


Lecture Overview

o Modularity in Deep Learning
o Popular Deep Learning modules

o Neural Network Cheatsheet

o Backpropagation
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The Machine
Learning Paradigm
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What is a neural network again?

o A family of parametric, non-linear and hierarchical
, Which are massively optimized with stochastic gradient descent
to encode domain knowledge, i.e. domain invariances, stationarity.

o at(x;wl, ..., wt) =ht(RE L R (e, wh), wi ™), wh)
> x:input, w!: parameters for layer [, a* = h*(x, w"): (non-)linear function

o Given training corpus {X, Y} find optimal parameters

w* « argmin,, Z L(y,al(x))
(x,y)S(X,Y)
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Forward connections (Feedforward architecture)

nduj
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Interweaved
connections
(Directed Acyclic
Graphs- DAGNN)

Input
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

nduj

Loopy connections (Recurrent architecture, special care needed)
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Input
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What is a module?

o A module is a building block for our network

o Each module is an object/function a = h(x; w) that
o Contains trainable parameters w
o Receives as an argument an input x
> And returns an output a based on the activation function h(...)

o The activation function should be (at least)
first order differentiable (almost) everywhere

ha (x2; Waq)

o For easier/more efficient backpropagation = store
module input
> easy to get module output fast
° easy to compute derivatives Input
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Anything goes or do special constraints exist?

o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)
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Forward computations for neural networks

o Simply compute the activation of each module in the network

a' = ht(x%;w), where at = x!*1

o We need to know the precise function behind
each module h'(...)

o Recursive operations
> One module’s output is another’s input

o Steps
° Visit modules one by one starting from the data input
> Some modules might have several inputs from multiple modules

o Compute modules activations with the right order
> Make sure all the inputs computed at the right time

Data Input
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How to get w? Gradient-based learning

o Usually Maximum Likelihood on the training set

w* = arg max ‘ ‘ Pmodel (Y ]X; W)
w
X,y

o Taking the logarithm, the Maximum Likelihood is equivalent to minimizing
the negative log-likelihood cost function

L(w) = _[Ex,y~ﬁdam log Pmoder (V% W)

O Pmodel(V|X) is last layer output
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If our last layer is the Gaussian function N(y; h(w; x), 1) what could be our
cost function like? (Multiple answers possible)

o ~ly — h(w; x)|*

o ~max{0,1 —y h(w; x)}
o ~ly —h(w; x)l

o ~ly — h(w; x)|? + 20 (w)
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How to get w? Gradient-based learning

o Usually Maximum Likelihood in the train set

w* = arg max 1_[ p(y|x; w)
6 7

o Taking the logarithm, this means minimizing the cost function
L(0) = _[Ex,y~ﬁdata log Pmoder (V% W)
O Pmodel(Y|X; W) is the last layer output

_|v— : 2
log pmodel(ylx) — logﬁexp( y ;lgzc'W)l )

x C+ |y — h(x;w)|?
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Why should we choose a cost function that matches the form of the last
layer of the neural network?

o Otherwise one cannot use standard tools, like automatic differentiation, in
packages like Tensorflow or Pytorch

o It makes the math simpler

o |t avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is
stable
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Why should the last network layer “click” with our cost function?

o Otherwise one cannot use standard tools, like automatic differentiation, in
packages like Tensorflow or Pytorch

o It makes the math simpler

o |t avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is
stable
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How to get w? Gradient-based learning

o Ina neural net pyoger (V]x) is the module of the last layer (output layer)
lv—f(8:%)|2
l0g Pmodet (¥1%) = log ——exp(*=L200) =

logpmodel(ypc) x< C + |y _f(eix)lz

o Everything gets much simpler when the learned (neural network) function ppoder
matches the cost function L(w)

o E.gthe log of the negative log-likelihood cancels out the exp of the Gaussian
o Easier math

o Better numerical stability

o Explonen.tial—like activations often lead to saturation, which means gradients are almost O, which means
no learning

o That said, combining any function that is differentiable is possible
° just not always convenient or smart
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Everything is a
module
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Neural network models

o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Input
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Linear module

o Activation: a = wx

aa — a=8fx

o Gradient: — = x
aW 2 —  da/dr |

o No activation saturation | /

o Hence, strong & stable gradients
> Reliable learning with linear modules

MODULAR LEARNING - PAGE 24

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES



Rectified Linear Unit (ReLU) module

o Activation: a = h(x) = max(0, x) T

da O,leSO 3-
1,lfx>0 g

o Gradient: — =
0x
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What characterizes the Rectified Linear Unit?

