

Lecture 1: Introduction to Deep Learning

Efstratios Gavves

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

INTRODUCTION TO DEEP LEARNING - 1

- Assistant Professor with the QUVA Lab
 - Academic-Industry lab between UvA and Qualcomm
- Deep Machine Learning & Temporal Learning/Dynamics
 - How to use time to learn about the underlying structure in sequences? Forecasting future-intime structure?
 - Better large scale recurrent models
 - Temporal Causality

oCo-founder of newly started <u>ELLOGON.AI</u>

- Delivering world-class AI to accelerate business
- Focus on Medical and Legal

• Always looking for top students, especially if they can combine with top software dev experience

UNIVERSITY OF AMSTERDAM

L ELLOGON.AI

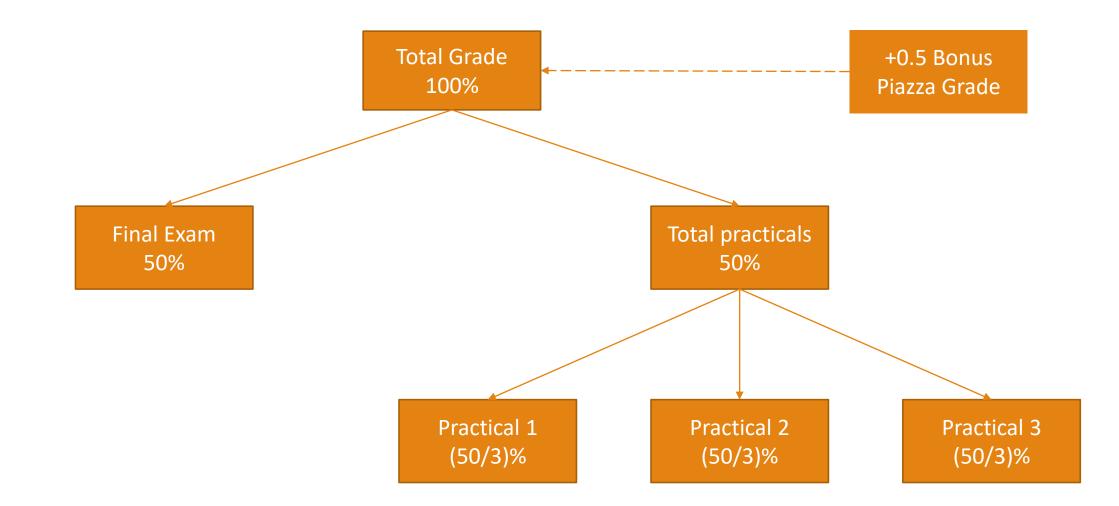
- Machine Learning 1
- o Calculus, Linear Algebra
 - Derivatives, integrals
 - Matrix operations
 - Computing lower bounds, limits
- Probability Theory, Statistics
- Advanced programming
- Time, patience & drive

Learning Goals

- Design and Program Deep Neural Networks
- Advanced Optimizations (SGD, Nestorov's Momentum, RMSprop, Adam) and Regularizations
- Convolutional and Recurrent Neural Networks (feature invariance and equivariance)
- Graph CNNs
- Unsupervised Learning and Autoencoders
- Generative models (RBMs, Variational Autoencoders, Generative Adversarial Networks)
- Bayesian Neural Networks and their Applications
- Advanced Temporal Modelling, Credit Assignment, Neural Network Dynamics
- Biologically-inspired Neural Networks
- Deep Reinforcement Learning

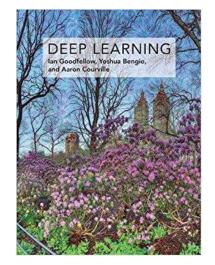
- o 3 individual practicals
- In PyTorch, you can use SURF-SARA
- Practical 1: Convnets and Optimizations
- Practical 2: Recurrent Networks and Graph CNNs
- Practical 3: Generative Models
- VAEs, GANs, Normalizing Flows
- Plagiarism will not be tolerated
 - Feel free to actively help each other, however

Grading



- Course: Theory (4 hours per week) + Labs (4 hours per week)
 - All material on http://uvadlc.github.io
 - Book: Deep Learning by I. Goodfellow, Y. Bengio, A. Courville (available online)
- Live interactions via Piazza. Please, subscribe today!
 - Link: <u>https://piazza.com/university_of_amsterdam/spring2019/uvadlc</u>

- Practicals are individual!
 - More than encouraged to cooperate but not copy The top Piazza contributors get +0.5 grade
 - Plagiarism checks on reports and code → Do not cheat!
 Otherwise the standard rules apply



Who we are and how to reach us

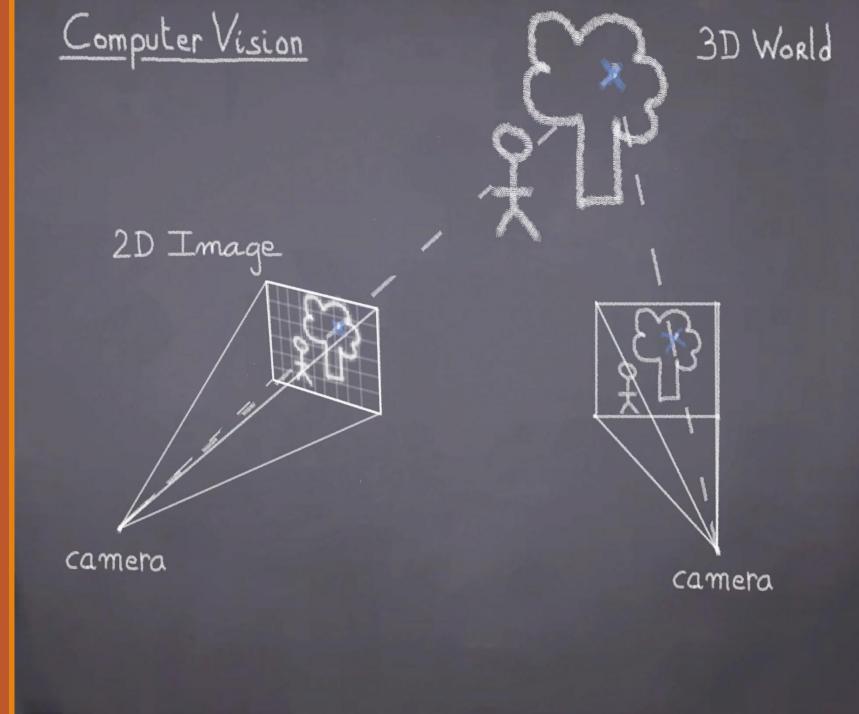
- Efstratios Gavves
 - Assistant Professor, QUVA Deep Vision Lab (C3.229)
 - Temporal Models, Spatiotemporal Deep Learning, Video Analysis
- Teaching Assistants

• Applications of Deep Learning in Vision, Robotics, Game AI, NLP

• A brief history of Neural Networks and Deep Learning

• Neural Networks as modular functions

Applications of Deep Learning

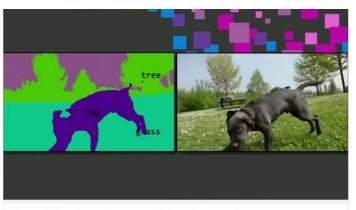


UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 10

Deep Learning in practice

<u>YouTube</u>

Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Youtube

Microsoft Deep Learning Semantic Image Segmentation

Website

DensePose: Dense Human Pose Estimation In The Wild

Rıza Alp Güler * Natalia Neverova Iasonas Kokkinos INRIA, CentraleSupélec Facebook Al Research Facebook Al Research

