
Lecture 2: Modular Learning
Deep Learning @ UvA
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o Modularity in Deep Learning

o Popular Deep Learning modules

o Neural Network Cheatsheet

o Backpropagation

Lecture Overview
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o A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent 
to encode domain knowledge, i.e. domain invariances, stationarity.

o 𝑎𝐿 𝑥;𝑤1, … , 𝑤𝐿 = ℎ𝐿(ℎ𝐿−1 …ℎ1 𝑥, 𝑤1 , 𝑤𝐿−1 , 𝑤𝐿)
◦ 𝑥:input, 𝑤𝑙: parameters for layer 𝑙, 𝑎𝑙 = ℎ𝑙(𝑥, 𝑤𝑙): (non-)linear function

o Given training corpus {𝑋, 𝑌} find optimal parameters

w∗ ← argmin𝑤 

(𝑥,𝑦)⊆(𝑋,𝑌)

ℒ(𝑦, 𝑎𝐿 𝑥 )

What is a neural network again?
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models

ℎ1(𝑥𝑖; 𝑤)

ℎ2(𝑥𝑖; 𝑤)

ℎ3(𝑥𝑖; 𝑤)

ℎ4(𝑥𝑖; 𝑤)

ℎ5(𝑥𝑖; 𝑤)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥𝑖; 𝑤)

ℎ4(𝑥𝑖; 𝑤)

Interweaved 
connections
(Directed Acyclic 
Graphs- DAGNN)
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Loopy connections (Recurrent architecture, special care needed)
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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Functions Modules
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o A module is a building block for our network

o Each module is an object/function 𝑎 = ℎ(𝑥;𝑤) that
◦ Contains trainable parameters w
◦ Receives as an argument an input 𝑥
◦ And returns an output 𝑎 based on the activation function ℎ …

o The activation function should be (at least)
first order differentiable (almost) everywhere

o For easier/more efficient backpropagation  store
module input
◦ easy to get module output fast
◦ easy to compute derivatives

What is a module?

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2𝑎)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5𝑎)

𝐿𝑜𝑠𝑠

𝐼𝑛𝑝𝑢𝑡

ℎ2(𝑥2; 𝑤2𝑏)

ℎ5(𝑥5; 𝑤5𝑏)
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o A neural network is a composition of modules (building blocks)

o Any architecture works

o If the architecture is a feedforward cascade, no special care

o If acyclic, there is right order of computing the forward computations

o If there are loops, these form recurrent connections (revisited later)

Anything goes or do special constraints exist?
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o Simply compute the activation of each module in the network

𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝑤 , where 𝑎𝑙 = 𝑥𝑙+1

o We need to know the precise function behind
each module ℎ𝑙(… )

o Recursive operations
◦ One module’s output is another’s input

o Steps
◦ Visit modules one by one starting from the data input
◦ Some modules might have several inputs from multiple modules 

o Compute modules activations with the right order
◦ Make sure all the inputs computed at the right time

Forward computations for neural networks

𝐿𝑜𝑠𝑠

Data Input

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5)

ℎ2(𝑥2; 𝑤2)

ℎ5(𝑥5; 𝑤5)
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o Usually Maximum Likelihood on the training set

w∗ = arg max
𝑤

ෑ

𝑥,𝑦

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥;𝑤)

o Taking the logarithm, the Maximum Likelihood is equivalent to minimizing 
the negative log-likelihood cost function

ℒ 𝑤 = −𝔼𝑥,𝑦~ 𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥;𝑤)

o 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) is last layer output

How to get w? Gradient-based learning
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If our last layer is the Gaussian function 𝑁(𝑦; ℎ(𝑤; 𝑥), 𝐼) what could be our 
cost function like? (Multiple answers possible)

o ~ 𝑦 − ℎ 𝑤; 𝑥 2

o ~max{0, 1 − 𝑦 ℎ(𝑤; 𝑥)}

o ~ 𝑦 − ℎ 𝑤; 𝑥 1

o ~ 𝑦 − ℎ 𝑤; 𝑥 2 + 𝜆Ω(w)

Quiz
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o Usually Maximum Likelihood in the train set

w∗ = arg max
𝜃

ෑ

𝑥,𝑦

𝑝(𝑦|𝑥; 𝑤)

o Taking the logarithm, this means minimizing the cost function
ℒ 𝜃 = −𝔼𝑥,𝑦~ 𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥; 𝑤)

o 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥; 𝑤) is the last layer output

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) = log 1

√2𝜋𝜎2
exp(− 𝑦−ℎ 𝑥;𝑤 2

2𝜎2
)

