⇠ q�(z|x) = N(z;µ(x),Diag(�2(x)))

Re-parameterization	trick	

•  Consider	the	case	of	Normal	prior	and	Gaussian	
variational	posterior.	

•  Original	form:	cannot	compute	derivative	

•  Rewrite	the	variational	posterior	via	a	change	of	
variable	

✏ ⇠ N(0, I)
element-wise	product	

z ⇠ q�(z|x) = N(z;µ(x),Diag(�2(x)))

z = g�(x, ✏) = µ(x) + �(x)� ✏

Re-parameterization	trick	

•  We	write	the	ELBO	as	

Eq�(z|x) [log p✓(x, z)� q�(z|x)] =
E✏ [log p✓(x, z)� q�(z|x)]

with z = µ(x) + �(x)� ✏

Re-parameterization	trick	

•  We	write	the	ELBO	as	

•  Now	we	can	access	ELBO’s	derivatives	by	a	Monte	
Carlo	estimate	(=sample	and	average)	

Eq�(z|x) [log p✓(x, z)� q�(z|x)] =
E✏ [log p✓(x, z)� q�(z|x)]

r�E✏ [log p✓(x, z)� q�(z|x)] =
E✏r� [log p✓(x, z)� q�(z|x)]

with z = µ(x) + �(x)� ✏

Re-parameterization	trick	

Original	graph	

Re-paremetrized	

✏ ⇠ N(0, I)

back-prop:	OK	

back-prop:	NO	

µ(x),�2(x)

z ⇠ N(z;µ(x),Diag(�2(x)))

q�(z|x)

q�(z|x)

p✓(x|z)

p✓(x|z)

z = µ(x) + �(x)� ✏

a function, after sampling ✏

Re-parameterization	trick	in	general	

The	same	trick	can	be	used	for	several	distributions:	
•  Location-scale	transforms		
–  Normal,	Laplace,	Student	t’s,	Logistic,	etc.		

•  Inverse	of	CDF		
–  Cauchy,	Rayleight,	Pareto,	etc		

•  Other	strategies	exist	
–  Gamma,	Dirichlet,	Beta,	Chi-Squared,	etc		

	

[Kingma&Welling’14]	

Re-parameterization	trick	in	general	

[Kingma	PhD	thesis]	

REINFORCE:	back-prop		
through	discrete	variables	

•  The	re-parameterization	trick	only	works	when	
– Both	encoder	and	decoder	are	differentiable	
– and	latent	variables	are	continuous		

	

REINFORCE:	back-prop		
through	discrete	variables	

•  The	re-parameterization	trick	only	works	when	
– Both	encoder	and	decoder	are	differentiable	
– and	latent	variables	are	continuous		

•  We	can	use	REINFORCE	[Williams’92]	when	those	
hypotheses	are	not	satisfied.	

	

REINFORCE:	back-prop		
through	discrete	variables	

•  The	re-parameterization	trick	only	works	when	
– Both	encoder	and	decoder	are	differentiable	
– and	latent	variables	are	continuous		

•  We	can	use	REINFORCE	[Williams’92]	when	those	
hypotheses	are	not	satisfied.	

•  Idea:	approximate	an	average	gradient	without	
computing	the	derivative.	(See	20.9.1)	

•  Problem:	this	estimator	has	high	variance.	

	

Training	VAE	

The	ELBO’s	gradients	

VAE:	navigate	the	latent	space	

VAE:	random	face	generation	

Trained	with	
convolutions	

Application	of	VAE:	
natural	language	synthesis	

Application	of	VAE:	
image	(re)-synthesis	

Application	of	VAE:	
image	(re)-synthesis	

Smile	vector:		
mean	smiling	faces	–	
mean	no-smile	faces	
	
Latent	space	arithmetic	

Application	of	VAE:		
representation	for	chemical	design	

VAE	link	to	auto-encoders	

•  Per	data	point	objective:		
ELBO✓,�(x)

= Eq�(z|x) log p✓(x, z)� Eq�(z|x) log q�(z|x)
= Eq�(z|x) log p✓(x|z) + Eq�(z|x) log p(z)� Eq�(z|x) log q�(z|x)

VAE	link	to	auto-encoders	

•  Per	data	point	objective:		

Reconstruction	error	 Latent	space	~	prior	

ELBO✓,�(x)