O
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There is the danger the input x is consistently O because of a glitch. This would
cause "dead neurons” that always are O with O gradient.

It is discontinuous, so it might cause numerical errors during training
It is piece-wise linear, so the "piece"-gradients are stable and strong

Since they are linear, their gradients can be computed very fast and speed up
training.

They are more complex to implement, because an if condition needs to be
introduced.



What characterizes the Rectified Linear Unit?

O

There is the danger the input x is consistently O because of a glitch. This would
cause "dead neurons" that always are O with O gradient.

It is discontinuous, so it might cause numerical errors during training
It is piece-wise linear, so the "piece"-gradients are stable and strong

Since they are linear, their gradients can be computed very fast and speed up
training.

They are more complex to implement, because an if condition needs to be
introduced.
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Rectified Linear Unit (ReLU) module

Monlinearites
I I I I I 1

1
—  Softplus
4 - — Rectifier

o Activation: a = h(x) = max(0, x)
o Gradient: P {1’ ifx >0 y
o Strong gradients: either Oor 1 ©

o Fast gradients: just a binary comparison ©

o Itis not differentiable at 0, but not a big problem © 1-

° An activation of precisely O rarely happens with .
non-zero weights, and if it happens we choose a convention /
u I I I | | | 1
o Dead neurons is an issue

o Large gradients might cause a neuron to die. Higher learning rates might be beneticial

> Assuming a linear layer before ReLU h(x) = max(0,wx + b), make sure the bias term b is initialized with a
small initial value, e. g.0.1 = more likely the RelU is positive and therefore there is non zero gradient

o Nowadays RelU is the default non-linearity
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RelLU convergence rate

0.75
—_— Relu
—— TANA
@ 0.5 1\
E AN
S .
o ~
e =~ _
£ -
© 0.25 . ~ 0~
l_
D | | | | | | |
0 5 10 15 20 25 30 35 40
Epochs
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Other RelLUs =

(iRt 1 RN UL A Ll ——

o Soft approximation (softplus): a = h(x) = In(1 + e”*)
o Noisy ReLlU: a = h(x) = max (0,x + €),e~N(0, 0(x))

x,if x>0
/ () {O.le otherwise }3 Bl 0 1 5 3

x,if x>0

Lx otherwise (parameter B is trainable)

o ParametricReLu:a = h(x) = {

I
o

Yi

Yi = aiT; b
Y1 = Q5iTji

I
ReL.U Leaky ReLU/PReLU Randomized Leaky ReLU
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How would you compare the two non-linearities?
o They are equivalent for training

o They are not equivalent for training

¥ ¥
1.2 1.7
1.0 1.0
0.8 0.@ )

_ (x from =1.2to0 1.2) _ (x from 8.8 to 11.2)
0.& (.&
0.4 0.4
0.2 0.2

X
1.0 =05 0.5 1.0 a.0 9.5 100 105 11.0
Computed by Wolfram |&lpha Computed by Wolfram |alpha
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How would you compare the two non-linearities?
o They are equivalent for training

o They are not equivalent for training
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Centered non-linearities

o Remember: a deep network is a hierarchy of similar modules
> One RelU is the input to the next ReLU

o Consistent behavior =2 input/output distributions must match
o Otherwise, you will soon have inconsistent behavior

o If ReLU-1 returns always highly positive numbers, e.g. ~10,000 -
the next ReLU-2 biased towards highly positive or highly negative values (depending
on the sign of the weight w)—=> RelU (2) essentially becomes a linear unit.

o We want our non-linearities to be mostly activated around the origin
(centered activations)
> the only way to encourage consistent behavior not matter the architecture
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Sigmoid module

10
. . 1 08t

o Activation: a = o(x) = —
1+e—* vel

® Gradlent —=0(x)(1 —o(x)) 0l

02

0
s
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anh module

ex_e—x

o Activation: a = tanh(x) = prp—

o Gradient: Z—z = 1 — tanh?(x)

10

05 F

00 F

—  a=tanh(z)

—  da/dz
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Which non-linearity is better, the sigmoid or the tanh?