Youtube

Deep Sensorimotor Learning

Google DeepMind's Deep Q-learning playing Atari Breakout

Newspaper	s			
New York Times	Baltimore	Baltimore Sun		
San Jose Mercury News	Cincinnati	Cincinnati Enquirer		
NHL Teams				
Boston Bruins	Montreal	Montreal Canadiens		
Phoenix Coyotes	Nashville	Nashville Predators		
NBA Teams				
Detroit Pistons	Toronto	Toronto Raptors		
Golden State Warriors	Memphis	Memphis Grizzlies		
Airlines				
Austrian Airlines	Spain	Spainair		
Brussels Airlines	Greece	Aegean Airlines		
Company executives				
Microsoft	Larry Page	Google		
IBM	Werner Vogels	Amazon		
	New York Times San Jose Mercury News NHL Team Boston Bruins Phoenix Coyotes NBA Team Detroit Pistons Golden State Warriors Austrian Airlines Brussels Airlines Company exect Microsoft	San Jose Mercury News Cincinnati NHL Teams Montreal Boston Bruins Montreal Phoenix Coyotes Nashville Detroit Pistons Toronto Golden State Warriors Memphis Airlines Spain Brussels Airlines Greece Company executives Microsoft		

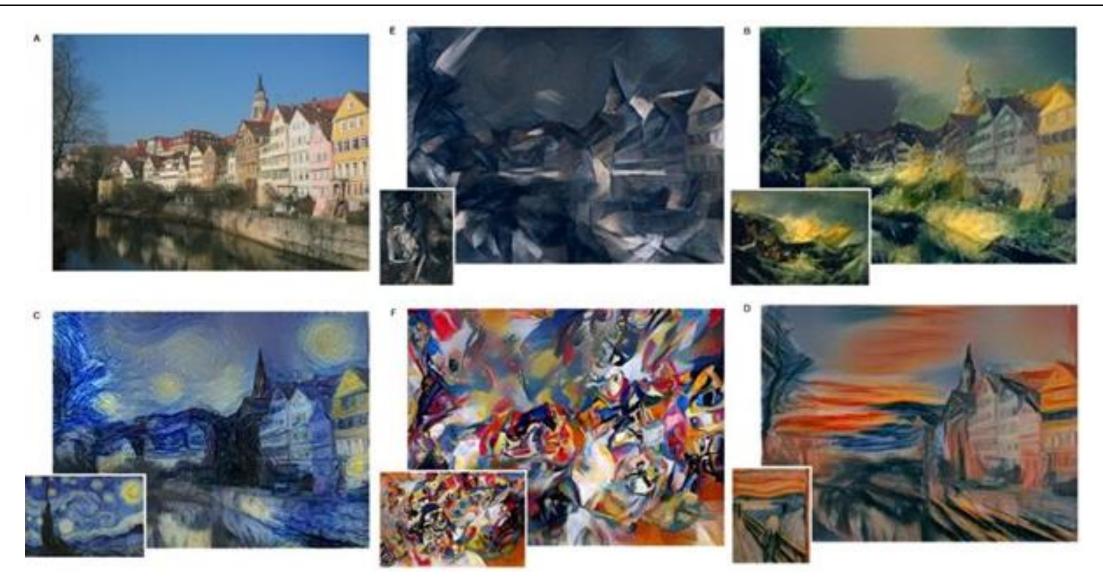
Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples). The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy of 72% on this dataset.

Why should we be impressed?

- Vision is ultra challenging!
 - For 256x256 resolution $\rightarrow 2^{524,288}$ of possible images (10^{24} stars in the universe)
 - Large visual object variations (viewpoints, scales, deformations, occlusions)
 - Large semantic object variations
- Robotics is typically considered in controlled environme
- Game AI involves extreme number of possible games states ($10^{10^{48}}$ possible GO games)
- NLP is extremely high dimensional and vague (just for English: 150K words)



Deep Learning even for the arts



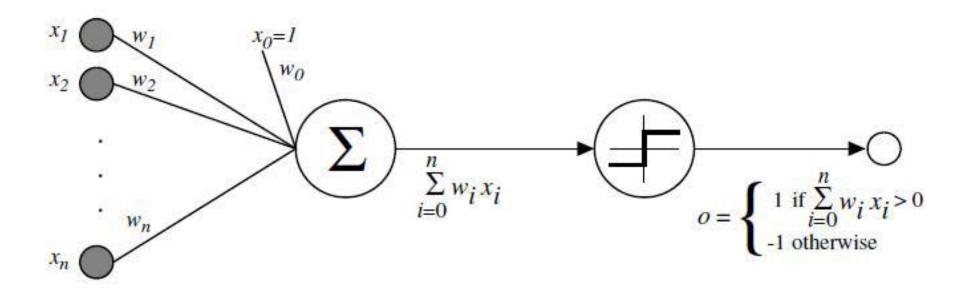
A brief history of Neural Networks & Deep Learning

Frank Rosenblatt

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 14

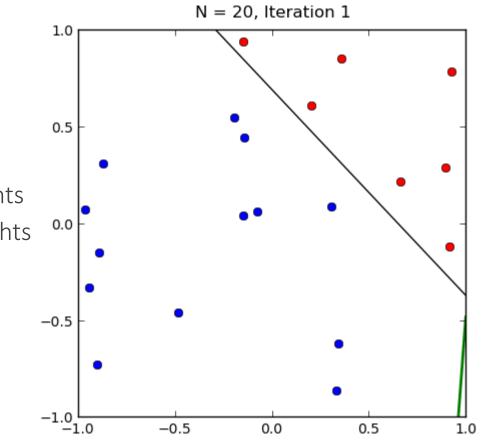
First appearance (roughly)

- Rosenblatt proposed **Perceptrons** for binary classifications
 - One weight w_i per input x_i
 - Multiply weights with respective inputs and add bias $x_0 =+1$
 - If result larger than threshold return 1, otherwise 0



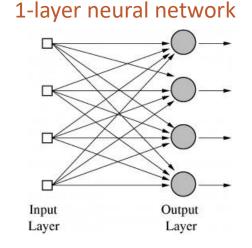
Training a perceptron

- o Rosenblatt's innovation was mainly the learning algorithm for perceptrons
- Learning algorithm
 - Initialize weights randomly
 - $^{\circ}$ Take one sample x_i and predict y_i
 - For erroneous predictions update weights
 - If prediction $\widehat{y_i} = 0$ and ground truth $y_i = 1$, increase weights
 - If prediction $\widehat{y_i} = 1$ and ground truth $y_i = 0$, decrease weights
 - Repeat until no errors are made



From a single layer to multiple layers

- o 1 perceptron == 1 decision
- What about multiple decisions?
 - E.g. digit classification
- Stack as many outputs as the possible outcomes into a layer
 - Neural network



What's is a potential problem with perceptrons?

- They can only return one output, so only work for binary problems
- They are linear machines, so can only solve linear problems
- They can only work for vector inputs
- They are too complex to train, so they can work with big computers only

What's is a potential problem with perceptrons?