= Eq�(z|x) log p✓(x, z)� Eq�(z|x) log q�(z|x)
= Eq�(z|x) log p✓(x|z) + Eq�(z|x) log p(z)� Eq�(z|x) log q�(z|x)

= Eq�(z|x) log p✓(x|z) + Eq�(z|x) log
p(z)

q�(z|x)
= Eq�(z|x) log p✓(x|z)�KL(q�(z|x)||p(z))

VAE	main	points	

•  Bayesian	deep	learning:	probabilistic	graphical	
models	+	neural	networks	

•  Variational	inference:	approximate	the	intractable	
posterior	with	a	parametric	family	by	optimization	

•  Re-parameterization	trick:	allow	SGD	on	
computational	graphs	with	stochastic	nodes	

•  Explicit	density	model	

Overview	

•  Introduction,	manifolds,	PCA	(Goodfellow’s	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objective,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contractive	auto-encoders	

	
•  Generative	models	(parts	of	20)	
–  Variational	auto-encoder	(20.9,	20.10.3)	
–  Generative	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evaluation	(20.10.7,	20.14)		

The	idea	of	GAN	

•  Can	we	learn	the	generator	alone	(no	encoder)	?	

•  How	do	we	judge	its	quality?	

The	idea	of	GAN	

•  Can	we	learn	the	generator	alone	(no	encoder)	?	

•  How	do	we	judge	its	quality?	
•  The	problem	seems	ill-posed…	
– Q:	What	would	be	a	loss	function?	
– A:	Why	don’t	we	learn	the	loss	as	well?	

Generative	adversarial	network	(GAN)	
•  Two	neural	networks:	
– A	generator																					takes	a	random	code	as	
input	and	outputs	a	(fake)	image	

– A	discriminator																										receives	an	image	in	
input,	real	or	fake	(generated),	and	estimate	its	
probability	to	be	real	

G(z) = x

D(x) 2 [0, 1]

[Goodfellow	et	al.’14]	

Generative	adversarial	network	(GAN)	
•  Two	neural	networks:	
– A	generator																					takes	a	random	code	as	
input	and	outputs	a	(fake)	image	

– A	discriminator																										receives	an	image	in	
input,	real	or	fake	(generated),	and	estimate	its	
probability	to	be	real	

•  Adversarial	training:		
– The	generators	aims	to	fool	the	discriminator	=	
generate	(fake	but)	realistic	images	

– The	discriminator	attempts	to	distinguish	fake	and	
real	images	

G(z) = x

D(x) 2 [0, 1]

[Goodfellow	et	al.’14]	

Adversarial	training	of	GAN	

D(x)

G(z)

z ⇠ N(0, I)

Fake	or	real	?	

D(x) Fake	or	real	?	

The	objective	

	
•  For	a	fixed	G,	the	loss	for	D	is	effectively	the	binary	
cross-entropy.	That	means:	D	is	a	binary	classifier	for	
fake/real	images.	

argmin
G

argmax
D

V (G,D)

V (G,D) =

= Ex⇠pdata(x) logD(x) + Ez⇠p(z) log(1�D(G(z)))

= Ex⇠pdata(x) logD(x) + Ex⇠pG(x) log(1�D(x))

A	zero-sum	non-cooperative	game	
•  In	the	language	of	game	theory:	
–  Zero-sum:	loss	of	one	player	=	gain	of	the	adversary	
–  Non-cooperative:	agents	do	not	collaborate	but	compete		

•  In	GANs,	the	spaces	of	the	agents’	actions	are	the	parameter	
spaces	of	generator	and	discriminator	

	

A	zero-sum	non-cooperative	game	
•  In	the	language	of	game	theory:	
–  Zero-sum:	loss	of	one	player	=	gain	of	the	adversary	
–  Non-cooperative:	agents	do	not	collaborate	but	compete		

•  In	GANs,	the	spaces	of	the	agents’	actions	are	the	parameter	
spaces	of	generator	and	discriminator	

	

•  Solution	of	those	problems	are	the	Nash	equilibria:	
–  At	a	Nash	equilibrium,	there	is	no	unilateral	incentive	to	
move	away,	because	the	objective	value	would	be	worse	

–  In	ML	terms:	we	reach	convergence	of	gradient	descent	
for	the	joint	optimization	problem	

	

