


Lecture overview

o Exact likelihood models
° Autoregressive Models
°Non-autoregressive flow-based models

o Autoregressive Models
°NADE, MADE, PixelCNN, PixelCNN++, PixelRNN

o Normalizing Flows

o Non-autoregressive flow-based models
°RealNVP
°Glow
°Flow++
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Autoregressive Models

o Let’s assume we have signal modelled by an input random variable x
cCan be an image, video, text, music, temperature measurements

o |s there an order in all these signals?
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Autoregressive Models

o Let’s assume we have signal modelled by an input random variable x
cCan be an image, video, text, music, temperature measurements

o |s there an order in all these signals?

ONE DOES'NOT
ITI”VIPLV‘

r TRY .
T0.LEARN DEEP- LEARNING
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Autoregressive Models

o Let’s assume we have signal modelled by an input random variable x
cCan be an image, video, text, music, temperature measurements

o ls there an order in all these signals? Other signals and orders?

ONE DOES'NOT
ITI”VIPLV‘
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Autoregressive Models

o Let’s assume we have signal modelled by an input random variable x
cCan be an image, video, text, music, temperature measurements

o |s there an order in all these signals?

ChI DOFS'NOTER, "
ITI”VIPLV‘

-
r TRY .
T0.LEARN DEEP- LEARNING

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES ADVANCED GENERATIVE MODELS -6




Autoregressive Models

oIf x is sequential, there is an order: x = [xq, ..., Xi|
oE.g., the order of words in a sentence

olIf x is not sequential, we can create an artificial order x = [Xy(1), <+, Xp ()]
°E.g., the order with which pixels make (generate) an image

o Then, the marginal likelihood is a product of conditionals
D
pe) = | [pCrla
k=1

o Different from Recurrent Neural Networks
(a) no parameter sharing
(b) chains are not infinite in length
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Autoregressive Models

o Pros: because of the product decomposition, p(x) is tractable

o Cons: because the p(x) is sequential, training is slower

>To generate every new word/frame/pixel, the previous words/frames/pixels in the
order must be generated first = no parallelism
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NADE

some ordering of X given previous variables
e in the ordering

i — (5503 =1 | 330<3) hy =0(W.,,%X, +€)

O O - h-34 > (Topgy = 1 To_73)
500 units "O

]h\g*o ' (:EOQ - | m0<2) \‘ p(:‘vod =1 | $0<d) - O-(‘/Od,:hd + bod)
*O _
:LO

784 units

Neural Autoregressive Distribution Estimation, Larochelle and Murray, AISTATS 2011
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NADE

o Minimizing negative log-likelihood as usual
D
£=-logp(x) = = ) plilxac)
k=1

o Then, we model the conditional as
p(xglx<q) =0 (Vg - hg +Dbg)
where the latent variable h; is defined as
hg=0W. cq-%x<qg + €)

Where W is shared between conditionals
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NADE: Training & Testing

o “Teacher forcing” training

Training: Use ground truth values (e.g. of pixels) Testing: Use predicted values in previous order

T1 T
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NADE Visualizations
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MADE

o Question: How could we construct an autoregressive autoencoder?

o To rephrase: How to modify an autoencoder such that each output xj
depends only on the previous outputs x.j (autoregressive property)?

°Namely, the present k-th output X, must not depend on a computational path from
future inputs X1, ..., Xp

° Autoregressive: p(x|0) = ’g:lp(xk|xj<k, 0)
> Autoencoder: p(%|x,0) = [T, P (X |xk, )

Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015
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MADE

o Question: How could we construct an autoregressive autoencoder?

o To rephrase: How to modify an autoencoder such that each output xj
depends only on the previous outputs x.j (autoregressive property)?