- They can only return one output, so only work for binary problems
- They are linear machines, so can only solve linear problems
- They can only work for vector inputs
- They are too complex to train, so they can work with big computers only

XOR & Single-layer Perceptrons

• However, the exclusive or (XOR) cannot be solved by perceptrons

• [Minsky and Papert, "Perceptrons", 1969]

Input 1	Input 2	Output
1	1	0
1	0	1
0	1	1
0	0	0

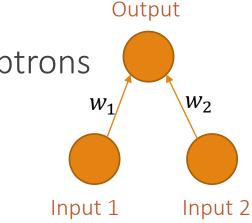
$$\circ 0 w_{1} + 0w_{2} < \theta \rightarrow 0 < \theta$$

$$\circ 0 w_{1} + 1w_{2} > \theta \rightarrow w_{2} > \theta$$

$$\circ 1 w_{1} + 0w_{2} > \theta \rightarrow w_{1} > \theta$$

$$\circ 1 w_{1} + 1w_{2} < \theta \rightarrow w_{1} + w_{2} < \theta$$

Inconsistent!!

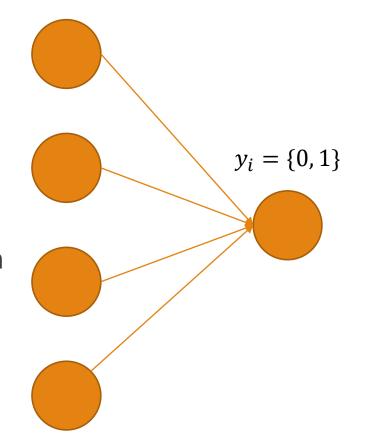


Graphically

The classification boundary to solve XOR is not a line!!

Minsky & Multi-layer perceptrons

- Interestingly, Minksy never said XOR cannot be solved by neural networks
 - Only that XOR cannot be solved with **<u>1 layer</u>** perceptrons
- <u>Multi-layer perceptrons can solve</u> XOR
 9 years earlier Minsky built such a multi-layer perceptron
- However, how to train a multi-layer perceptron?
- Rosenblatt's algorithm not applicable
 - It expects to know the desired target

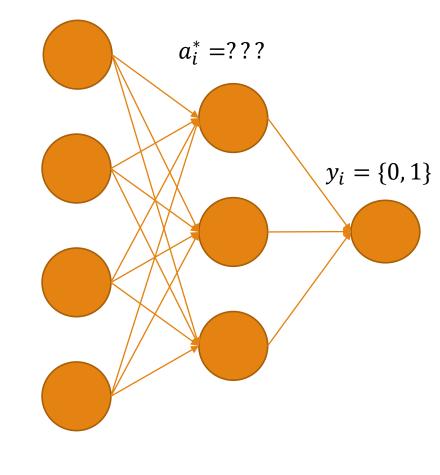


Minsky & Multi-layer perceptrons

 Minksy never said XOR is unsolvable by multilayer perceptrons

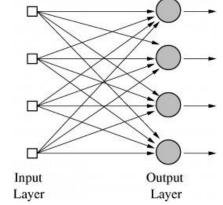
<u>Multi</u>-layer perceptrons <u>can solve</u> XOR

- Problem: how to train a multi-layer perceptron?
 - Rosenblatt's algorithm not applicable
 - It expects to know the ground truth a_i^* for a variable a_i
 - For the output layers we have the ground truth labels
 - For intermediate hidden layers we don't

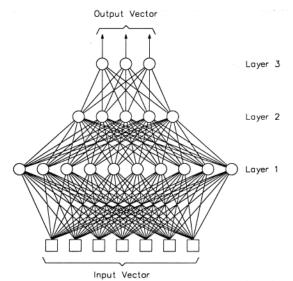


From a single layer to multiple layers

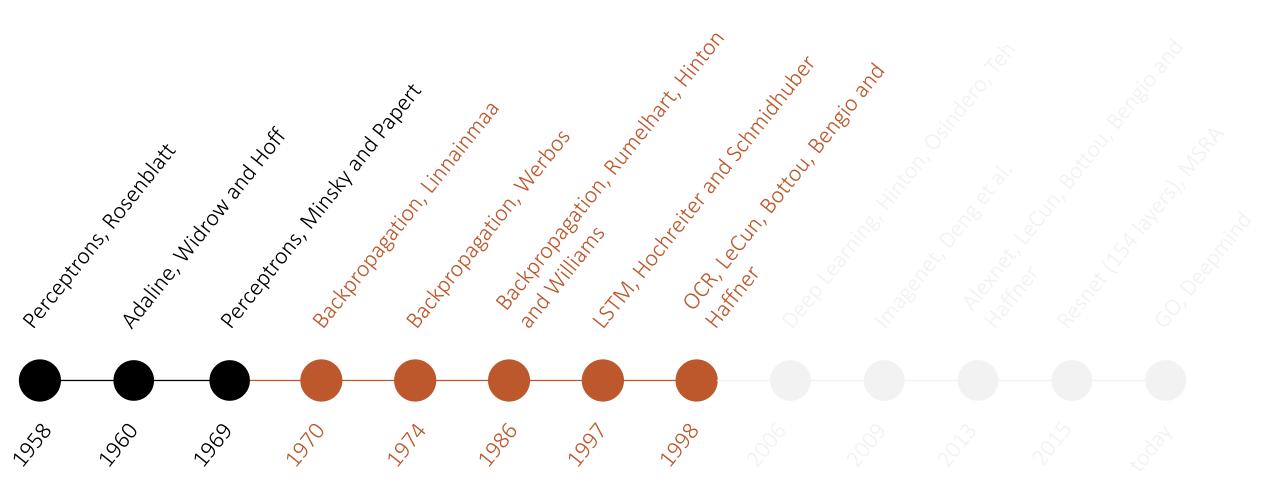
- o 1 perceptron == 1 decision
- What about multiple decisions?
 - E.g. digit classification
- Stack as many outputs as the possible outcomes into a layer
 - Neural network
- Use one layer as input to the next layer
 - Add nonlinearities between layers
 - Multi-layer perceptron (MLP)



Multi-layer perceptron



The "AI winter" despite notable successes



• What everybody thought: "If a perceptron cannot even solve XOR, why bother?

• Results not as promised (too much hype!) \rightarrow no further funding \rightarrow Al Winter

• Still, significant discoveries were made in this period

- Backpropagation \rightarrow Learning algorithm for MLPs (Lecture 2)
- Recurrent networks \rightarrow Neural Networks for infinite sequences (Lecture 5)

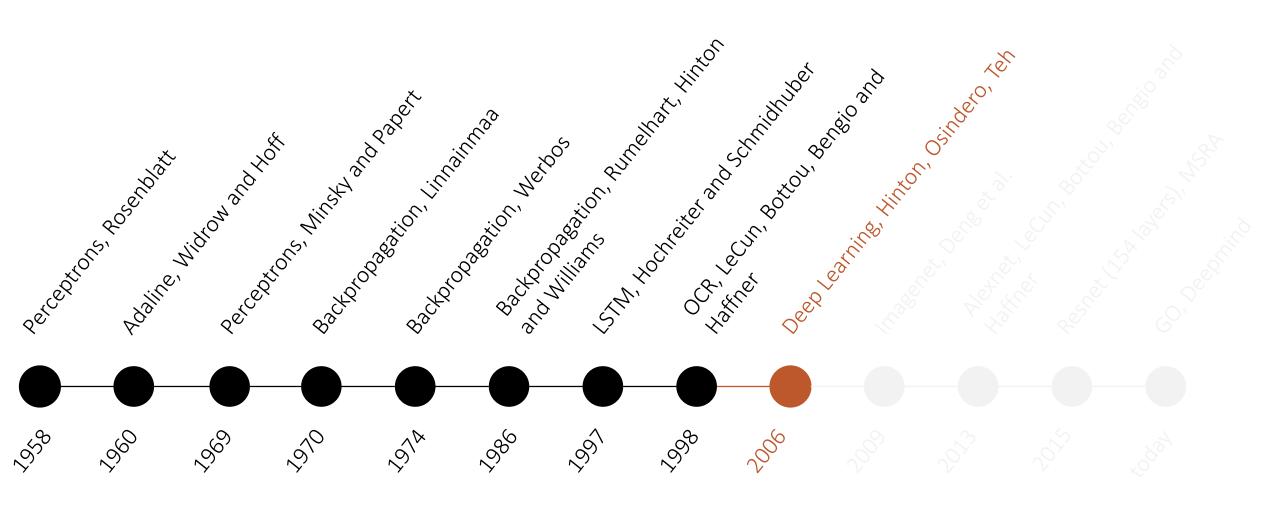
• Concurrently with Backprop and Recurrent Nets, new and promising Machine Learning models were proposed