O

O

The tanh, because on the average activation case it has stronger gradients

The sigmoid, because it's output range [0, 1] resembles the range of probability values
The tanh, because the sigmoid can be rewritten as a tanh

The sigmoid, because it has a simpler implementation of gradients

None of them are that great, they saturate for large or small inputs

The tanh, because it's mean activation is around O and it is easier to combine with

other modules S | B S ,
08 O-(x) : ;l_r:” tanh(x) | . —  a=tanh(x)

— da/dz
0S5

06l ] ' /

04| ] /

N _\ N J
00 : _ . ”
—4 = 2 L
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Which non-linearity is better, the sigmoid or the tanh?

O

O

The tanh, because on the average activation case it has stronger gradients

The sigmoid, because it's output range [0, 1] resembles the range of probability values
The tanh, because the sigmoid can be rewritten as a tanh

The sigmoid, because it has a simpler implementation of gradients

None of them are that great, they saturate for large or small inputs

The tanh, because it's mean activation is around O and it is easier to combine with
other modules 19 f S— —

08 O-(x) : :”::_” ‘ tanh(x) . \ — a=tanh(z)

— da/dz
05 \ |

06} ] '
| o0 — —
0af ]

0.0 L - B
—4 = 2 L
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anh vs Sigmoids

o Functional form is very similar: tanh(x) = 20(2x) — 1

o tanh(x) has better output [—1, +1] range
o Stronger gradients, because data is centered around O (not 0.5)

> Less “positive” bias to hidden layer neurons as now outputs "2
can be both positive and negative (more likely
to have zero mean in the end) -

o Both saturate at the extreme = 0O gradients
> “Overconfident”, without necessarily being correct os |

o Especially bad when in the middle layers: why should a neuron be
overconfident, when it represents a latent variable oo

o The gradients are < 1, so in deep layers the chainrule ;|
returns very small total gradient

o From the two, tanh(x) enables better learning &
o But still, not a great choice
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Sigmoid: An exception

o An exception for sigmoids is ...
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Sigmoid: An exception

o An exception for sigmoids is when used as the final output layer

o Sigmoid outputs can return very small or very large values (saturate)
o Qutput units are not latent variables (have access to ground truth labels)

o Still “overconfident”, but at least towards true values
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Softmax module

o x (0

¥, ox()
o Qutputs probability distribution, Z’,\f:l a® =1 for K classes

o Activation: a(®) = Softmax(x(k)) =

o Avoid exponentianting too large/small numbers = better stability

G — ()
a\"’ = G 4 = max; x**’ because
Zj eX~ ~H
5x00 o1t (O %0

5 exD-u ouy ex0) - 5 ex0)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES MODULAR LEARNING - PAGE 40




Euclidean loss module

25 T T r y J ri
o — a=|=— 3
o Activation: a(x) = 0.5 ||y — x||? o —

> Mostly used to measure the loss in regression tasks |
da |
o Gradient: — = x — _
dx y :
.|]_
_5_
=10
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Cross-entropy loss (log-likelihood) module

o Activation: a(x) = = YK_, y® logx®), ¢y = 10,1}

Jda _y(k)
ax® —  x®

o The cross-entropy loss is the most popular classification loss for classifiers
that output probabilities

o Gradient:

o Cross-entropy loss couples well softmax/sigmoid module
> The log of the cross-entropy cancels out the exp of the softmax/sigmoid
o Often the modules are combined and joint gradients are computed

o Generalization of logistic regression for more than 2 outputs
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New modules

o Everything can be a module, given some ground rules

o How to make our own module?
o Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

da(x;w) 3 da(x;w)

nd

ox ow
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A module of modules

o As everything can be a module, a module of modules could also be a
module

o We can therefore make new building blocks as we please, if we expect
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply
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1 sigmoid == 2 modules?

o Assume the sigmoid o(...) operating on top of wx
a = o(wx)

o Directly computing it 2 complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

a, = wx—a, =o(aq)

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES MODULAR LEARNING - PAGE 100



1 sigmoid == 2 modules?