°Namely, the present k-th output X, must not depend on a computational path from
future inputs X1, ..., Xp

° Autoregressive: p(x|0) = ’g:lp(xk|xj<k, 0)
> Autoencoder: p(%|x,0) = [T, P (X |xk, )
o Answer: Masked convolutions!

h(x) =g+ (WOMY) - x)
%=0(c+WVOM) - hx))

Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES ADVANCED GENERATIVE MODELS - 15



MADE

Masked Autoencoder for Distribution Estimation, Germain, Mathieu et al., ICML 2015
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jav4’4 /X

ixelRNR ChC DOESNOTRR,'
SIWELY §

o Unsupervised learning: learn how to model p(x) ) = 1 o

' <

o Decompose the marginal r\ ¢ TRY

2 T0 LEARN DEEP-LERRNING
p(x) — Hp(xilxl' '")xi—l)
=1

o Assume row-wise pixel by pixel generation and sequential colors R>G—2>B
°Each color conditioned on all colors from previous pixels and specific colors in the same pix

p(xiplx<i)  P(xiglx<i xir) - (% plX<i, Xi g X1 6)

o Final output is 256-way softmax

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016
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PixeRNN

o How to model the conditionals?
p(x; rlx<i), p(XiglX<ir i g ), P(Xi | X<is Xi Ry Xi )

o LSTM variants

°12 layers OO O ?*Z

O
O O 0 0 oto
o Row LSTM So00o0 oqbooo
i ' O [0i0 O O O 010 0O
o Diagonal Bi-LSTM e 80O 0O ® 00
O000O0 O000O0
Row LSTM Diagonal Bi-LSTM
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PixelRNN - RowLSTM

o Hidden state (i, j) =
Hidden state (i-1, j-1) +
Hidden state (i-1, j) +
Hidden state (i-1, j+1) +

p(i, j)
o By recursion the hidden state
captures a fairly triangular region
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PixeRNN — Diagonal BiLSTM

o How to capture the whole previous context

o Pixel (i, j) = ,z;!;!;’
Pixel (i, j-1) + A S
Pixel (i-1, j) i
O qb offee
O 010 O O
o Processing goes on diagonally OOOOO‘OOOO
o Receptive layer encompasses entire region Diagonal Bi-LSTM
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PixeRNN — Residual connections

o Propagate signal faster

o Speed up convergence

<+— 1x1 Conv

2h A

2h
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PixeRNN — Pros & Cons

o Pros: good modelling of p(x) =2 nice image generation
o Half pro: Residual connections speeds up convergence

o Cons: still slow training, slow generation

<+— 1x1 Conv

2h A

h

2h

> LSTM Row LSTM Diagonal Bi-LSTM
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Pixel RNN - Generations

occluded completions original

Figure 1. Image completions sampled from a PixeIRNN.
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PixelCNN coooo

OO0O00O0
ONON NONO
© O O

o Unfortunately, PixelRNN is too slow

:

®| QO O
i : , . O (@ @

o Solution: replace recurrent connections with convolutions O®®O0O0

_ _ . _ OO0OO0O0O0
°Multiple convolutional layers to preserve spatial resolution
PixelCNN

o Training is much faster because all true pixels are known Stack of masked
g P convolutions

in advance, so we can parallelize BEEEEEEE
°Generation still sequential (pixels must be generated) =2 still slow 111111111

1

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016
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Pixel CNN

o Use masked convolutions again to enforce autoregressive relationships
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Pixel CNN — Pros and Cons

o Cons: Performance is worse than PixelRNN
o Why?
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Pixel CNN — Pros and Cons

o Cons: Performance is worse than PixelRNN
o Why?
o Not all past context is taken into account

o New problem: the cascaded convolutions create a “blind spot”
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Blind spot

o Because of
(a) the limited receptive field of convolutions and
(b) computing all features at once (not sequentially)

— cascading convolutions makes current pixel not depend on all previous
- blind spot

/

.--- Blind spot
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Fixing the blind spot: Gated PixelCNN

o Use two layers of convolutions stacks

°Horizontal stack: conditions on current row and takes as input the previous layer
output and the vertical stack

°Vertical stack: conditions on all rows above current pixels

o Also replace RelLU with a tanh(W * x)- o (U * x)

P, NESE PR

m\u -~~~ Blind spot

p = F#feature maps

1x1

Split feature maps
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Pixel CNN - Generations

o Coral reef
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PixelCNN - Generation

o Sorrel horse
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PixelCNN - Generation

o Sandbar
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PixelCNN - Generation

o Lhasa Apso
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Pixel CNN++

o Improving the Pixel CNN model

o Replace the softmax output with a discretized logistic mixture lihelihood
°Softmax is too memory consuming and gives sparse gradients
°|nstead, assume logistic distribution of intensity and round off to 8-bits

o Condition on whole pixels, not pixel colors
o Downsample with stride-2 convs to compute long-range dependencies
o Use shortcut connections

o Dropout
> PixelCNN is too powerful a framework = can onverfit easily

PixeCNN++: Improving the PixelCNN with Discretized Logistic, Salimans, Karpathy, Chen, Kingma, ICLR 2017
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Pixel CNN++