• Kernel Machines & Graphical Models

• Similar accuracies with better math and proofs and fewer heuristics

• Neural networks could not improve beyond a few layers

The thaw of the "AI winter"

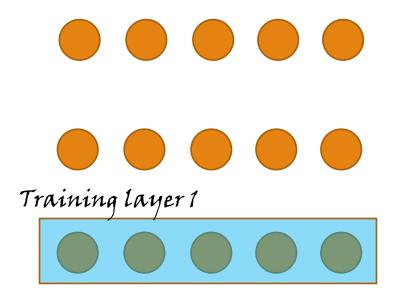


Neural Network problems a decade ago

- Lack of processing power
- Lack of data
- Overfitting
- Vanishing gradients
- Experimentally, training multi-layer perceptrons was not that useful
 - Accuracy didn't improve with more layers
 - Are 1-2 hidden layers the best neural networks can do?

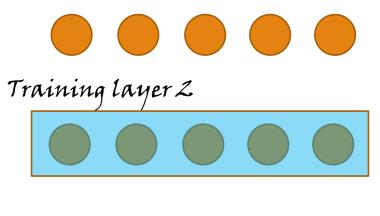
Deep Learning arrives

- Layer-by-layer training
 - The training of each layer individually is an easier undertaking
- Training multi-layered neural networks became easier
- Per-layer trained parameters initialize further training using contrastive divergence



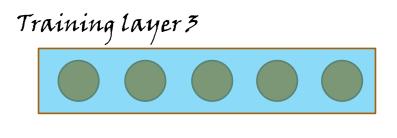
Deep Learning arrives

- Layer-by-layer training
 - The training of each layer individually is an easier undertaking
- Training multi-layered neural networks became easier
- Per-layer trained parameters initialize further training using contrastive divergence

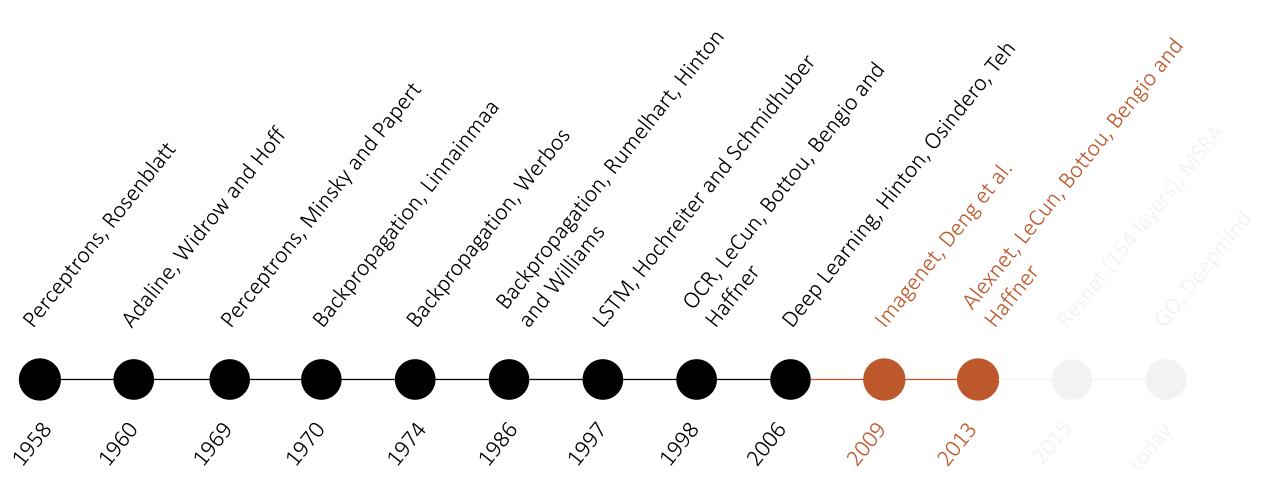


Deep Learning arrives

- Layer-by-layer training
 - The training of each layer individually is an easier undertaking
- Training multi-layered neural networks became easier
- Per-layer trained parameters initialize further training using contrastive divergence



Deep Learning Renaissance

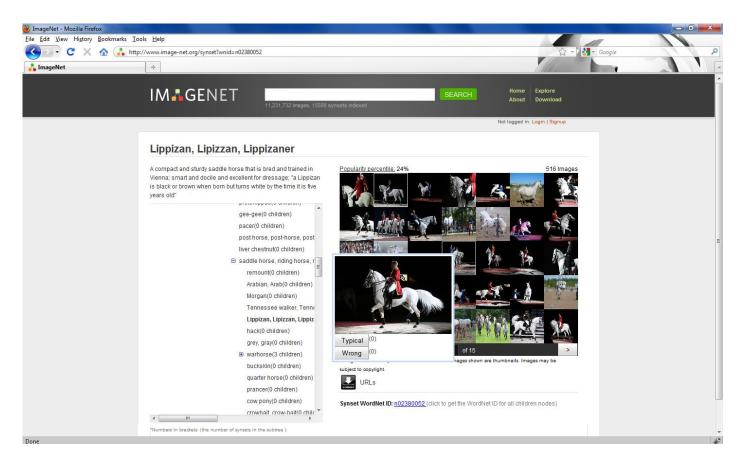


Deep Learning is **Big Data Hungry!**

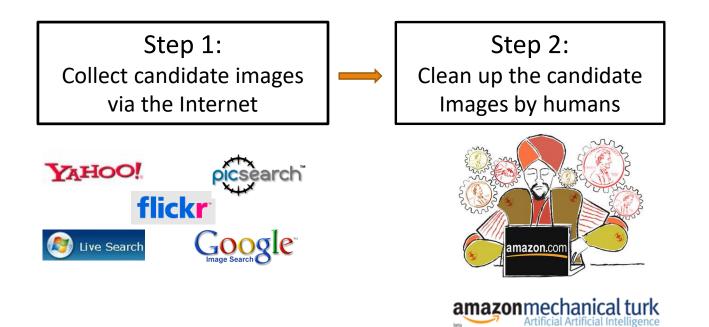
- In 2009 the Imagenet dataset was published [Deng et al., 2009]
 - Collected images for each of the 100K terms in Wordnet (16M images in total)
 - Terms organized hierarchically: "Vehicle" \rightarrow "Ambulance"

- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
 - 1 million images
 - 1,000 classes
 - Top-5 and top-1 error measured

IM¹GENET



http://www.image-net.org



INTRODUCTION TO DEEP LEARNING - 36

o July 2008: 0 images

• Dec 2008: 3 million images, 6K+ synsets

• April 2010: 11 million images, 15K+ synsets

• Currently: 14 million images, 21K synsets indexed

ImageNet Large Scale Visual Recognition Challenge

- Ran from 2010 to 2017
 - Today a Kaggle competition

- Main task: image classification
 - Automatically label 1.4M images with 1K objects
 - Measure top-5 classification error