∝ 𝐶 + 𝑦 − ℎ 𝑥;𝑤 2

How to get w? Gradient-based learning
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Why should we choose a cost function that matches the form of the last 
layer of the neural network?

o Otherwise one cannot use standard tools, like automatic differentiation, in 
packages like Tensorflow or Pytorch

o It makes the math simpler

o It avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is 
stable 

Quiz
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Why should the last network layer “click” with our cost function?

o Otherwise one cannot use standard tools, like automatic differentiation, in 
packages like Tensorflow or Pytorch

o It makes the math simpler

o It avoids numerical instabilities

o It makes gradients large by avoiding functions saturating, thus learning is 
stable 

Quiz
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o In a neural net 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) is the module of the last layer (output layer)

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) = log 1

√2𝜋𝜎2
exp(− 𝑦−𝑓 𝜃;𝑥 2

2𝜎2
) ⟹

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥) ∝ 𝐶 + 𝑦 − 𝑓 𝜃; 𝑥 2

o Everything gets much simpler when the learned (neural network) function 𝑝𝑚𝑜𝑑𝑒𝑙
matches the cost function ℒ(w)

o E.g the log of the negative log-likelihood cancels out the exp of the Gaussian
◦ Easier math
◦ Better numerical stability
◦ Exponential-like activations often lead to saturation, which means gradients are almost 0, which means 

no learning

o That said, combining any function that is differentiable is possible
◦ just not always convenient or smart

How to get w? Gradient-based learning
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Everything is a
module
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o A neural network model is a series of hierarchically connected functions

o This hierarchies can be very, very complex

Neural network models
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o Activation: 𝑎 = 𝑤𝑥

o Gradient: 
𝜕𝑎

𝜕𝑤
= 𝑥

o No activation saturation

o Hence, strong & stable gradients
◦ Reliable learning with linear modules

Linear module
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o Activation: 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

Rectified Linear Unit (ReLU) module
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What characterizes the Rectified Linear Unit?

o There is the danger the input 𝑥 is consistently 0 because of a glitch. This would 
cause "dead neurons" that always are 0 with 0 gradient.

o It is discontinuous, so it might cause numerical errors during training

o It is piece-wise linear, so the "piece"-gradients are stable and strong

o Since they are linear, their gradients can be computed very fast and speed up 
training.

o They are more complex to implement, because an if condition needs to be 
introduced.

Quiz
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What characterizes the Rectified Linear Unit?

o There is the danger the input 𝑥 is consistently 0 because of a glitch. This would 
cause "dead neurons" that always are 0 with 0 gradient.

o It is discontinuous, so it might cause numerical errors during training

o It is piece-wise linear, so the "piece"-gradients are stable and strong

o Since they are linear, their gradients can be computed very fast and speed up 
training.

o They are more complex to implement, because an if condition needs to be 
introduced.

Quiz
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o Activation: 𝑎 = ℎ(𝑥) = max 0, 𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= ቊ

0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓𝑥 > 0

o Strong gradients: either 0 or 1 

o Fast gradients: just a binary comparison 

o It is not differentiable at 0, but not a big problem 
◦ An activation of precisely 0 rarely happens with

non-zero weights, and if it happens we choose a convention

o Dead neurons is an issue
◦ Large gradients might cause a neuron to die. Higher learning rates might be beneficial
◦ Assuming a linear layer before ReLU ℎ(𝑥) = max 0,𝑤𝑥 + 𝑏 , make sure the bias term 𝑏 is initialized with a 

small initial value, 𝑒. 𝑔. 0.1more likely the ReLU is positive and therefore there is non zero gradient

o Nowadays ReLU is the default non-linearity

Rectified Linear Unit (ReLU) module

MODULAR LEARNING - PAGE 28UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



ReLU convergence rate

ReLU
Tanh

MODULAR LEARNING - PAGE 29UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES



o Soft approximation (softplus): 𝑎 = ℎ(𝑥) = ln 1 + 𝑒𝑥

o Noisy ReLU: 𝑎 = ℎ 𝑥 = max 0, x + ε , ε~𝛮(0, σ(x))

o Leaky ReLU: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

o Parametric ReLu: 𝑎 = ℎ 𝑥 = ቊ
𝑥, 𝑖𝑓 𝑥 > 0

𝛽𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(parameter 𝛽 is trainable)

Other ReLUs
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How would you compare the two non-linearities?

o They are equivalent for training

o They are not equivalent for training

Quiz
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How would you compare the two non-linearities?

o They are equivalent for training

o They are not equivalent for training

Quiz
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o Remember: a deep network is a hierarchy of similar modules
◦ One ReLU is the input to the next ReLU

o Consistent behavior  input/output distributions must match
◦ Otherwise, you will soon have inconsistent behavior