= Sequence of 6

32x%32 16x16 8x8 8x8 16x16 32x32 g
layers

D = Downward stream

= Dowrmward and
rightward & tream

ECCTEIY Sl IﬂEnti‘t}" {Skip}
connection

—pp = Convolutional
cannection

\'—
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Pixe|CNN++ - Generations
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Advantages/Disadvantages

o SoTA density estimation

o Quite slow because of autoregressive nature
°They must sample sequentially

o They do not have a latest space
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PixelVAE

o A standard VAE with a PixelCNN generator/decoder

o Be careful. Often the generator is so powerful, that the encoder/inference
network is ignored € Whatever the latent code z there will be a nice
image generated

PixelVAE: A Latent Variable Model for Natural Images, Gulrajani et al., ICLR 2017
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PixelVAE
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PixelVAE - Generations

64x64 LSUN Bedrooms
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PixelVAE - Generations

.f:@;‘.,”'uum- 4,&

Varying top latents

Varying bottom latents

Varying pixel-level noise
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All about Flows
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Towards better posteriors

o ldeally, we want to minimize the difference between the approximate
posterior and the true posterior

ELBOg, (x) = logpg (x) — KL(q, (z[x)]p(z[x))
o VAEs assume simple diagonal Gaussian priors and posteriors

o Is this a good assumption?

o Could we have better posteriors without blowing up the complexity?
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Sampling from a VAE

o Sampling from a Gaussian prior

z~ N (z|u(x), diag(a?(x)))
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Flows: Or, what if we were to transform a simple prior?

o Let’s assume that the transformation f is invertible, that is we can compute
= f(Zi-1)
as well as

zi1 = ()

o If z;_1 isan RV with a pdf p;_1(z;_1), then z; also an RV

o Easy to compute the pdf of z; because of the change of variable formula
d
pi(z) = Pioa (f (@) |det YL

-1

And can be shown that ‘det afi
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Change of variable formula

-1

pi(z) = pi—1(f 1(2)) ‘det%

py)

fR-R, f(z)=20+1

X

0 1
https://blog.eviang.com/2018/01/nfl.html
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https://blog.evjang.com/2018/01/nf1.html

What have we gained?

o We have that

dzl 1

pl(Zl) — Pi- 1(Zl 1) ‘det

o If we start from a simple pdf, like a Gaussian for z;_4

o And we use a transformation z; = f(z;_1) for which
°|t is easy to compute the inverse z;_; = f~1(z;)
dfi?

dz;

°And is easy to compute the Jacobian det and its determinant

o Then by the change of variable we can compute the pdf of z;

o Even if we do not know the analytic form of p;(z;)!!
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We can even apply this recursively

o If we have a series of K transformations
X=2Zg = fgofg—1°0° f1(Zo)

Then by decomposing the log-likelihood we have

K
logp(x) = logmy(zy) — z log ‘det d‘;{_il

fl(ZO) @ fi(Zi_l) @fi+l(Zi) @
/,’ \\\ /,’ \\\ /” \\\
4 \ 4 \ 4 \
/ \ / \ 7 \
1 \ 1 \ ! \
A\ AN N
\ ! \ 1 \ 1
\ / \ / \ | >

\

\\ ’,/

-1

X

\ / \ / /
\ // \ //
\\ o \\ ”

- -

zo ~ po(2o) z; ~ pi(z;) zg ~ Pk (ZK)

https://lilianwenaq.qithub.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
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Planar Radial

How does this look like?
K=2 K=10 K=2 = K=10

EHCDF‘][]
|\ Dok

Variational Inference with Normalizing Flows, Rezende and Mohammed, 2015

Unit Gaussian

Uniform
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So, what?

o We can have complex posteriors without really needing to know complex
mathematical formulations of the pdf

o Instead, we learn the posteriors from the data

o Hopefully, our posteriors then would be closer to the true posterior
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Inference with Flows