Deep learning at ImageNet classification challenge

2012 Teams	%error
Supervision (Toronto)	15.3
ISI (Tokyo)	26.1
VGG (Oxford)	26.9
XRCE/INRIA	27.0
UvA (Amsterdam)	29.6
INRIA/LEAR	33.4

CNN based, non-CNN based

Figures from Y. LeCun's CVPR 2015 plenary talk

Deep learning at ImageNet classification challenge

2012 Teams	%error		2013 Teams	%error
Supervision (Toronto)	15.3		Clarifai (NYU spinoff)	11.7
ISI (Tokyo)	26.1		NUS (singapore)	12.9
VGG (Oxford)	26.9		Zeiler-Fergus (NYU)	13.5
XRCE/INRIA	27.0	l	A. Howard	13.5
UvA (Amsterdam)	29.6	١	OverFeat (NYU)	14.1
INRIA/LEAR	33.4		UvA (Amsterdam)	14.2
			Adobe	15.2
			VGG (Oxford)	15.2
			VGG (Oxford)	23.0

CNN based, non-CNN based

Figures from Y. LeCun's CVPR 2015 plenary talk

Deep learning at ImageNet classification challenge

2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	хүх	11.2
		VGG (Oxford)	23.0	UvA	12.1

CNN based, non-CNN based

Figures from Y. LeCun's CVPR 2015 plenary talk

ImageNet 2012 winner: AlexNet

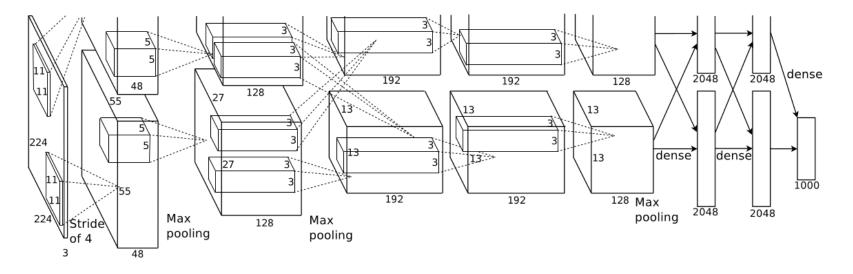
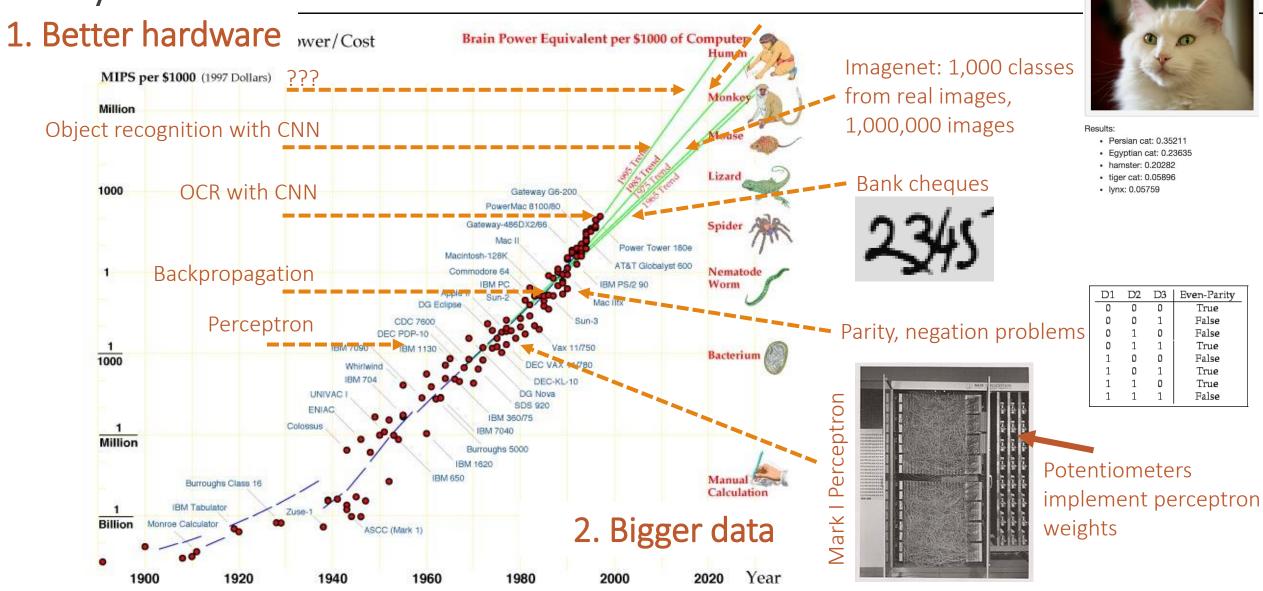


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

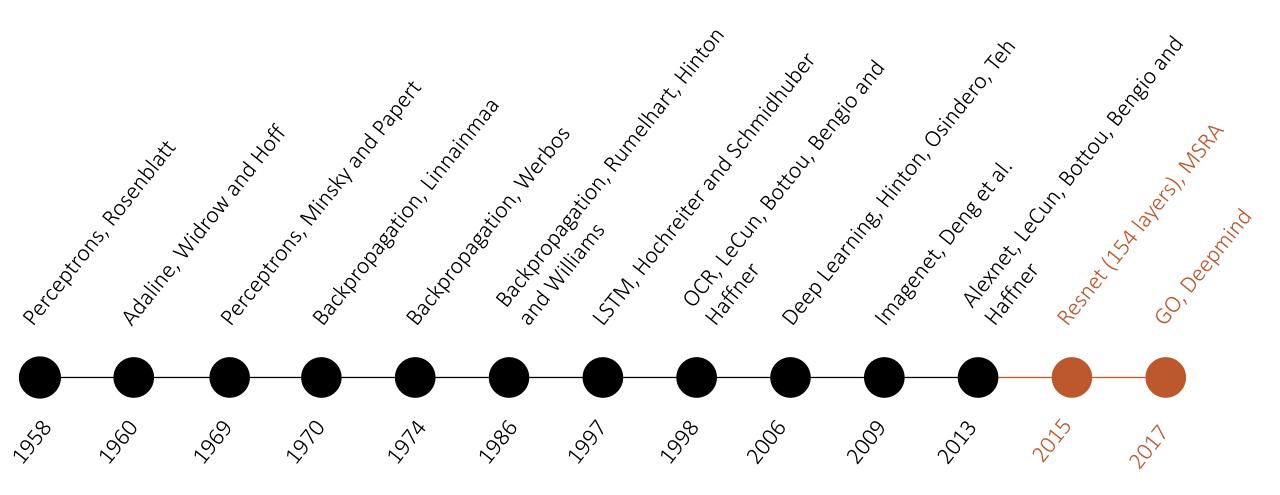
Krizhevsky, Sutskever & Hinton, NIPS 2012

Why now?

Datasets of everything (captions, questionanswering, ...), reinforcement learning, ???