- Two backpropagation steps instead of one

+ But now our gradients are simpler
o Algorithmic way of computing gradients
> We avoid taking more gradients than needed in a (complex) non-linearity

a, =o(a)

A 4

a, = wx
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Many, many more modules out there ...

o Many will work comparably to existing ones
> Not interesting, unless they work consistently better and there is a reason

o Regularization modules
° Dropout

o Normalization modules
> £,-normalization, £{-normalization

o Loss modules
° Hinge loss

o Most of concepts discussed in the course can be casted as modules
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A mostly complete chart of

Backfed Input Cell N e u ra l N EtWO r ks Deep Feed Forward (DFF)

Input Cell ©2016 Fjador van Veen - asimovinstitute.org

Neural Network Cheatsheet

Noisy Input Cell

Perceptron (P) Feed Forward (FF) Radial Basis Netwaork (RBF)

Hidden Cell : - -
Probablistic Hidden Cell - - -

. Spiking Hidden Cell

[ N NN N0
(]

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
. a 0 o [ 0 [

@ output celt .9 - ... - v.»

o Perceptrons, MLPs S e R/ BT
e P e

. Recurrent Cell ) ‘ . o ‘ ‘

‘ Different Memory Cell

O R N N S I—S | M S G R U S . Mermory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
/ 4 v v .

‘ Kernel

Vanilla, Variational, Denoising Autoencoders =~ °=™

Hopfield Nets, Restricted Boltzmann Machines;

o O

o Convolutional Nets, Deconvolutional Nets

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Canvolutional Inverse Graphics Network (DCIGN)

) ¢

@)
N
/

oy &

)

o Generative Adversarial Nets

/

L J

)

/

L J

) ¢

XXX

L

o e

al

o Deep Residual Nets, Neural Turing Machines

Generative Adversarial Network (CAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

A5 25 A

Deep Residual Network (DRN) Kohonen Network (KN)  Suppart Vector Machine (SVM)  Neural Turing Machine (NTM)

sseaates s c3bs ¢
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Backpropagation
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Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
0
Data .
LA
: -
ge 7o
i By

T(“yl._ _yl)Z
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Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
0
Data .
LA
: -
ge 7o
i By

T(“yl._ _yl)Z
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Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
0
Data .
LA
: -
ge 7o
i By

T(“yl._ _yl)Z
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Forward computations

o Collect annotated data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “forward propagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
0
Data .
LA
: -
ge 7o
i By

T(“yl._ _yl)Z
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
Data e
LA '
. - 5 /
drge // ’
N I [
> ,
' i —y)
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
()
L)ata I ()
L\ :
: o
arge N
N
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
() ()
Datta 0 0
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
() 0 [
D d(ad N 0 U
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Backward computations

o Collect gradient data
o Define model and initialize randomly

o Predict based on current model
° In neural network jargon “backpropagation”

o Evaluate predictions Model Score/Prediction/Output Objective/Loss/Cost/Energy
() 0 [
Data T 0 ’
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Optimization through Gradient Descent

o As for many models, we optimize our neural network with Gradient Descent
W(t+1) — W(t) — n /]

o The most important component in this formulation is the gradient

o How to compute the gradients for such a complicated function enclosing
other functions, like a®(...)?
° Hint: Backpropagation

o Let’s see, first, how to compute gradients -
with nested functions 1(60.0,)
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z @
4z _ dzdy
dx dy dx
o Whenx € R™M,ye R"zeR Q\‘@
d .
c A _ e LD, gradients from all possible paths )'&