◦ If ReLU-1 returns always highly positive numbers, e.g. ~10,000
the next ReLU-2 biased towards highly positive or highly negative values (depending 
on the sign of the weight 𝑤) ReLU (2) essentially becomes a linear unit.

o We want our non-linearities to be mostly activated around the origin 
(centered activations)
◦ the only way to encourage consistent behavior not matter the architecture

Centered non-linearities
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o Activation: 𝑎 = 𝜎 𝑥 =
1

1+𝑒−𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥))

Sigmoid module
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o Activation: 𝑎 = 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

o Gradient: 
𝜕𝑎

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥)

Tanh module
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Which non-linearity is better, the sigmoid or the tanh?

o The tanh, because on the average activation case it has stronger gradients

o The sigmoid, because it's output range [0, 1] resembles the range of probability values

o The tanh, because the sigmoid can be rewritten as a tanh

o The sigmoid, because it has a simpler implementation of gradients

o None of them are that great, they saturate for large or small inputs

o The tanh, because it's mean activation is around 0 and it is easier to combine with 
other modules

Quiz
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𝜎 𝑥 tanh(𝑥)



Which non-linearity is better, the sigmoid or the tanh?

o The tanh, because on the average activation case it has stronger gradients

o The sigmoid, because it's output range [0, 1] resembles the range of probability values

o The tanh, because the sigmoid can be rewritten as a tanh

o The sigmoid, because it has a simpler implementation of gradients

o None of them are that great, they saturate for large or small inputs

o The tanh, because it's mean activation is around 0 and it is easier to combine with 
other modules

Quiz
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𝜎 𝑥 tanh(𝑥)



o Functional form is very similar: 𝑡𝑎𝑛ℎ 𝑥 = 2𝜎 2𝑥 − 1

o 𝑡𝑎𝑛ℎ 𝑥 has better output [−1,+1] range 
◦ Stronger gradients, because data is centered around 0 (not 0.5)
◦ Less “positive” bias to hidden layer neurons as now outputs

can be both positive and negative (more likely
to have zero mean in the end)

o Both saturate at the extreme  0 gradients
◦ “Overconfident”, without necessarily being correct
◦ Especially bad when in the middle layers: why should a neuron be

overconfident, when it represents a latent variable

o The gradients are < 1, so in deep layers the chain rule
returns very small total gradient

o From the two, 𝑡𝑎𝑛ℎ 𝑥 enables better learning
◦ But still, not a great choice

Tanh vs Sigmoids
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o An exception for sigmoids is …

Sigmoid: An exception
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o An exception for sigmoids is when used as the final output layer

o Sigmoid outputs can return very small or very large values (saturate)
◦ Output units are not latent variables (have access to ground truth labels)

◦ Still “overconfident”, but at least towards true values

Sigmoid: An exception
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o Activation: 𝑎(𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥(𝑘)) =
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

◦ Outputs probability distribution, σ𝑘=1
𝐾 𝑎(𝑘) = 1 for 𝐾 classes

o Avoid exponentianting too large/small numbers  better stability

𝑎(𝑘) =
𝑒𝑥

(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

, 𝜇 = max𝑘 𝑥
(𝑘) because

𝑒𝑥
(𝑘)−𝜇

σ𝑗 𝑒
𝑥(𝑗)−𝜇

=
𝑒𝜇𝑒𝑥

(𝑘)

𝑒𝜇 σ𝑗 𝑒
𝑥(𝑗)

=
𝑒𝑥

(𝑘)

σ𝑗 𝑒
𝑥(𝑗)

Softmax module
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o Activation: 𝑎(𝑥) = 0.5 𝑦 − 𝑥 2

◦ Mostly used to measure the loss in regression tasks

o Gradient: 
𝜕𝑎

𝜕𝑥
= 𝑥 − 𝑦

Euclidean loss module
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o Activation: 𝑎 𝑥 = −σ𝑘=1
𝐾 𝑦(𝑘) log 𝑥(𝑘), 𝑦(𝑘)= {0, 1}

o Gradient: 
𝜕𝑎

𝜕𝑥(𝑘)
= −

𝑦(𝑘)

𝑥(𝑘)

o The cross-entropy loss is the most popular classification loss for classifiers 
that output probabilities

o Cross-entropy loss couples well softmax/sigmoid module
◦ The log of the cross-entropy cancels out the exp of the softmax/sigmoid

◦ Often the modules are combined and joint gradients are computed

o Generalization of logistic regression for more than 2 outputs

Cross-entropy loss (log-likelihood) module
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o Everything can be a module, given some ground rules

o How to make our own module?
◦ Write a function that follows the ground rules

o Needs to be (at least) first-order differentiable (almost) everywhere

o Hence, we need to be able to compute the

𝜕𝑎(𝑥;𝑤)