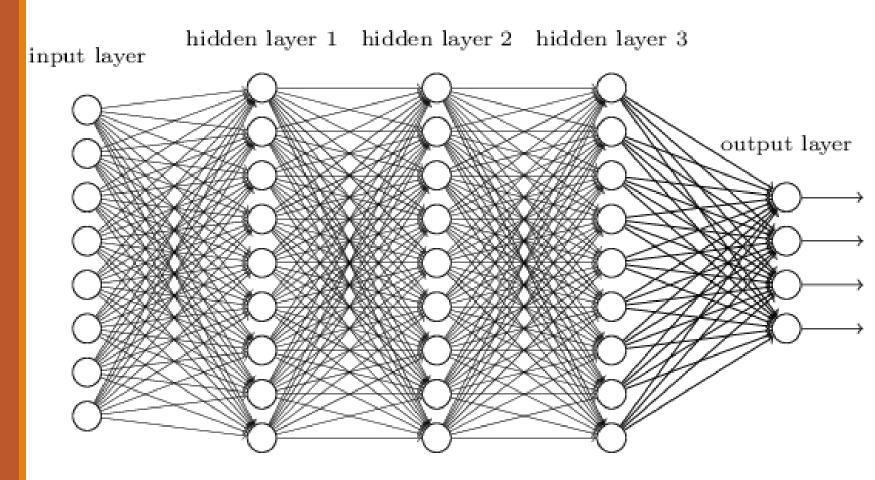


Deep Learning Golden Era



Deep Learning: The *What* and *Why*

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 45



Long story short

• A family of parametric, non-linear and hierarchical representation learning functions, which are massively optimized with stochastic gradient descent to encode domain knowledge, i.e. domain invariances, stationarity.

•
$$a_L(x; \theta_{1,...,L}) = h_L(h_{L-1}(..., h_1(x, \theta_1), \theta_{L-1}), \theta_L)$$

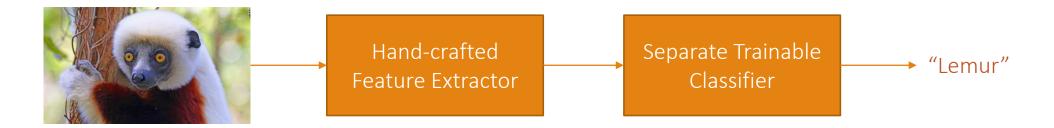
• x:input, θ_l : parameters for layer l, $a_l = h_l(x, \theta_l)$: (non-)linear function

• Given training corpus $\{X, Y\}$ find optimal parameters

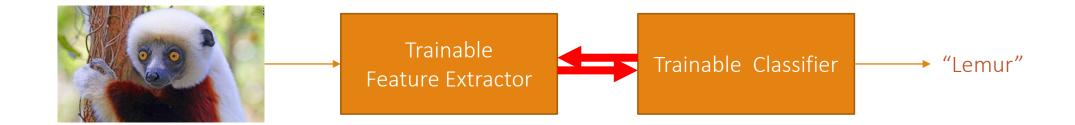
$$\theta^* \leftarrow \arg\min_{\theta} \sum_{(x,y) \subseteq (X,Y)} \ell(y, a_L(x; \theta_{1,\dots,L}))$$

Learning Representations & Features

• Traditional pattern recognition



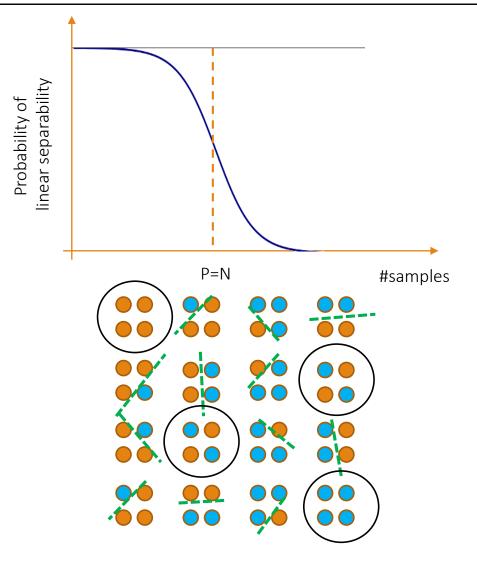
\circ End-to-end learning \rightarrow Features are also learned from data



Non-separability of linear machines

$$\circ \ X = \{x_1, x_2, \dots, x_n\} \in \mathcal{R}^d$$

- Given the n points there are in total 2^n dichotomies
- Only about *d* are linearly separable
- With n > d the probability X is linearly separable converges to 0 very fast
- The chances that a dichotomy is linearly separable is very small



How to solve non-separability of linear machines?

- Apply SVM
- Use non-linear features
- Use non-linear kernels
- Use advanced optimizers, like Adam or Nesterov's Momentum

How to solve non-separability of linear machines?

- Apply SVM
- Use non-linear features
- Use non-linear kernels
- Use advanced optimizers, like Adam or Nesterov's Momentum

Non-linearizing linear machines

- Most data distributions and tasks are non-linear
- A linear assumption is often convenient, but not necessarily truthful
- **Problem:** How to get non-linear machines without too much effort?

Non-linearizing linear machines

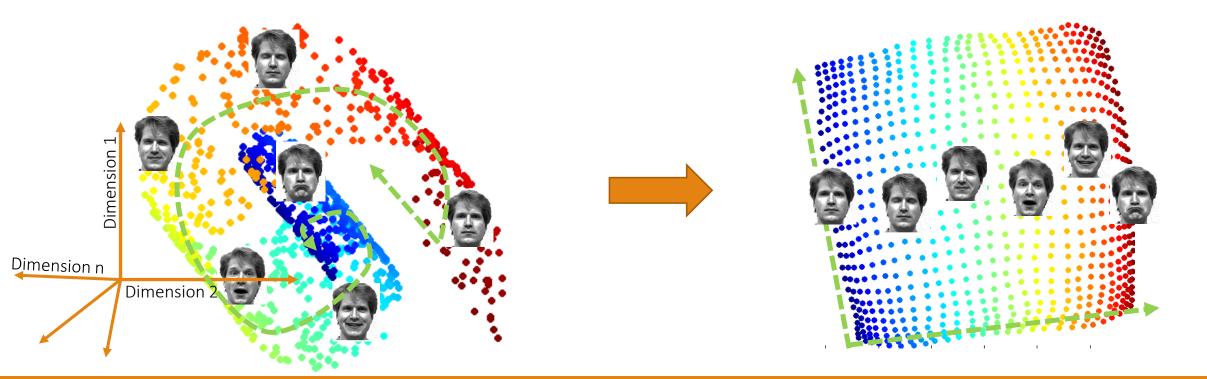
- Most data distributions and tasks are non-linear
- A linear assumption is often convenient, but not necessarily truthful
- **Problem:** How to get non-linear machines without too much effort?
- Solution: Make features non-linear
- What is a good non-linear feature?
 - Non-linear kernels, e.g., polynomial, RBF, etc
 - Explicit design of features (SIFT, HOG)?

Good features

- Invariant ... but not too invariant
- Repeatable ... but not bursty
- Discriminative ... but not too class-specific
- Robust ... but sensitive enough

Manifolds

- Raw data live in huge dimensionalities
- But, effectively lie in lower dimensional manifolds
- Can we discover this manifold to embed our data on?



How to get good features?

