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Lecture 12: Deep Reinforcement Learning
Deep Learning @ UvA
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o General purpose framework for learning Artificial Intelligence models

o RL assumes that the agent (our model) can take actions

o These actions affect the environment where the agent operates
◦ more specifically the state of the environment and the state of the agent

o Given the state of the environment and the agent, an action taken from 
the agent causes a reward

◦ can be positive or negative

o Goal: the goal of an RL agent is to learn how to take actions that maximize 
future rewards

What is Reinforcement Learning?
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Some examples of RL
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o Controlling physical systems
◦ Robot walking, jumping, driving

o Logistics
◦ Scheduling, bandwidth allocation

o Games
◦ Atari, Go, Chess, Pacman

o Learning sequential algorithms
◦ Attention, memory

Some examples of RL
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Reinforcement Learning: An abstraction

Dynamical System
(“The World”)

Learning Agent
(“Our Model”)

Action 
𝑎𝑡

State
𝑠𝑡

Reward 
𝑟𝑡

Observ
ation 𝑜𝑡
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o Experience is a series of observations, actions and rewards
𝑜1, 𝑟1, 𝑎1, 𝑜2, 𝑟2, 𝑎2, … , 𝑜𝑡, 𝑟𝑡

o The state is the summary of experience so far
𝑠𝑡 = 𝑓(𝑜1, 𝑟1, 𝑎1, 𝑜2, 𝑟2, 𝑎2, … , 𝑜𝑡 , 𝑟𝑡)

o If we have fully observable environments, then
𝑠𝑡 = 𝑓(𝑜𝑡)

State
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o Policy is the agent’s behavior function

o The policy function maps the state input 𝑠𝑡 to an action output 𝑎𝑡

o Deterministic policy: 𝑎𝑡 = 𝑓(𝑠𝑡)

o Stochastic policy: 𝜋(𝑎𝑡|𝑠𝑡) = ℙ(𝑎𝑡|𝑠𝑡)

Policy
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o A value function is the prediction of the future reward
◦ Given the state 𝑠𝑡 what will my reward be if I do action 𝑎𝑡

o The Q-value function gives the expected future reward

o Given state 𝑠𝑡, action 𝑎𝑡, a policy 𝜋 the Q-value function is 𝑄𝜋(𝑠𝑡, 𝑎𝑡)

Value function
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o We model the policy and the value function as machine learning functions 
that can be optimized by the data

o The policy function at = 𝜋(𝑠𝑡) selects an action given the current state

o The value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is the expected total reward that we will 
receive if we take action 𝑎𝑡 given state 𝑠𝑡

o What should our goal then be?

How do we decide about actions, states, rewards?
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o Learn the policy and value functions such that the action taken at the 𝑡-th
time step 𝑎𝑡 maximizes the expected sum of future rewards

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼(𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ |𝑠𝑡 , 𝑎𝑡)

o 𝛾 is a discount factor. Why do we need it?

Goal: Maximize future rewards!
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o Learn the policy and value functions such that the action taken at the 𝑡-th
time step 𝑎𝑡 maximizes the expected sum of future rewards

𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼(𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ |𝑠𝑡 , 𝑎𝑡)

o 𝛾 is a discount factor. Why do we need it?
◦ The further into the future we look 𝑡 + 1, …, 𝑡 + T, the less certain we can be about 

our expected rewards 𝑟𝑡+1, …, 𝑟𝑡+𝑇

Goal: Maximize future rewards!
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡, 𝑎𝑡 =?

Bellman equation
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡 , 𝑎𝑡

= 𝔼𝑠′,𝑎′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o This is the Bellman equation

Bellman equation
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o How can we rewrite the value function in more compact form
𝑄𝜋 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ 𝑠𝑡 , 𝑎𝑡

= 𝔼𝑠′,𝑎′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o This is the Bellman equation

o How can we rewrite the optimal value function 𝑄∗ 𝑠𝑡 , 𝑎𝑡 ?