@ ) @
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x, y, z (2)
,dz _dzdy
dx dy dx
o Whenx € R™M,ye R"zeR Q @
dy; </
Ay LD gradients from all possible paths )'&

& ) @

dz _ dz dy' dz dy*
dxl ~ dyldx! dy?dx?!
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z Q
4z _ dzdy
dx dy dx
o Whenx € R™M,ye R"zeR @ ‘@
dy i -
c A _ e LD, gradients from all possible paths )'K

@ ) @

dz _ dz dy' dz dy*
dx2  dyldx? dy? dx?
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x, y, z (2)
L4z _ dzdy
dx dy dx
o Whenx € R™M,ye R"zeR @ @
dy i >
c Ay 22T gradients from all possible paths )'k
e ONONG

dz _ dz dy' dz dy*
dx3 ~ dyldx3 dy?dx3
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Chain rule

o Assume a nested function, z = f(y) andy = g(x)

o Chain Rule for scalars x,y, z @
4z _ dzdy
dx dy dx
o Whenx € R™M,ye R"zeR @‘@
dy; N>
c A _ e LD, gradients from all possible paths )'K

dx; jdyj dx;

° Or in vector notation @ @ @

dy !
Ve(z) = <a) ' Vy(Z)

dy. .
o —y|s the Jacobian
dx
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he Jacobian

o Whenx € R3,y € R?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES

J(y(x)) =

dy
dx

0xq
dy

0x,
dy;

0x5
ay,
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Chain rule in practice

o a = h(x) = sin(0.5x%)

o t=f(y) = sin(y)
oy =g(x)=0.5x?

df d[sin(y)] d[0.5x?]

dx dg dx

= cos(0.5x%) - x
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Backpropagation < Chain rule!!!

o The loss function L(y, a') depends on a*, which depends on a1, ...,

which depends on a;

o Gradients of parameters of layer [ = Chain rule

0L 0L dal 9dal 1 da’
ow!  dal 9al-1l 9al-2 " ow!

o When shortened, we need to two quantities

0L  da' . 0L

awl =~ Gt aa

/

Gradient of a module w.r.t. its parameters \ Gradient of loss w.r.t. the module output
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Backpropagation < Chain rule!!!

0L  da' . 0L

awl =GP 3d
dal

o For S we only need the Jacobian of the I-th module output a! w.r.t. to
l

the module’s parameters w

o Very local rule = every module looks for its own
> No need to know what other modules do

o Since computations can be very local, this means that ...
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Backpropagation < Chain rule!!!

0L  da' . 0L

awl =GP 3d
dal

o For S we only need the Jacobian of the I-th module output a! w.r.t. to
l

the module’s parameters w

o Very local rule = every module looks for its own
> No need to know what other modules do

o Since computations can be very local, this means that ...
° graphs can be very complicated

> modules can be complicated (as long as they are differentiable)
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Backpropagation < Chain rule!!!

al+1 — hl+1(xl+1.Wl+1)
aL . . ’
O For@ we apply chain rule again

oL  (9a*t\  or
dal \ dal daltl

0ay+q

o We can rewrite as gradient of module w.r.t. to input al = hl(xh;wh

aal
o Remember, the output of a module is the input for the next one: a;=x;,4

0L  (9a*'\— oL
dal

Gradient w.r.t. the module input

I+1] Al+1
0x da

Recursive rule (good for us)!!!
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How do we compute the gradient of multivariate activation functions, like
softmax: a’ = exp x;/(x; + x; + x3)°?

o We vectorize the inputs and the outputs and compute the gradient as
before

o We compute the Hessian matrix of the second-order derivatives:
dza]/(dxldx])

o We compute the Jacobian matrix containing all the partial derivatives:
daj/dxi
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How do we compute the gradient of multivariate activation functions, like
softmax: a’ = exp x;/(x; + x; + x3)°?

o We vectorize the inputs and the outputs and compute the gradient as
before

o We compute the Hessian matrix of the second-order derivatives:
dza]/(dxldx])

o We compute the Jacobian matrix containing all the partial derivatives:
daj/dxi
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Multivariate functions f (x)

o Often module functions depend on multiple input variables
o For instance, softmax!