- Goal: discover these lower dimensional manifolds
 - These manifolds are most probably highly non-linear

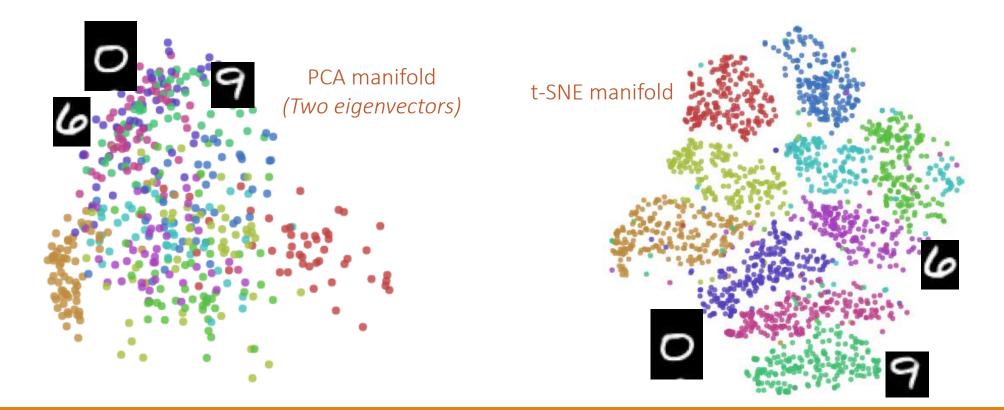
• First hypothesis: Semantically similar things lie closer together than semantically dissimilar things

Second hypothesis: A face (or any other image) is a point on the manifold
 → Compute the coordinates of this point and use them as a feature
 → Face features will be separable

The digits manifolds

• There are good features (manifolds) and bad features

• 28 pixels x 28 pixels = 784 dimensions

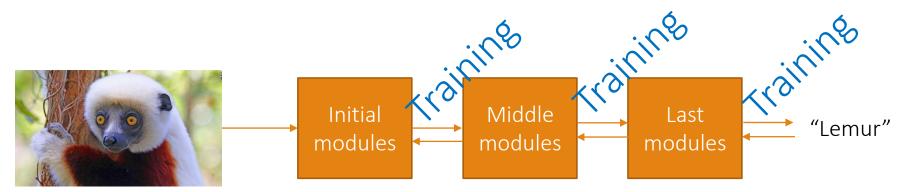


End-to-end learning of feature hierarchies

• A pipeline of successive, differentiable modules • Each module's output is the input for the next module

• Each subsequent module produce higher abstraction features

• Preferably, input <u>as raw as possible</u>



Why learn the features and not just design them?

- Designing features manually is too time consuming and requires expert knowledge
- Learned features give us a better understanding of the data
- Learned features are more compact and specific for the task at hand
- Learned features are easy to adapt
- Features can be learnt in a plug-n-play fashion, ease for the layman

Why learn the features and not just design them?

- Designing features manually is too time consuming and requires expert knowledge
- Learned features give us a better understanding of the data
- Learned features are more compact and specific for the task at hand
- Learned features are easy to adapt
- Features can be learnt in a plug-n-play fashion, ease for the layman

Why learn the features?

- Manually designed features
 - Expensive to research & validate

- Learned features
- If data is enough, easy to learn, compact and specific

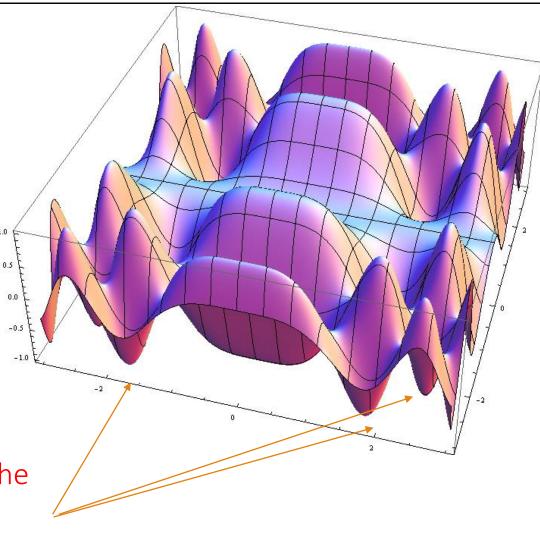
• Time spent for <u>designing features</u> now spent for <u>designing architectures</u>

So, why deep and not shallow?

- Although with two-layer (shallow) network, we can approximate all possible functions
 - Given the network layers are wide enough
- Deep architectures tend to be more efficient
 - Or otherwise, the network capacity given number of parameters is larger
- Also, deep and narrow architectures tend to generalize better than shallow and wide architectures

(Non)-convexity

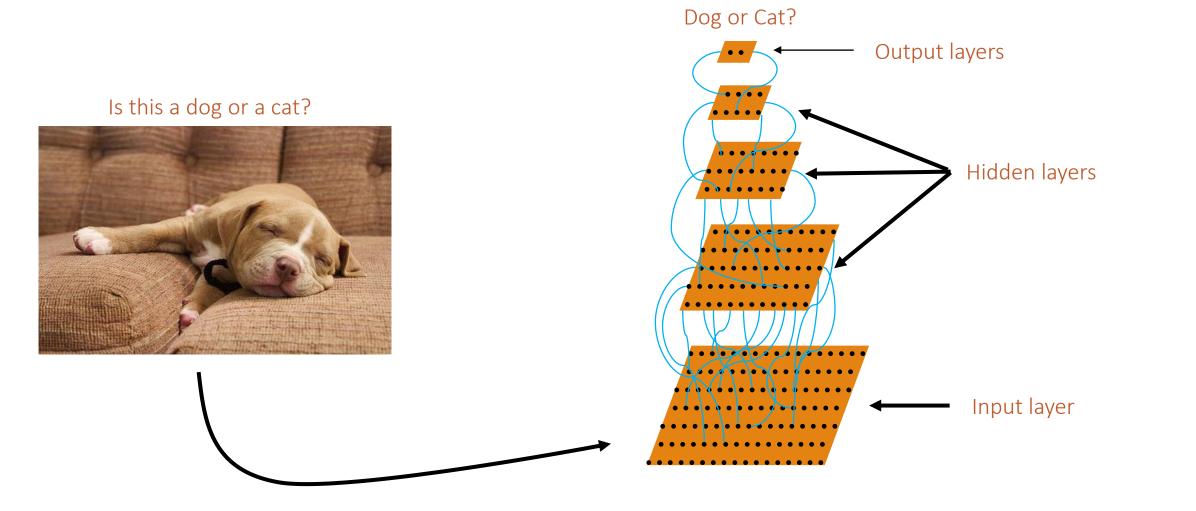
- Highly non-convex
 - neural networks are stable and accurate enough though
 - So, is this more of a real problem or an interesting observation we should explain?
- Most local optima lie close to the global optima and hence all lead to equivalent solutions
- Whether you have one set of parameters or another matters little in practice
- o Often ensembles of models are preferred anywa
- Many assumptions made to obtain the result
- You cannot know if your local optimum is near the global optimum
 Roughly equivalent