Bellman equation
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o Optimal value function 𝑄∗ 𝑠, 𝑎 is attained with the optimal policy 𝜋∗

𝑄∗ 𝑠, 𝑎 = max
𝜋

𝑄𝜋 𝑠, 𝑎 = 𝑄𝜋∗ 𝑠, 𝑎

o After we have found the optimal policy 𝜋∗ we do the optimal action
𝜋∗ = argmax

𝑎
𝑄∗(𝑠, 𝑎)

o By expanding the optimal value function
𝑄∗ 𝑠, 𝑎 = 𝑟𝑡+1 + 𝛾max

𝑎𝑡+1
𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)

𝑄∗ 𝑠, 𝑎 = 𝔼𝑠′ 𝑟 + 𝛾max
𝑎′

𝑄∗(𝑠′, 𝑎′) 𝑠, 𝑎

Optimal value function
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o The model is learnt from experience

o The model acts as a replacement for the environment

o When planning, the agent can interact with the model

o For instance look ahead search to estimate the future states given actions

Environment Models in RL
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o Policy-based
◦ Learn directly the optimal policy 𝜋∗

◦ The policy 𝜋∗ obtains the maximum future reward

o Value-based
◦ Learn the optimal value function 𝑄∗(𝑠, 𝑎)

◦ This value function applies for any policy

o Model-based
◦ Build a model for the environment

◦ Plan and decide using that model

Approaches to Reinforcement Learning
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How to make RL deep?
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o Use Deep Networks for the
◦ Value function

◦ Policy

◦ Model 

o Optimize final loss with SGD

How to make RL deep?
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How to make RL deep?
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o Non-linear function approximator: Deep Networks

o Input is as raw as possible, e.g. image frame
◦ Or perhaps several frames (When needed?)

o Output is the best possible action out of a set of actions for maximizing 
future reward

o Important: no strict need anymore to compute the actual value of the 
action-value function and take the maximum: argmax

𝛼
𝑄𝜃(𝑠, 𝑎)

o Instead, one can teach the network to return directly the optimal action

Deep Reinforcement Learning
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Value-based
Deep RL
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o Optimize for Q value function
𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o What does this imply in terms of learning? What do we need?

Q-Learning
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o Optimize for Q value function
𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑠′ 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝑎′) 𝑠𝑡 , 𝑎𝑡

o What does this imply in terms of learning? What do we need?

o Target/“Ground truth” 𝑄 values

o We set 𝑟 + 𝛾max
𝑎′

𝑄𝑡(𝑠
′, 𝑎′) to be the learning target

o Then we minimize the loss

min 𝑟 + 𝛾max
𝑎′

𝑄𝑡 𝑠
′, 𝑎′ − 𝑄𝑡 𝑠, 𝑎

2

o In the beginning of learning the function 𝑄(𝑠, 𝑎) is incorrect

o But the hypothesis is that as trainng progresses, so does our 𝑄 predictions

Q-Learning
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o Value iteration algorithms solve the Bellman equation

𝑄𝑡+1 𝑠, 𝑎 = 𝔼𝑠′ 𝑟 + 𝛾max
𝑎′

𝑄𝑡(𝑠
′, 𝑎′) 𝑠, 𝑎

o In the simplest case 𝑄𝑡 is a table
◦ To the limit iterative algorithms converge to 𝑄∗

o However, a table representation for 𝑄𝑡 is not always enough. Why/when?

Q-Learning
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o Value iteration algorithms solve the Bellman equation

𝑄𝑡+1 𝑠, 𝑎 = 𝔼𝑠′ 𝑟 + 𝛾max
𝑎′

𝑄𝑡(𝑠
′, 𝑎′) 𝑠, 𝑎

o In the simplest case 𝑄𝑡 is a table
◦ To the limit iterative algorithms converge to 𝑄∗

o However, a table representation for 𝑄𝑡 is not always enough. Why/when?

o When the state space is enormous or near infinite
◦ Imagine making a table with all possible images in the rows

Q-Learning
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o The objective is the mean squared-error in Q-values

ℒ 𝜃 = 𝔼[ 𝑄−𝑄 𝑠, 𝑎, 𝜃
2
]

where 𝑄 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 is a pre-computed scalar target value.

o So, what does this means for the gradient? How will it look like?