o Each output dimension depends on multiple input dimensions
x.
e’ _
YT e + e*2 + eX3 ) =123

o For these cases there are multiple paths for each a;

dal da . .
o So, for the —al (or —al) we must compute the Jacobian matrix
dx ow
o The Jacobian is the generalization of gradient for multivariate functions

° e.g.in softmax a, depends on all_e*1, e*2 and _*3, not just on _e*2
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Diagonal Jacobians

o Quite often one output dim depends only on a single input dim
° e.g.asigmoid a = o(x), or a = tanh(x), or a = exp(x)

X1 o(x1)]
a(x) = o(x) = G([XzD =lo(x,)
X3

_G(xs)_

o Not need for full Jacobian, only the diagonal: anyways % =0, Vi#]
J
da do oG = o)) 0 0 | [eG) =00 ]
T 0 o(x3)(1—0(x3)) 0 ~o(x2)(1 = 0(x2))
0 0 o(x3)(1—0(x3)) | |o0(x3)(1—0(x3)) |

o Can rewrite equations as inner products to save computations
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Forward graph

o Simply compute the activation of each module in the network
at = ht(xh w)

> Then, set x!*1: = ¢!

> Must know the precise function behind each module h!(...)

o Then, repeat recursively
° Visit modules one by one starting from the data input
> One module’s output is another module’s input
> Some modules might have several inputs from multiple modules
o Store intermediate values = save compute time at the cost of memory

o Compute modules activations with the right order
> Make sure all the inputs are computed at the right time

Data Input
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Backward graph

o Same story but in reverse
> Take the reverse network (reverse connections) and go backwards
° |Instead of activation functions, use gradients of activation functions

o Requirements

> Must know the gradient formulation of each module ahl(xl; Wl)

> w.r.t. both their inputs x* and parameters w'

> Note: We need the forward computations first.

The total loss is the sum of losses for all inputs in our batch

o The whole process can be described very neatly and concisely
with the backpropagation algorithm
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

a' = h!(x!) and x!*1 = a

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients
° Cache computations when possible to avoid redundant operations

oL  (9a*\' oL o aal (ar\
dal \ox!t1) Qaltl ow! ~ aw! \aa!

o Step 3. Use the gradients % with Stochastic Gradient Descend to train
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

a' = h!(x!) and x!*1 = a

o Step 2. Once done with forward propagation, follow the reverse path.
o Start from the last layer and for each new layer compute the gradients

o Cache computations when possible to avoid redundant operations /Vectorwith dimensions [d;_1X 1]
Vector with dimensions [d; X 1] 1+1\ T T
L 6_/.3 _ da | 0L dL  Oa | 0L
0al Oxlt1 0altl awl ow'! Qal

o Step 3. Use th radients aa_vf with Stochastic Gradient Descend to train
l

Vector with dimensions [1 X d;]
Jacobian matrix with dimensions [d;; X d;]"

Matrix with dimensions [d;_1 X d;]
Vector with dimensions [d;;1 X 1]
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Backpropagation visualization
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Backpropagation visualization at epoch (t)

Forward propagations

Example
a(wlxl)

4

|

Store!ll

Compute and store a;= hy{(x1)
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Backpropagation visualization at epoch (t)

Forward propagations Examgle

al = o(wlxl)

@ o(w?x?)
[

Store!!l

Compute and store a,= h,(x,)
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Backpropagation visualization at epoch (t)

Forward propagations Examgle

al = o(wlxl)
a? = o(w?x?)

ly — a?I12 = lly — x°|I?

Store!ll

Compute and store az= h3(x3)
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Backpropagation visualization at epoch (t)

Backpropagation - 5 Example
= Lx) a® = L(y,x%) = 05 |ly — x|
= ... € Direct computation oL ;
a? = h2(x2,w?) 0x3 —(y=x9)
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Backpropagation visualization at epoch (t)

Bnck/vra/vngﬂtian

oL oL da®

da? 0a3 0a?

oL 0L da? a® = h*(x?,

ow2  da? ow?

