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What Is Reinforcement Learning?

0 General purpose framework for learning Artificial Intelligence models
0 RL assumes ththe agentour model) can takactions

0 These actions affethe environmemtvherethe agentoperates
more specificallthe stateof the environment anthe stateof the agent

0 Given the state of the environment and the agent, an action taken frorr
the agent causes a reward
can be positive or negative

0 Goal: the goal of an RL agent is to learn how to take actions that maxir
future rewards

s
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Some examples of RL

0 Controlling physical systems
Robot walking, jumping, driving

0 Logistics
Scheduling, bandwidth allocation

0 Games
Atari, Go, Chess, Pacman

0 Learning sequential algorithms
Attention, memory
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Reinforcement Learning: An abstraction

#

Dynamical System
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B State Reward Observ
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Learning Agent
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State

0 EXxperience Is a series of observations, actions and rewards
¢h hohe h B kE h

0 Thestate Is the summary of experience so far
i "QEh ok R ho B FE h

o If we have fully observable environments, then
i Q¢
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Policy

ot 2t A0é A& OGKS |3SyiQa o0SKIFGA2NJ
o The policy function maps the state inputo an action outputo

o Deterministic policyco Qi
0 Stochastic policy: w g ~ g
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Value function

0 A value function is the prediction of the future reward
Given the staté what will my reward be if | do actiom

0 TheQ-value functiorgives the expected future reward

A4

o Given staté , action®, a policy’ the Qvalue functioni® i ho

s
UVA DEEP LEARNING COYJESEETRATIOS GAVVES DEEP REINFORCEMENRMNEYG 9




How do we decide about actions, states, rewards?

0 We model the policy and the value function as machine learning functi
that can be optimized by the data

o Thepolicy functiolA “ i selects an action given the current state

o Thevalue functiond i hd is the expected total reward that we will
receive if we take actiod given statd

o What should our goal then be?

s
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Goal: Maximize future rewards!

0 Learn the policy and value functions such that the action taken attthe
time stepw maximizes the expected sum of future rewards

~
= 14 ™~ e

0 (i kD) Mi ] P 9 hd

0 [ Is a discount facto¥Why do we need it?

s
UVA DEEP LEARNING COYJEEETRATIOS GAVVES DEEP REINFORCEMENRNEYG 11




Goal: Maximize future rewards!

0 Learn the policy and value functions such that the action taken attthe
time stepw maximizes the expected sum of future rewards

0 (i kD) Mi ] P Ed hd

0 [ Is a discount facto¥Why do we need it?

The further into the future we loak pX oX &, the less certain we can be about
our expected rewards > iX X
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0 How can we rvewrite the value function In more~comvpact form
L (i hw) M M1 o Eli ) e
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Bellman equation

0 How can we rewrite the value function in more compact form
L (i hw) M@ 1 T E|i hw)
M (@0 TO i e hw)

0 This is thdBellman equation

s
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Bellman equation

0 How can we rewrite the value function in more compact form
L (i hw) M@ 1 T E|i hw)
M (@0 TO i e hw)

0 This is thdBellman equation

o How can we rewrite the optimal value functioh(i ho)?

s
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Optimal value function

o Optimal value function “ (i ht) is attained with the optimal poli¢y
0°(ihy | A ((hy) 0 (ih)

0 After we have found the optimal p,ollt‘:fl we do the optimal action
“C T AOQ @ iho

0 By expanding the optimal value function .
L (Y | A I ho

0Z(iFy) M (i & Aﬁziﬁb#ﬁb)
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Environment Models in RL

0 The model is learnt from experience

0 The model acts as a replacement for the environment

o When planning, the agent can interact with the model

0 For instance look ahead search to estimate the future states given acti
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Approaches to Reinforcement Learning

0 Policybased
Learn directly the optimal polity
The policy “ obtains the maximum future reward

0 Valuebased
Learn the optimal value functiarf i ho
This value function applies for any policy

0 Modelbased
Build a model for the environment
Plan and decide using that model
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How to make RL deep?