How to optimize?
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o The objective is the mean squared-error in Q-values

ℒ 𝜃 = 𝔼[ 𝑄−𝑄 𝑠, 𝑎, 𝜃
2
]

where 𝑄 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 is a pre-computed scalar target value.

o So, what does this means for the gradient? How will it look like?

o The Q-Learning gradient then becomes
𝜕ℒ

𝜕𝜃
= 𝔼[−2 ⋅ 𝑄 −𝑄 𝑠, 𝑎, 𝜃

𝜕𝑄(𝑠, 𝑎, 𝜃)

𝜕𝜃
]

o Backprop to get the gradient

o Optimize end-to-end with SGD

How to optimize?
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A system perspective

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
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1. Do a feedforward pass for the current state 𝑠 to predict Q-values for all actions

2. Select an action
a. either by ε-greedy policy
b. or the one with the best Q value 𝑎 = max

𝑎′
𝑄 𝑠′, 𝑎′, 𝜃

3. Perform the action, get a new state s’ with reward r. Store the <s, a, r, s’>

4. Set Q-value target to r + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃

◦ use the max calculated in step 2

◦ For all other action classes, set the Q-value target to the same as originally returned from step 1

◦ Makes the error 0 for those action classe Zero gradient

5. Update the weights using backpropagation
(in fact, between step 3 and 4 you probably should do experience replay) 

Algorithmically
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o End-to-end learning from raw pixels

o Input: last 4 frames

o Output: 18 joystick positions

o Reward: change of score

Deep Q Networks on Atari
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Deep Q Networks on Atari
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Stability in Deep 
Reinforcement 
Learning
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

o Sequential data breaks IID assumption
◦ Highly correlated samples break SGD

o However, this is not specific to RL, as we have seen earlier

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o The learning objective is

ℒ 𝜃 = 𝔼[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o The target depends on the 𝑄 function also. This means that if we update 
the current 𝑄 function with backprop, the target will also change

o Non-stationarity (BIG problem)

o Plus, we know neural networks are highly non-convex

o Policy changes will change fast even with slight changes in the 𝑄 function
◦ Policy might oscillate

◦ Distribution of data might move from one extreme to another

Stability problems
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o Naively, Q-Learning oscillates or diverges with neural networks

o Why?

Stability problems
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o Not easy to control the scale of the 𝑄 values gradients are unstable 𝑄

o Remember, the 𝑄 function is the output of a neural network

o There is no guarantee that the outputs will lie in a certain range
◦ Unless care is taken

o Naïve 𝑄 gradients can be too large, or too small  generally unstable and 
unreliable

o Where else did we observe a similar behavior?

Stability problems
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o Replay memory/Experience replay

o Store memories < 𝑠, 𝑎, 𝑟, 𝑠′ >

o Train using random stored memories instead of the latest memory 
transition

o Breaks the temporal dependencies – SGD works well if samples are 
roughly independent

o Learn from all past policies

Improving stability: Experience replay
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o Take action 𝑎𝑡 according to 𝜀-greedy policy

o Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in replay memory 𝐷

o Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐷

o Optimize mean squared error using the mini-batch

ℒ 𝜃 = 𝔼 𝑠,𝑎,𝑟,𝑠′ ~𝐷[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o Effectively, update your network using random past inputs (experience), 
not the ones the agent currently sees

Experience replay
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o Instead of having “moving” targets, have two networks
◦ One Q-Learning and one Q-Target networks

o Copy the 𝑄 network parameters to the target network every 𝐾 iterations
◦ Otherwise, keep the old parameters between iterations

◦ The targets come from another (Q-Target) network with slightly older parameters

o Optimize the mean squared error as before, only now the targets are 
defined by the “older” 𝑄 function

ℒ 𝜃 = 𝔼[ 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝜃𝑜𝑙𝑑 − 𝑄 𝑠, 𝑎, 𝜃
2
]

o Avoids oscillations

Improving stability: Freeze target 𝑄 network
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o Clip rewards to be in the range [−1,+1]

o Or normalize them to lie in a certain, stable range

o Can’t tell the difference between large and small rewards

Improving stability: Take care of rewards
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Results
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o Skipping frames
◦ Saves time and computation

◦ Anyways, from one frame to the other there is often very little difference

o 𝜀-greedy behavioral policy with annealed temperature during training
◦ Select random action (instead of optimal) with probability 𝜀