O ELBO@;(P(X) - IEZONCIO(Zolx) [log po (x|2k)] K

~1
~KL(o ol 1PA(2)) + By gy zo )| Y 108 |det 211
[

]

o The first term is simply the reconstruction term
> How likely our generations are, after having sampled from our simple zy~qy(zy|x)

o The second term is the KL divergence between the flow q¢(z|x) and our simple prior p;(2)
o The third term is the accumulation of log determinants from the recursive change of variables

o Although the final posterior gg will have a complex form, its closed form is not needed for
computing any expectations, e.g., in the ELBO

°Check the Law of Unconscious Statistician (LOTUS)
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Pipeline

1
'4 A

N w1 w_' —
EE’O_’ —0—>
o _J
QOO ---0Q00 QOO 000
000 000 000 000

0000 --- OO0O0O

Inference network

0000 - OO0O0O

I
I
|
|
I
|
!
[
' Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-

sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

Variational Inference with Normalizing Flows, Rezende and Mohammed, 2015
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Planar flow

o The transformation is
f(z) =z+uh(wlz+b)
°1u, w, b are free parameters
°h is an element-wise non-linearity (element-wise so that it is easy to invert)

°The log-determinant of the Jacobian is
Y(z) =h'(wl'z+ b)w

det | 11+ ulyY(2)|

0z
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Radial flow

o The transformation is

f(z) =z + Bh(a,1)(z — zp)
Where h(a,r) = 1/(a + 1)
o The log-determinant of the Jacobian is

o det ‘3—;‘ =[1+ Bh(a, )¢ 1 + Bh(a, 1) + h'(a,7)1]
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Planar Radial

How does this look like?
K=2 K=10 K=1 K=2 = K=10

0ok i
CR T o B

Variational Inference with Normalizing Flows, Rezend and Mohammed, 2015

Unit Gaussian

Uniform
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Some results
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Flow-based models

o Using flows and change of variable formula to compute the exact
likelihood p(x) tractably

o Real NVP/NICE
o GLOW
o FLOW++
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Real NVP

o Takes the idea of changing variables formula to define an invertible
generative model
°The function f is the encoder/inference network
°The inverse function f‘1 is the decoder/generator network

o RealNVP defines computationally efficient operations to scale

f1(zo) fz(zz 1) fit1(2:)
‘ OIS @+ - ()=
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A visualization

Data space X Latent space Z

Inference
r~px

2= f(z)

Generation F
zZn~ Dz

e=17(2)

%

ES e 35"’33;:

Figure 1: Real NVP learns an invertible, stable, mapping between a data distribution px and a latent
distribution pz (typically a Gaussian). Here we show a mapping that has been learned on a toy
2-d dataset. The function f (z) maps samples x from the data distribution in the upper left into
approximate samples z from the latent distribution, in the upper right. This corresponds to exact
inference of the latent state given the data. The inverse function, f =il (z), maps samples z from the
latent distribution in the lower right into approximate samples = from the data distribution in the
lower left. This corresponds to exact generation of samples from the model. The transformation of
grid lines in X and Z space is additionally illustrated for both f (z) and f=! (2).
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RealNVP contributions

o Coupling layers

o Masked convolutions

o Multi-scale architecture
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Again: Change of variable formula

-1

pi(z) = pi-1(f ™~ (2)) ‘det%f;_i1

o It must be easy to compute the inverse f~1 o)

5
o It must be easy to compute the 0 -_ y

determinant of the Jacobian det d:fi
-1

fR-R, f(z)=20+1

X

0 1
https://blog.eviang.com/2018/01/nfl.html
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RealNVP: Coupling layers

o How to make computing the determinant easy?

o Have triangular matrices
a1 O 0

A= ar1 aAro 0 = detd = ‘ ‘ Aji
dz1 A3z 433 i

0 So, let’s design a transformation function that vields triangular Jacobians
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RealNVP: Coupling layers

o Assume a D-dimensional input x = x4.p
o Then, we split x = [x4.4, X4+1.p] to have the bijective transformation
Yi:d = X1:d
Ya+1:p = Xda+1.0 O eXp(S(xl:d)) + t(X1:.9)

o Basically, the first d dimensions remain unchanged, while the rest are
modulated by the first d dimensions

o Let’s check the Jacobian

| 0
dy _|ay d
oxT ad;w diag(exp[s(x1.4)])
| xl:d i
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RealNVP: Coupling layers