0 Use Deep Networks for the
Value function
Policy
Model

0 Optimize final loss with SGD
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How to make RL deep?

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State
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Deep Reinforcement Learning

0 Noninear functionapproximator Deep Networks

0 Input is as raw as possible, e.g. image frame
Or perhaps several fram@#&/hen needed?)

0 Output is the best possible action out of a set of actions for maximizing
future reward

o Important:no strict need anymore to compute the actual value of the
actionvalue function and take the maximum QO CA @ ihw

0 Instead, one can teach the network to return directly the optimal action

s
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Q-Learning

0 Optimize for Q value function 3 5 .
L | hw M TO i hod hw)
0 What does this imply in terms of learning? What do we need?

s
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Q-Learning

0 Optimize for Q value function 3 § §
L | hw M @A TO i hwdg hw)
What does this imply in terms of learning? What do we need?
¢l NHS Uk & DN®alagsR (| Nzl K €
Weseti 71 A@ i hdatobe the learningarget

o O O O

Then we minimize the loss
| Eq‘l T A® @G ) O (iﬁb))
o In the beginning of learning the functioni ko is incorrect
o But the hypothesis is that &minngprogresses, so does olirpredictions

s
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Q-Learning

0 Valueiteration algorithms solve the Bellman equation
O Ry M (i T AB i g

0 Inthe simplestasel is a table
To the limit iterative algorithms convergettd

o However, a table representation for is not always enoughVhy/when?
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Q-Learning

0 Valueiteration algorithms solve the Bellman equation
Oy v (i 1T AB i )

0 Inthe simplestasel is a table
To the limit iterative algorithms convergettd

o However, a table representation for is not always enoughVhy/when?

0 When the state space is enormous or near infinite
Imagine making a table with all possible images in the rows
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How to optimize?

0 The objective Is the mean squaredor in Qvalues
i M (0 03RRD)

where0 1 [ | A®@( hohsis a precomputedscalar target value.

0 So, what does this means for the gradient? How will it look like?

s
UVA DEEP LEARNING COYJEEETRATIOS GAVVES DEEP REINFORCEMENRNEYG 28




How to optimize?

0 The objective Is the mean squaredor in Qvalues
i M (0 03RRD)
where0 1 [ | A®@( hohsis a precomputedscalar target value.

0 So, what does this means for the gradient? How will it look like?

0 The QLearning gradient then becomes
fl e e e
;—_ VocE(D O3 FE)
0 Backprop to get the gradient

0 Optimize endo-end with SGD

s
UVA DEEP LEARNING COYJEEETRATIOS GAVVES DEEP REINFORCEMENRNEYG 29

' 0i hdh—
'|' _




A system perspective

Q Table
State-Action Value

State

_

o|lo|lo|lo|lo|o|o|o|o|=

Q Learning

State

Deep Q Learning

https://www.analyticsvidhya.com/blog/2019/04/introductioneep-g-learningpython/
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Algorithmically

1. Do a feedforward pass for the current stati predictQ-values for alactions

2. Select an action

either bys-greedy policy i
or the one with the best Q valde | A @(i hohs

Perform the action, get a new sta@vith rewardr. Storether a > | X
SetQvalue targeto O 11 A®i hohD

usethe max calculated in stéb
For all other action classes, set the&)ue target to the same as originally returned from step 1

Makes the error for those actiorclassed Zero gradient

5. Update the weights usirgackpropagation
(in fact, between step 3 and 4 you probably should do experience replay)
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Deep Q Networks on Atari

0 Endto-end learning from raw pixels
0 Input: last 4 frames

0 Output: 18 joystick positions

0 Reward: change of score

32 4x4 filters 256 hidden units Fully-connected linear
output layer

|6 8x8 filters

4x84x84 F_'
Stack of 4 previous % Fully-connected layer

frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units
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Deep Q Networks on Atari
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Stability in Deep
Reinforcement
Learning
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