◦ In the beginning of training our model is bad, no reason to trust the “optimal” action

o Alternatively: Exploration vs exploitation
◦ early stages  strong exploration

◦ late stages  strong exploitation

Some extra tricks
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Policy-based
Deep RL
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o Problems with modelling the 𝑄-value function
◦ Often too expensive must take into account all possible states, actions Imagine 

when having continuous or high-dimensional action spaces

◦ Not always good convergence  Oscillations

o Often learning directly a policy 𝜋𝜃(𝑎|𝑠) that gives the best action without 
knowing what its expected future reward is easier

o Also, allows for stochastic policies  no exploration/exploitation dilemma

o Model optimal action value with a non-linear function approximator
𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝑤

Policy Optimization
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Policy Optimization

Dynamic System

Learning Agent

ActionState Reward

𝜋𝜃(𝑎|𝑠)

𝑎
ℎ

𝑠
Slide inspired by P. Abbeel
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Policy Optimization

Dynamic System

Learning Agent

ActionState Reward

𝜋𝑤(𝑎|𝑠)

𝑎
ℎ

𝑥

Slides inspired by P. Abbeel

o Train learning agent for the optimal 
policy 𝜋𝑤(𝑎|𝑠) given states 𝑠 and 
possible actions 𝑎

o The policy class can be either 
deterministic or stochastic
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o Use a deep networks as non-linear approximator that finds optimal policy by maximizing 
𝑄 𝑠, 𝑎; 𝜃

ℒ 𝑤 = 𝑄 𝑠, 𝑎; 𝑤
= 𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯ |𝜋𝑤(𝑠𝑡 , 𝑎𝑡)]

o If policy is deterministic
𝜕ℒ

𝜕𝑤
= 𝔼

𝜕 log 𝜋 𝑎 𝑠, 𝑤

𝜕𝑤
𝑄𝜋(𝑠, 𝑎)

o If policy is stochastic 𝑎 = 𝜋(𝑠)
𝜕ℒ

𝜕𝑤
= 𝔼

𝜕𝑄𝜋(𝑠, 𝑎)

𝜕𝑎

𝜕𝑎

𝜕𝑤

o To compute gradients use the log-derivative trick (REINFORCE algorithm (Williams, 1992))

𝛻𝜃 log 𝑝(𝑥; 𝜃) =
𝛻𝜃𝑝(𝑥; 𝜃)

𝑝(𝑥; 𝜃)

Policy Optimization
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o Use a deep networks as non-linear approximator that finds optimal policy by 
maximizing 𝑄 𝑠, 𝑎; 𝜃

ℒ 𝑤 = 𝑄 𝑠, 𝑎; 𝑤
= 𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯|𝜋𝑤(𝑠𝑡 , 𝑎𝑡)]

o We can rewrite the score function as  ℒ 𝑤 = 𝔼𝜋𝑤 𝑅(𝜏)

o Note: ℒ 𝑤 is the score, not loss  we want to maximize it
𝜕ℒ

𝜕𝑤
= 𝛻𝑤𝔼𝜋𝑤 𝑅(𝜏) =

𝑡

𝛻𝑤𝜋𝑤 𝑡 𝑅(𝑡)

o We use the log-derivative trick

𝛻𝜃 log 𝑝(𝑥; 𝜃) =
𝛻𝜃𝑝(𝑥; 𝜃)

𝑝(𝑥; 𝜃)

Policy Optimization

Expected future reward given a policy
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o Given stochastic policy 𝜋 𝑎 𝑠, 𝑤
𝜕ℒ(𝑤)

𝜕𝑤
= 𝔼

𝜕 log𝜋 𝑎 𝑠, 𝑤

𝜕𝑤
𝑄𝜋(𝑠, 𝑎)

◦ Since we have a stochastic/random quantity/variable, i.e., the policy (𝜋 𝑎 𝑠, 𝑤 ), this 
means that to compute our loss we must take expectations w.r.t. that RV

o Given deterministic policy 𝑎 = 𝜋(𝑠)
𝜕ℒ(𝑤)

𝜕𝑤
= 𝔼

𝜕𝑄𝜋(𝑠, 𝑎)