Theory	
•  Proposition	1:	For	any	generator	G,	the	optimal	
discriminator	is		

•  Theorem	1:	The	global	optimum	is	achieved	if	and	
only	if		

	

D⇤(x) =
pdata(x)

pdata(x) + pG(x)

pG(x) = pdata(x)

Theory	
•  Proposition	1:	For	any	generator	G,	the	optimal	
discriminator	is		

•  Theorem	1:	The	global	optimum	is	achieved	if	and	
only	if		

	
•  That	means	that	at	optimum:	
–  G	learns	the	data	distribution	
–  D	gives	same	probability	to	images	from	both	

D⇤(x) =
pdata(x)

pdata(x) + pG(x)

D⇤(x) = 1/2

pG(x) = pdata(x)

pG(x) = pdata(x)

Proof	of	proposition	1	

Fix	the	generator	G.	We	have:	
	
	
		

V (G,D) =

Z
pdata(x) logD(x)dx+

Z
pG(x) log(1�D(x))dx

=

Z
pdata(x) logD(x) + pG(x) log(1�D(x))dx

Proof	of	proposition	1	

Fix	the	generator	G.	We	have:	
	
	
	
Now	consider	the	function	in	the	integral:	
	
Its	maximum	is		
		

V (G,D) =

Z
pdata(x) logD(x)dx+

Z
pG(x) log(1�D(x))dx

=

Z
pdata(x) logD(x) + pG(x) log(1�D(x))dx

y ! a log(y) + b log(1� y)

y = a/(a+ b)

Proof	of	proposition	1	

Fix	the	generator	G.	We	have:	
	
	
	
Now	consider	the	function	in	the	integral:	
	
Its	maximum	is		
Therefore		

V (G,D) =

Z
pdata(x) logD(x)dx+

Z
pG(x) log(1�D(x))dx

=

Z
pdata(x) logD(x) + pG(x) log(1�D(x))dx

y ! a log(y) + b log(1� y)

y = a/(a+ b)

argmax
D

V (G,D) = D⇤(x) =
pdata(x)

pdata(x) + pG(x)

Theory	
•  Proposition	1:	For	any	generator	G,	the	optimal	
discriminator	is		

•  Theorem	1:	The	global	optimum	is	achieved	if	and	
only	if		

	

D⇤(x) =
pdata(x)

pdata(x) + pG(x)

pG(x) = pdata(x)

Proof	of	theorem	1	

If																																					then																												,	therefore	pG(x) = pdata(x) D⇤(x) = 1/2

min
G

V (G,D⇤) =

= Ex⇠pdata(x) logD
⇤(x) + Ex⇠pG(x) log(1�D⇤(x))

= Ex⇠pdata(x) log(1/2) + Ex⇠pG(x) log(1/2) = � log(4)

Proof	of	theorem	1	

If																																					then																												,	therefore	

•  This	is	the	objective	value	when		
•  We	need	to	prove	that	this	is	also	the	minimum	of	
the	objective.	(It	is	a	argmin	for	G)	

pG(x) = pdata(x) D⇤(x) = 1/2

pG(x) = pdata(x)

min
G

V (G,D⇤) =

= Ex⇠pdata(x) logD
⇤(x) + Ex⇠pG(x) log(1�D⇤(x))

= Ex⇠pdata(x) log(1/2) + Ex⇠pG(x) log(1/2) = � log(4)

Proof	of	theorem	1	
Ex⇠pdata(x) log

pdata(x)

pdata(x) + pG(x)

= Ex⇠pdata(x) log
2

2
· pdata(x)

pdata(x) + pG(x)

Proof	of	theorem	1	
Ex⇠pdata(x) log

pdata(x)

pdata(x) + pG(x)

= Ex⇠pdata(x) log
2

2
· pdata(x)

pdata(x) + pG(x)

= Ex⇠pdata(x)


log

2 · pdata(x)
pdata(x) + pG(x)

� log 2

�

= KL

✓
pdata

����
pdata + pG

2

◆
� log 2

Proof	of	theorem	1	

And	likewise:	

Ex⇠pdata(x) log
pdata(x)

pdata(x) + pG(x)

= Ex⇠pdata(x) log
2

2
· pdata(x)

pdata(x) + pG(x)

= Ex⇠pdata(x)


log

2 · pdata(x)
pdata(x) + pG(x)