I 0
dy p d
a7 = Yd+1:D :
oxT | on diag(expls(xr.a)])
i xl:d i

o What is the log-determinant?
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RealNVP: Coupling layers

I 0
dy p d
a7 = Yd+1:D :
oxT | on diag(expls(xr.a)])
i xl:d i

o What is the Iog—determinant?
log det axT Z(s(xl d))

o What convenient observation do we make?
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RealNVP: Coupling layers

I
dy p d 0
AT — Yd+1:D :
oxT | Sors diag(exps(ria))
| xl:d _

o What is the log-determinant?
log det BxT Z(S(xl d))

o What convenient observation do we make?

o Computing the log-determinant does not require compute the inverse or the
determinant (or any other complex operation) of s(x1.4)

0 S0, s(x1.4) can be as complex as we want
o For example?
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RealNVP: Coupling layers

I 0
dy Ay 4
oxT |5 diag(exp[s(ria)])
| 0X1.a i

o What is the log-determinant?
log det BxT Z(S(xl d))

o What convenient observation do we make?

o Computing the log-determinant does not require compute the inverse or the
determinant (or any other complex operation) of s(x1.4)

0 S0, s(x1.4) can be as complex as we want
o For example? Neural Networks
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RealNVP: Coupling layers invertibility

o The inverse function is sort of trivial
yl:d — xl:d

Ya+1:p = Xg+1.0 O exp(s(dl:d)) + t(x1.q)
=

X1:d = Y1.d
Xa+1:p0 = Va+1:0—t(X1.4)) O exp(—s(dl:d))
o Again, no complex operations required = neural networks ok

o Devil in the details:
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RealNVP: Coupling layers invertibility

o The inverse function is sort of trivial
yl:d — xl:d

Ya+1:p = Xg+1.0 O exp(s(dl:d)) + t(x1.q)
=

X1:d = V1.d
Xa+1:p0 = Va+1:0—t(X1.4)) O exp(—s(dl:d))
o Again, no complex operations required = neural networks ok
o Devil in the details: The transformation must retain dimensionality

0 S0, no bottleneck = very large feature maps t(x1.q)
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How to split? Masked convolutions

o Spatially: checkers pattern

o Channel-wise: half and half masking

s
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How to split? Masked convolutions

o Potential problem?
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How to split? Masked convolutions

o Potential problem?

o Always the same dimensions in 4.4 = X1.q. An easy fix?
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RealNVP: reversing dimensions between coupling layers

o Do not use the same dimensions for the transformations when moving
from one layer to the other

o Instead, alternate

o The Jacobian still remains tractable

o And the inverse also
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Some results

Dataset PixeIRNN [46] | Real NVP | Conv DRAW [22] | IAF-VAE [34]
CIFAR-10 3.00 3.49 <3.59 <3.28

Imagenet (32 x 32) 3.86 (3.83) 4.28 (4.26) <4.40 (4.35)

Imagenet (64 x 64) 3.63 (3.57) 3.98 (3.75) <4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)
LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)
CelebA 3.02 (2.97)

Table 1: Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results for
CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in parenthesis
for reference).
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Qualitative results

Real samples

Generated samples
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GLOW

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants.

Here, x signifies the input of the layer, and y signifies its output. Both x and y are tensors of
shape [h x w x ¢| with spatial dimensions (h, w) and channel dimension c¢. With (i, j) we denote
spatial indices into tensors x and y. The function NN() is a nonlinear mapping, such as a (shallow)

convolutional neural network like in ResNets (

e et al|[2016) and RealNVP

mnh et al.| 2016).