𝜕𝑎

𝜕𝑎

𝜕𝑤

for continuous 𝑎 and differentiable 𝑄
◦ Since the policy is deterministic, we simply need to take gradients of the final objective 

(𝑄𝜋) w.r.t. the optimized variables (𝑤), taking into account all computational paths (via 
𝑎 = 𝜋(𝑠))

Policy gradients
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o Learn both
◦ Policy function and

◦ Value function

o Multiple agents trained at the same time

o Global Network consists of
◦ ConvNet to model spatial correlations

◦ LSTM to model temporal correlations

Asynchronous Advantage Actor-Critic (A3C)
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A3C Training
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o Estimate Value function
𝑉 𝑠, 𝑣 = 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 +⋯ |𝑠

o Estimate the Q value after 𝑛 steps
𝑞𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 +⋯+ 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉(𝑠𝑡+𝑛, 𝑣)

o Update actor by
𝜕ℒ𝑎𝑐𝑡𝑜𝑟
𝜕𝑤

=
𝜕 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝑤

𝜕𝑤
(𝑞𝑡 − 𝑉(𝑠𝑡 , 𝑣))

A3C Training
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o Discounted future rewards 𝑅 = 𝛾(𝑟)
◦ The model must learn how good the actions taken are

o With Advantage Estimates A = 𝑅 − 𝑉(𝑠)
◦ Now just how good the actions taken are

◦ Also, how much better the actions where than expected

o Model will focus on the areas of the parameter space that it was lacking

Advantage Estimates
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o End-to-end learning of softmax policy from pixels

o Observations are the raw pixels

o The state is implemented as an LSTM

o Outputs value 𝑉(𝑠) and softmax over
actions 𝜋(𝑎|𝑠)

o Task
◦ Collect apples (+1)

◦ escape (+10)

o Demo

A3C in labyrinth

https://www.youtube.com/watch?v=nMR5mjCFZCw&feature=youtu.be
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Model-based
Deep RL
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o Often quite challenging because of cumulative errors

o Errors in transition models accumulate over trajectories

o Planning trajectories are different from executed trajectories

o At the end of a long trajectory final rewards are wrong

o Can be better if we know the rules

Learning models of the environment
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o At least 1010
48

possible game states
◦ Chess has 10120

o Monte Carlo Tree Search used mostly
◦ Start with random moves and evaluate

how often they lead to victory

◦ Learn the value function to predict the quality
of a move

◦ Exploration-exploitation trade-off

AlphaGo

Tic-Tac-Toe possible game states
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o AlphaGo relies on a tree procedure for search

o AlphaGo relies on ConvNets to guide the tree search

o A ConvNet trained to predict human moves achieved
57% accuracy

◦ Humans make intuitive moves instead of thinking too far ahead

o For Deep RL we don’t want to predict human moves
◦ Instead, we want the agent to learn the optimal moves

o Two policy networks (one per side) + One value network

o Value network trained on 30 million positions while policy networks play

AlphaGo
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o Both humans and Deep RL agents play better end games
◦ Maybe a fundamental cause?

o In the end the value of a state is computed
equally from Monte Carlo simulation and the value 
network output

◦ Combining intuitive play and thinking ahead

o Where is the catch?

AlphaGo
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o Both humans and Deep RL agents play better end games
◦ Maybe a fundamental cause?

o In the end the value of a state is computed
equally from Monte Carlo simulation and the value 
network output

◦ Combining intuitive play and thinking ahead

o Where is the catch?

o State is not the pixels but positions

o Also, the game states and actions are highly discrete

AlphaGo
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o What is allowed
◦ 1 A4 page with whatever you want on it (handwritten or printed)

o What is not allowed
◦ Everything else (internet, phones, messaging, etc)

o And if you are interested in the coming months in research in any of the 
topics discussed in the course

◦ especially in temporal sequences, deep dynamics, video, causality, generative models
and/or oncology (together with the Netherlands Cancer Insitute)

Drop me a line (egavves@uva.nl) 

Exam and theses

mailto:egavves@uva.nl
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Summary

o Reinforcement Learning

o Q-Learning

o Deep Q-Learning

o Policy-based Deep RL

o Model-based Deep RL

o Making Deep RL stable