� log 2

�

= KL

✓
pdata

����
pdata + pG

2

◆
� log 2

Ex⇠pG(x) log
pG(x)

pdata(x) + pG(x)
= KL

✓
pG

����
pdata + pG

2

◆
� log 2

Proof	of	theorem	1	

Hence	the	objective	is:	

	
	

V (G,D⇤) =

KL

✓
pdata

����
pdata + pG

2

◆
+KL

✓
pG

����
pdata + pG

2

◆
� log 4

Full	proofs	in	[Goodfellow	et	al.’14]	

Proof	of	theorem	1	

Hence	the	objective	is:	

Which	is	minimized	when	both	
	
	
Therefore																																						and	the	minimum	value	
is	again		

V (G,D⇤) =

KL

✓
pdata

����
pdata + pG

2

◆
+KL

✓
pG

����
pdata + pG

2

◆
� log 4

pdata =
pdata + pG

2
and pG =

pdata + pG
2

pG(x) = pdata(x)
� log(4)

Full	proofs	in	[Goodfellow	et	al.’14]	

A	word	of	caution	with	the	result	

•  We	have	proved	that	the	generator	will	fit	the	
distribution	of	the	real	data	

A	word	of	caution	with	the	result	

•  We	have	proved	that	the	generator	will	fit	the	
distribution	of	the	real	data	

•  But	in	practice:	
–  Finite	sample	size:	training	set	is	finite,	not	the	full	
distribution		

–  Parametric	limit:	the	generator	has	limit	capacity,	i.e.	
cannot	perfectly	represent	any	distribution	

–  Optimization	error:	optimizers	can	get	stuck	in	local	
optima	or	never	exactly	converge	to	global	optima	

A	word	of	caution	with	the	result	

•  We	have	proved	that	the	generator	will	fit	the	
distribution	of	the	real	data	

•  But	in	practice:	
–  Finite	sample	size:	training	set	is	finite,	not	the	full	
distribution		

–  Parametric	limit:	the	generator	has	limit	capacity,	i.e.	
cannot	perfectly	represent	any	distribution	

–  Optimization	error:	optimizers	can	get	stuck	in	local	
optima	or	never	exactly	converge	to	global	optima	

•  Note:	those	three	sources	of	approximation	are	
always	present	in	machine	learning	

Optimizing	the	joint	objective	

Practical	issues	with	training	GANs	

•  Difficult	to	train	in	practice:	
– Saddle	point	problem	

•  Harder	than	finding	a	minima/maxima	
– Balance	of	updates	of	D	and	G:	

•  D	too	weak:	no	gradient	for	G	to	improve	
•  D	too	strong:	too	hard	for	G	to	find	a	direction	to	fool	it	

•  The	choice	of	the	loss	function	in	the	min-max	games	
matters	a	lot	for	convergence.	Much	research	

activity	on	this	area.	

Deep	Convolutional	(DC)GAN	

•  Convolutional	layers	for	the	discriminator.	
•  De-convolutional	layers	for	the	generator:	

[Radford	et	al.’15]	

DCGAN:	random	bedroom	generation	

[Radford	et	al.’15]	

DCGAN:	bedroom	space	interpolation	

[Radford	et	al.’15]	

DCGAN:	latent	face	arithmetic	

[Radford	et	al.’15]	

DCGAN:	result	on	ImageNet	

Image	from	[Salisman	et	al.’16]	

•  ImageNet	dataset:	
–  1.2M	images	of	1K	classes	

Application	of	GAN:	image	to	image	
translation	(conditional	generation)	

Application	of	GAN:	image	to	image	
translation	(conditional	generation)	

Application	of	GAN:		image	super	
resolution	(conditional	generation)	

[Ledig	et	al.’17]	

GAN	main	points	

•  Adversarial	training:	train	generator	to	fool	the	
discriminator	

•  Form	of	consistency:	it	is	possible	in	principle	to	
recover	the	true	data	distribution	

•  Implicit	density	model:	density	and	likelihood	not	
defined.	Instead,	optimize	“realism”	

Application:	semi-supervised	learning	

•  Both	VAE	and	GAN	can	be	extended	for	semi-
supervised	learning:	
– Data		
– Goal																	(same	as	with	supervised	learning)	
– Classification	or	regression	

DL = {XL,Y } and DU = {XU}
p(y|x)

Application:	semi-supervised	learning	
Main	ideas:	
•  GAN		[Salisman	et	al.’16]:	discriminator	

D	is	multi-class	classifier	+	fake	class.	
With	many	unlabelled	images,	D	learns	
better	features	simply	by	setting	
unlabelled	=	any	class	but	fake.	