Stored during forward Lompu%

e

[
e L(y,x3) = 0.5 |ly — x3]|?

a’? = a(w?x?)

oL 0L

da®  0x3 ~(r =)
da(x) = a(x)(1 —a(x))

da’ 2 2.2 2,2
W=x o(w x?)(1 —o(w"x*))

Store!!l
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Backpropagation visualization at epoch (t)

[
e L(y,a®) = 0.5 ||y — a?||?

Bnck/vra/vngﬂtian

0L 0L Oda, a? = o(w?x?)

aal aaz aal al — O.(Wlxl)

oL 0L 0da, da’* 0da* , 5 5

96, da, 00, gt~ gz W l—ad)
da’ 1,1 1
=X a (1—a")
0L
e (g
d dL

owl  owl xtal(1-ah)

Computed from the exact previous

backpropagation step (Remember, recursive rule)
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Backpropagation visualization at epoch (t + 1)~
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Backpropagation visualization at epoch (t + 1)

Forward propagations

o(wlx!)

4

|

Store!ll

Compute and store a;= hy{(x1)
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Backpropagation visualization at epoch (t + 1)

Forward propagations

al = o(wlxl)

Compute and store a,= h,(x;) a’ ¥ o(w?x?)

Store!!l
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Backpropagation visualization at epoch (t + 1)

Forward propagations

al = o(wlxl)

a? = o(w?x?)
ly — a?I12 = lly — x°|I?

Store!ll

Compute and store az= h3(x3)
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Backpropagation visualization at epoch (t + 1)

Backpropagation

3 _
| | * a® = L(y,x%) = 05 Iy — x*|?
= ... € Direct computation 0L 3
a2=h2(x2 WZ) %__(y_x )
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Backpropagation visualization at epoch (t + 1)

Backpropagation

oL 9L 9ad
0a2 0a3 9a?
0L 0L da> a* = h*(x?,

ow2  da? ow?

Stored during forward Lompu%

e

L(y,x3) = 0.5 |ly — x5]|?

a’? = a(w?x?)

oL 0L

da®  0x3 ~(r =)
da(x) = a(x)(1 —a(x))

da’ 2 2.2 2,2
W=x o(w x?)(1 —o(w"x*))

Store!!l
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Backpropagation visualization at epoch (t + 1)

Backpropagation L(y,a®) =05 |ly — |

2

0L 0L Oda, a? = o(w?x?)
aal B aaz aal al — O.(Wlxl)
oL 0L 0da, da’* 0da* , 5 5
96, da, 00, gt~ gz W l—ad)
dal
P xlal(1—a?)
0L
e (g
d dL
owl  owl xtal(1-ah)

Computed from the exact previous
backpropagation step (Remember, recursive rule)
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Dimension analysis

o To make sure everything is done correctly = “Dimension analysis”

o The dimensions of the gradient w.r.t. w! must be equal to the dimensions
of the respective weight w

. (0L .
dim (ﬁ) = dlm(al)

. (0L .
dim (W) = dlm(wl)
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Dimension analysis

Cror 25 = (aal+1)T oL dim(al) = d;
aal axl+1 aal+1 dlm(Wl) — dl_l X dl
[dix 1] = [dy1 X di]" - [djp1% 1]
oL dal [oac\T
o For ST T awl” (W)

[di—1X di] = [d;—1 % 1] - [1 X d|]
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So, Backprop, what’s the big deal?

o Backprop is as simple as it is complicated

o Mathematically, just the chain rule
° Found some time around the 1700s by |. Newton and Leibniz, who invented calclulus

> That simple, that we can even automate it (“reverse-mode differentiation”)

o However, why is it that we can train a highly non-complex machine with
many local optima, like neural nets, with a strongly local learning
algorithm like Backprop?

> Why even is it a good choice?
> Not really known, even today
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o Modularity in Neural Networks
o Neural Network Modules

Summary o Neural Network Cheatsheet

o Backpropagation

Reading material
o Chapter 6
o Efficient Backprop, LeCun et al., 1998
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