Types of learning

• Supervised learning, e.g. Convolutional Networks

Convolutional networks

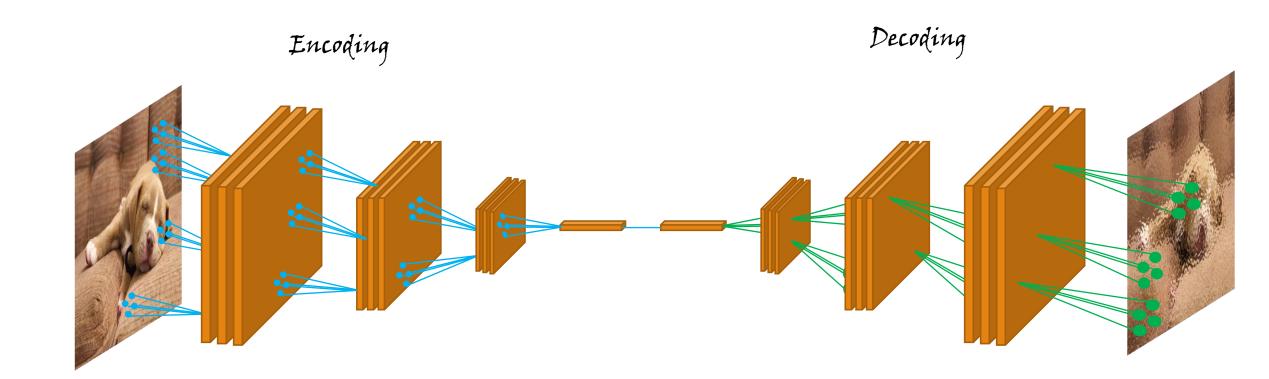


Types of learning

• Supervised learning, e.g. Convolutional Networks

• Unsupervised learning, e.g. Autoencoders

Autoencoders



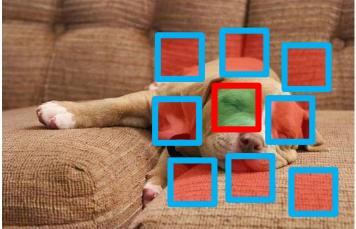
Types of learning

Supervised learning, e.g. Convolutional Networ

• Unsupervised learning, e.g. Autoencoders

Self-supervised learning

• A mix of supervised and unsupervised learning



Types of learning

• Supervised learning, e.g. Convolutional Networks

• Unsupervised learning, e.g. Autoencoders

• Self-supervised learning

• A mix of supervised and unsupervised learning

• Reinforcement learning

• Agent perform actions in an environment and gets rewards

Many unanswered theoretical questions

- Theory of unsupervised learning equivalent to statistical learning theory? How to do best unsupervised learning?
- Several intractable deep network losses
- Deep structured outputs
- Combining external static knowledge (e.g. Wikipedia knowledge) with stochastic methods like neural nets
- And many more ...

• Hopefully, some will answered by you in the near future ;)

Philosophy of the course

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 70

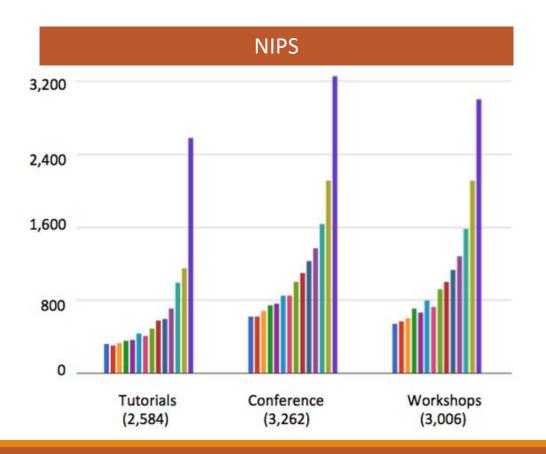
The bad news $\ensuremath{\mathfrak{S}}$

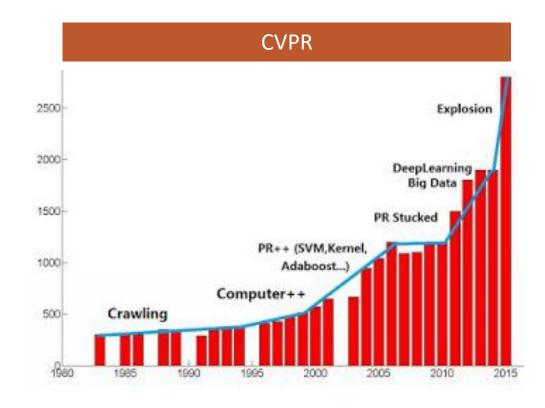
- We only have 2 months = 14 lectures
- Lots of material to cover
- Hence, no time to lose
 - Basic neural networks, learning PyTorch, learning to program on a server, advanced optimization techniques, convolutional neural networks, recurrent neural networks, generative models
- This course is hard
 - But is optional
 - From previous student evaluations, it has been very useful for everyone

- We are here to help
 - Last year we got a great evaluation score, so people like it and learn from it
 - In fact, the course appeared in <u>a top-20 list</u> of Deep Learning courses taught worldwide
 - Top-1 is Hinton's
- We have agreed with SURF SARA to give you access to the Dutch Supercomputer Cartesius with a bunch of (very) expensive GPUs
- You'll get to know some of the hottest stuff in AI today
- You'll get to present your own work to an interesting/ed crowd

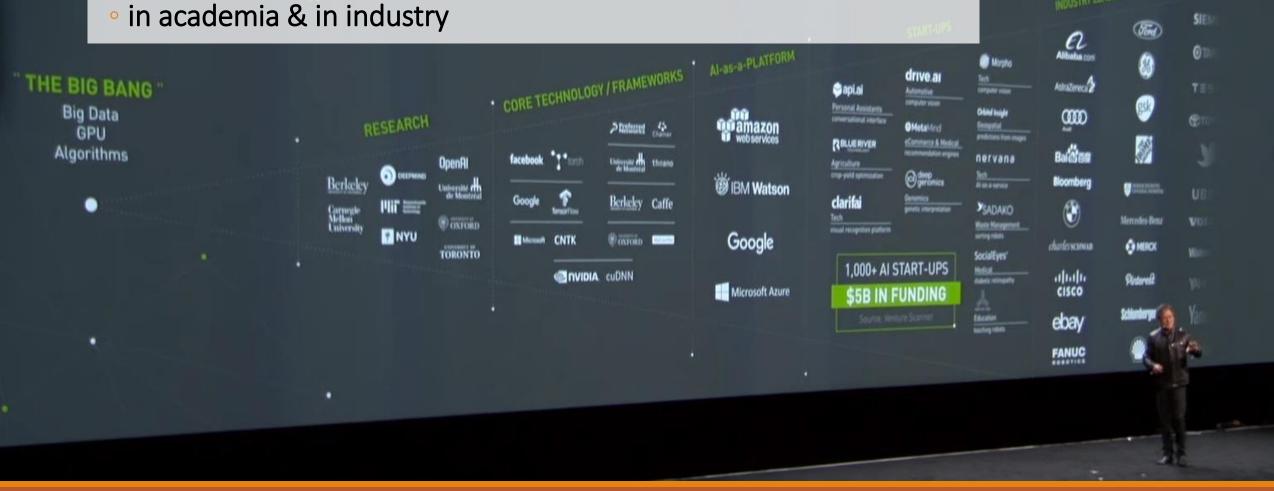
The good news 😳

- You'll get to know some of the hottest stuff in AI today
 - in academia





The good news ③ **EXPANDING UNIVERSION** OF You will get to know some of the hottest stuff in AI today



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

Code of conduct

- We encourage you to help each other, actively participate, give feedback
 - 3 students with highest participation in Q&A in Piazza get +0.5 grade
 - Your grade depends on what you do, not what others do
 - You have plenty of chances to collaborate for your poster and paper presentation
- However, we do not tolerate **blind** copy
 - Not from each other
 - Not from the internet
 - We use TurnitIn for plagiarism detection

Some extra material

- o <u>A more comprehensive review of NN history</u>
- <u>A 'Brief' History of Neural Nets and Deep Learning, Part 1, 2, 3, 4</u>
- o Deep Learning in a Nutshell: History and Training
- o The Brain vs Deep Learning

Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 77 A brief history of Deep Learning
Why is Deep Learning happening now?
What types of Deep Learning exist?

Reading material

o <u>http://www.deeplearningbook.org/</u>

• Chapter 1: Introduction, p.1-28

Also, enroll in Deep Vision Seminars

Next lecture

• Neural networks as layers and modules

- o Build your own modules
- o Backprop
- Stochastic Gradient Descend

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES INTRODUCTION TO DEEP LEARNING - 78