[Colah	https://goo.gl/TgvnH1]		

Application:	semi-supervised	learning	
Main	ideas:	
•  GAN		[Salisman	et	al.’16]:	discriminator	

D	is	multi-class	classifier	+	fake	class.	
With	many	unlabelled	images,	D	learns	
better	features	simply	by	setting	
unlabelled	=	any	class	but	fake.	

•  VAE	[Kingma	et	al.’16]:	label	is	part	of	
the	latent	space.	If	known,	use	it	to	
condition	the	decoder;	else,	it	is	
inferred.	Part	of	the	encoder	becomes	
the	classifier:	

[Kingma	https://goo.gl/a76HyH]	

[Colah	https://goo.gl/TgvnH1]		

q(y|x)

Application	of	semi-supervised	VAE:	
class-conditional	generation	

class-conditional	generation;	vary	z	

Application	of	semi-supervised	VAE:	
analogy	making	

z-fixed	generation;	vary	y.	Style	vs.	content	

Overview	

•  Introduction,	manifolds,	PCA	(Goodfellow’s	5.11.3,	
13.5)	

•  Auto-encoders	(14)	
–  Objective,	undercomplete	/	regularized	auto-encoders	
–  Denoising	auto-encoders,	contractive	auto-encoders	

	
•  Generative	models	(parts	of	20)	
–  Variational	auto-encoder	(20.9,	20.10.3)	
–  Generative	adversarial	network	(20.10.4,	20.10.6)	
–  PixelRNN,	models	evaluation	(20.10.7,	20.14)		

Auto-regressive	models	

•  Auto-regressive	generative	models:	generate	pixel	
by	pixel,	conditionally	to	the	previously	generated	

•  PixelRNN	[van	den	Oord	et	al.’16]	is	
auto-regressive	

•  It	runs	a	deep	recurrent	neural	
network	pixel	by	pixel,	row	by	row.		

p(x) =
n2Y

i=1

p(xi|x1, . . . , xi�1)

PixelRNN	

•  No	latent	variables:	
	
•  Learn	by	maximizing	exact	log	likelihood	
	

•  Generate	by	conditional	sampling,	pixel	by	pixel	

p(x) =
n2Y

i=1

p(xi|x1, . . . , xi�1)

argmax
✓

Ex log p✓(x)

Application	of	PixelRNN:		
image	completion	or	inpainting	

Qualitative	comparison	

•  VAE:	
–  Pros:	efficient	learning	and	sampling	
–  Cons:	blurry	images	

•  GAN:	
–  Pros:	most	realistic	samples	
–  Cons:	unstable	learning,	likely	to	underfit	

•  PixelRNN	
–  Pros:	straightforward	to	train,	exact	log	likelihood	
–  Cons:	no	latent	representation,	slow	sampling	(no	
parallelization)	

Quantitative	comparison	

In	supervised	learning	is	easy:	
•  Learn	on	trainset,	measure	performance	(e.g.	accuracy,	AUC)	

on	testset,	compare	

Quantitative	comparison	

In	supervised	learning	is	easy:	
•  Learn	on	trainset,	measure	performance	(e.g.	accuracy,	AUC)	

on	testset,	compare	
With	generative	models:	
•  Visual	quality…	not	enough	
•  Check	interpolation	in	latent	space…	still	a	qualitative	

measure	

Quantitative	comparison	

In	supervised	learning	is	easy:	
•  Learn	on	trainset,	measure	performance	(e.g.	accuracy,	AUC)	

on	testset,	compare	
With	generative	models:	
•  Visual	quality…	not	enough	
•  Check	interpolation	in	latent	space…	still	a	qualitative	

measure	
•  We	can	compare	the	log	likelihood	on	testset															.	But	:	
–  VAE	optimizes	a	lower	bound;	GAN	has	no	explicit	
likelihood,	but	it	can	be	approximated.	

–  How	to	compare	different	likelihood	approximations	?	

log p(x)

Quantitative	comparison	

With	generative	models:	
•  Models	can	underfit	and	overfit	at	the	same	time:	
memorize	cat	images	(overfit)	and	completely	avoid	
to	learn	about	dogs	(underfit).	Very	hard	to	check.	