Description

Function

| Reverse Function

| Log-determinant

Actnorm.
See Section|3.1

Vi,j:yij =8Oxi;+b

Vi, g P X4, = (yé,j — b)/s

h - w - sum(log |s|)

Invertible 1 x 1 convolution.
W : [e x €.
See Section|3.2

Vi, 7 :yi,; = WX j

Vi, g : Xij = W_lye;,,j

h-w - log | det(W)|

or
h - w - sum(log [s|)
(see eq. (I0))

Affine coupling layer.
See Section|3.3|and
(Dinh et al.| 2014}

Xa,Xp = split(x)
(logs,t) = NN(x3)
s = exp(logs)

Ya =8O Xq +t

Yo = Xp

y = concat(ya,¥s)

Ya,Yp = split(y)
(logs,t) = NN(ys)
s = exp(logs)

Xq = (Yo —t)/s
Xp = ¥b

X = concat(Xq, Xp)

sum(log(|s|))
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GLOW

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants.
Here, x signifies the input of the layer, and y signifies its output. Both x and y are tensors of
shape [h x w x ¢| with spatial dimensions (h, w) and channel dimension c¢. With (i, j) we denote
spatial indices into tensors x and y. The function NN() is a nonlinear mapping, such as a (shallow)
convolutional neural network like in ResNets (He et al.| 2_0_13[) and RealNVP (Dinh et al., 2016).

| Reverse Function | Log-determinant

Description | Function

Actnorm.
See Section|3.1

Replaces BatchNorm that needs large minibatches

c— YRAT~ . .

N N, ¥ ¥ S | L aer Ve | Ak (XATY

Invertible 1 x 1 conveltien | e 4«

Wi x d, Generalization of permutation operation in RealNVP
ee Section|3.2 S
(see eq. (I0))

Affine coupling layer.
See Section|3.3|and
(Dinh et al.| 2014}

Xa,Xp = split(x)
(logs,t) = NN(x3)
s = exp(logs)

Ya =8O Xq +t

Yo = Xp

y = concat(ya,¥s)

Ya,¥b = split(y)
(logs,t) = NN(ys)
s = exp(logs)

Xa = (Ya — t)/s
Xb = ¥b

X = concat(Xq, Xp)

sum(log(|s|))
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GLOW

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants.

Here, x signifies the input of the layer, and y signifies its output. Both x and y are tensors of
shape [h x w x ¢| with spatial dimensions (h, w) and channel dimension c¢. With (i, j) we denote
spatial indices into tensors x and y. The function NN() is a nonlinear mapping, such as a (shallow)

convolutional neural network like in ResNets (

e et al|[2016) and RealNVP

mnh et al.| 2016).

Description

Function

| Reverse Function

| Log-determinant

Actnorm.
See Section|3.1

Vi,j:yij =8Oxi;+b

Vi, g P X4, = (yé,j — b)/s

h - w - sum(log |s|)

Invertible 1 x 1 convolution.
W : [e x €.
See Section|3.2

Vi, 7 :yi,; = WX j

Vi, g : Xij = W_lye;,,j

h-w - log | det(W)|

or
h - w - sum(log [s|)
(see eq. (I0))

Affine coupling layer.
See Section|3.3|and
(Dinh et al.| 2014}

Xa,Xp = split(x)
(logs,t) = NN(x3)
s = exp(logs)

Ya =8O Xq +t

Yo = Xp

y = concat(ya,¥s)

Ya,Yp = split(y)
(logs,t) = NN(ys)
s = exp(logs)

Xq = (Yo —t)/s
Xp = ¥b

X = concat(Xq, Xp)

sum(log(|s|))
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GLOW pipeline

®

4 step of flow x K
affine coupling layer squAeeze

?

invertible 1x1 conv @“ split

4 t

actnorm step of flow x K x (L—1)
$ 4
| squeeze
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al.| 2016).

Figure 2: We propose a generative flow where each step (left) consists of an actnorm step, followed
by an invertible 1 x 1 convolution, followed by an affine transformation (Dinh et al., 2014). This
flow is combined with a multi-scale architecture (right). See SectionEl and Table El
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Some results

Table 2: Best results in bits per dimension of our model compared to RealNVP.