Quantitative	comparison	

With	generative	models:	
•  Models	can	underfit	and	overfit	at	the	same	time:	
memorize	cat	images	(overfit)	and	completely	avoid	
to	learn	about	dogs	(underfit).	Very	hard	to	check.	

•  A	heuristic	check	for	overfitting:	given	a	generated	
image,	search	in	the	training	set	the	closest	one.	Are	
they	“too”	similar?	

Quantitative	comparison	

With	generative	models:	
•  Models	can	underfit	and	overfit	at	the	same	time:	
memorize	cat	images	(overfit)	and	completely	avoid	
to	learn	about	dogs	(underfit).	Very	hard	to	check.	

•  A	heuristic	check	for	overfitting:	given	a	generated	
image,	search	in	the	training	set	the	closest	one.	Are	
they	“too”	similar?	

•  Log-likelihood	is	not	necessarily	related	with	quality	
(realism)	of	samples	[Theis	et	al.’16]		

Quantitative	comparison	

Evaluation	of	generative	models	is	an	open	problem.	

	

A	safer	approach	in	applications:	
•  If	the	generator	is	used	for	a	specific	application	
(e.g.	semi-supervised	classification,	super-
resolution,	etc.),	evaluate	the	generator	by	the	final	
task	performance,	not	by	itself.	

Question:	GAN	vs.	adversarial	
examples	

Answers	by	Ian	Goodfellow:	
•  How	do	they	relate?	(this	may	be	rather	confusing	:-)	
https://www.quora.com/In-what-way-are-Adversarial-
Networks-related-or-different-to-Adversarial-Training	
	
•  Is	adversarial	training	(aka	the	GAN	way)	effective	
against	adversarial	examples?	

https://www.quora.com/Is-adversarial-training-
effective-against-adversarial-examples-in-general	

1	hour	of	imaginary	celebrities		

Progressive	GAN	by	NVIDIA	[Carras	et	al.’18]	
•  https://www.youtube.com/watch?
v=36lE9tV9vm0	

	

Material	and	contact	
Lectures	material	based	on:	
•  Goodfellow’s	Deep	Learning	(book)	
•  Efstratios	Gavves’s	slides	from	last	year	
•  Larochelle	deep	learning	course	https://goo.gl/bvNPDt	
•  Auto-encoders	tutorial	in	Keras	https://goo.gl/9kCxqz	
•  Durk	Kingma	PhD	thesis	(VAE	Chapter	recommended)	

https://www.dropbox.com/s/v6ua3d9yt44vgb3/
cover_and_thesis.pdf?dl=1	

•  Goodfellow	tutorial	on	GAN,	NIPS	2016	(recommended)	
	
For	questions	&	Master	thesis	projects:	g.patrini@uva.nl	
	
	

Other	references	(generative	models)	
Links:	
•  Generative	models	by	OpenAI,	blog	post	https://goo.gl/i5v9VQ	
•  Kingma	NIPS15	workshop	on	VAE	https://goo.gl/a76HyH	
•  Blog	post	on	VAE	https://jaan.io/what-is-variational-autoencoder-vae-tutorial/	
•  DCGAN	repo	with	visual	results	https://github.com/Newmu/dcgan_code	
Papers:	
•  Kingma	&	Welling:	Auto-encoding	variational	Bayes,	ICLR14	
•  Rezende	et	al.,	Stochastic	backpropagation	and	approximate	inference	in	deep	generative	models	

ICML14	
•  Kingma	et	al.,	Semi-supervised	learning	with	deep	generative	models,	NIPS14	
•  Goodfellow	et	al.,	Generative	adversarial	networks,	NIPS14	
•  Salisman	et	al.,	Improved	techniques	for	training	GANs,	NIPS16		
•  van	den	Oord	et	al.,	Pixel	recurrent	neural	network,	ICML16	
•  Theis	et	al.,	A	note	on	the	evaluation	of	generative	models,	ICLR16	
•  Isola	et	al.,	Image	to	image	translation,	with	conditional	adversarial	networks,	CVPR17	
•  Ledig	et	al,	Photo-realistic	single	image	super-resolution	using	a	generative	adversarial	network,	

CVPR17	
•  Carras	et	al.,	Progressive	growing	of	GANs	for	improved	quality,	stability,	and	variation,	2018	