Model CIFAR-10 | ImageNet 32x32 | ImageNet 64x64 | LSUN (bedroom) | LSUN (tower) | LSUN (church outdoor)
RealNVP | 3.49 4.28 3.98 2.72 2.81 3.08
Glow 3.35 4.09 3.81 2.38 2.46 2.67
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Some visual examples

=

ik (g

% “& J i |
ly w:‘ '\!‘;"?t@rj
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L) by )

Figure 5: Linear interpolation in latent space between real images

Figure 4: Random samples from the model, with temperature 0.7

(e) Young (f) Male
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FLOW++

o In reality, images are continuous signals but recorded digitally (integers)

o Fitting a continuous density function will therefore encourage a
degenerate solution that puts all probability mass on discrete data points

o An easy solution is “dequantization” (Uria et al. 2013, Dinh et al., 2016,
Salimans et al., 2017)

o If your image is x you simply add a bit of noise, so that x does not gather
around specific (discrete) values

y = x + u, u~Uniform(0, 1)

https://arxiv.org/abs/1902.00275
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FLOW++ dequantization

o It can be shown that dequantization optimizes a lower bound on the
original discrete data

Prmodet (%) = f Pmodel (X +u)du
[0,1)P

0 So, since we are anyways using a (uniform) distribution u, why not ... ?
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FLOW++ dequantization

o It can be shown that dequantization optimizes a lower bound on the
original discrete data

Prmodet (%) = f Pmodel (X +u)du
[0,1)P

0 So, since we are anyways using a (uniform) distribution u, why not ... ?

o Learn the optimal noise distribution. How?
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FLOW++ dequantization

o It can be shown that dequantization optimizes a lower bound on the
original discrete data

Prmodet (%) = f Pmodel (X +u)du
[0,1)P

0 So, since we are anyways using a (uniform) distribution u, why not ... ?

o Learn the optimal noise distribution. How?

o Variational Inference to the rescue = Variational Dequantization
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Variational Dequantization

pmodel(x + Qx(g))-
dq !
m(e) x/ag

]Ex~Pdata [log Pmodel(x)] = IEx«/Pdcwa,e«/p(e) log

o The noise model g, (&) is implemented as a flow-based generative model

0 AS Pmoder 1S also flow-based, computing the Jacobians is possible
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Some results

Table 1. Unconditional image modeling results in bits/dim

Model family Model CIFAR10 ImageNet 32x32 ImageNet 64x64

Non-autoregressive RealNVP (Dinh et al., 2016) 3.49 4.28 -

Glow (Kingma & Dhariwal, 2018) 3.35 4.09 3.81
IAF-VAE (Kingma et al., 2016) 3.11 — —

Flow++ (ours) 3.08 3.86 3.69

Autoregressive Multiscale PixelCNN (Reed et al., 2017) — 3.95 3.70
PixelCNN (van den Oord et al., 2016b) 3.14 — —

PixelRNN (van den Oord et al., 2016b) 3.00 3.86 3.63

Gated PixelCNN (van den Oord et al., 2016c¢) 3.03 3.83 3.57
PixelCNN++ (Salimans et al., 2017) 2.92 — —
Image Transformer (Parmar et al., 2018) 2.90 3.77 —

PixelSNAIL (Chen et al., 2017) 2.85 3.80 3.52
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Some visual examples

(b) Flow++
Figure 4. Samples from Flow++ trained on 5-bit 64x64 CelebA,

without low—temperature sampling. Figure 5. 64x64 ImageNet Samples. Top: samples from Multi-

Scale PixelRNN (van den Oord et al., 2016b). Bottom: samples
from Flow++. The diversity of samples from Flow++ matches the

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES diversity of samples from PixelRNN with multi-scale ordering. iV WToT TR




A recap

o Three families of likelihood-based generative models
°Variational autoencoders
° Autoregressive models
°Flow-based models

o Autoregressive and flow-based models are exact-likelihood models
°They compute p(x) directly, not an approximation or an estimation or a bound
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A summary of properties

Training Likelihood Sampling | Compression
Autoregressive
models (e.g., Stable Yes Slow No
PixelCNN)
Flow-based models
(e.g., RealNVP) Stable Yes Fast/Slow No
Implicit models
(e.g., GANS) Unstable No Fast No
Prescribed models :
(e.g., VAES) Stable Approximate Fast Yes

J. Tomczak’s lecture from April, 2019
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Summary
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o Exact likelihood models
o Autoregressive Models
> Non-autoregressive flow-based models

o Autoregressive Models
> NADE, MADE, PixelCNN, PixelCNN++, PixelRNN

o Normalizing Flows

o Non-autoregressive flow-based models
° RealNVP
> Glow
° Flow++