𝜕𝑥
and 

𝜕𝑎(𝑥;𝑤)

𝜕𝑤

New modules
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o As everything can be a module, a module of modules could also be a 
module

o We can therefore make new building blocks as we please, if we expect 
them to be used frequently

o Of course, the same rules for the eligibility of modules still apply

A module of modules
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o Assume the sigmoid 𝜎(… ) operating on top of 𝑤𝑥
𝑎 = 𝜎(𝑤𝑥)

o Directly computing it  complicated backpropagation equations

o Since everything is a module, we can decompose this to 2 modules

1 sigmoid == 2 modules?

𝑎1 = 𝑤𝑥 𝑎2 = 𝜎(𝑎1)
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- Two backpropagation steps instead of one

+ But now our gradients are simpler
◦ Algorithmic way of computing gradients

◦ We avoid taking more gradients than needed in a (complex) non-linearity

1 sigmoid == 2 modules?

𝑎1 = 𝑤𝑥 𝑎2 = 𝜎(𝑎1)
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o Many will work comparably to existing ones
◦ Not interesting, unless they work consistently better and there is a reason

o Regularization modules
◦ Dropout

o Normalization modules
◦ ℓ2-normalization, ℓ1-normalization

o Loss modules
◦ Hinge loss

o Most of concepts discussed in the course can be casted as modules

Many, many more modules out there …
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o Perceptrons, MLPs

o RNNs, LSTMs, GRUs

o Vanilla, Variational, Denoising Autoencoders

o Hopfield Nets, Restricted Boltzmann Machines

o Convolutional Nets, Deconvolutional Nets

o Generative Adversarial Nets

o Deep Residual Nets, Neural Turing Machines

Neural Network Cheatsheet
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Backpropagation

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES  & MAX WELLING
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model

ℎ(𝑥𝑖; 𝑤)

Objective/Loss/Cost/Energy

ℒ(𝑦𝑖 , 𝑦𝑖
∗)

Score/Prediction/Output

𝑦𝑖 ∝ ℎ(𝑥𝑖; 𝑤)

𝑋Input:
𝑌Targets:

Data

𝑤

(𝑦𝑖
∗ − 𝑦𝑖)

2
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤
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o Collect annotated data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “forward propagation”

o Evaluate predictions

Forward computations

Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

= 1
𝑤

ℒ( )

(𝑦𝑖
∗ − 𝑦𝑖)

2
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

= 1
𝑤

𝜕ℒ(𝑤; ෝ𝑦𝑖)

𝜕 ෝ𝑦𝑖
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝑤; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝑤; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ

𝜕ℎ(𝑥𝑖)

𝜕𝑤
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Backward computations

o Collect gradient data

o Define model and initialize randomly

o Predict based on current model
◦ In neural network jargon “backpropagation”

o Evaluate predictions Model Objective/Loss/Cost/EnergyScore/Prediction/Output

𝑋Input:
𝑌Targets:

Data

𝑤

𝜕ℒ(𝑤; 𝑦𝑖)

𝜕𝑦𝑖

𝜕𝑦𝑖
𝜕ℎ

𝜕ℎ(𝑥𝑖)

𝜕𝜃
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o As for many models, we optimize our neural network with Gradient Descent
𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂𝑡𝛻𝑤ℒ

o The most important component in this formulation is the gradient

o How to compute the gradients for such a complicated function enclosing 
other functions, like 𝑎𝐿(… )?
◦ Hint: Backpropagation

o Let’s see, first, how to compute gradients
with nested functions

Optimization through Gradient Descent
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦1 𝑦2

𝑥1 𝑥2 𝑥3

𝑑𝑧

𝑑𝑥1
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥1
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥1
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦1 𝑦2

𝑑𝑧

𝑑𝑥2
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥2
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥2
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

Chain rule

𝑧

𝑦1 𝑦2

𝑥1 𝑥2 𝑥3

𝑑𝑧

𝑑𝑥3
=

𝑑𝑧

𝑑𝑦1
𝑑𝑦1

𝑑𝑥3
+
𝑑𝑧

𝑑𝑦2
𝑑𝑦2

𝑑𝑥3
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o Assume a nested function, 𝑧 = 𝑓 𝑦 and 𝑦 = 𝑔 𝑥

o Chain Rule for scalars 𝑥, 𝑦, 𝑧

◦
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

o When 𝑥 ∈ ℛ𝑚, 𝑦 ∈ ℛ𝑛, 𝑧 ∈ ℛ

◦
𝑑𝑧

𝑑𝑥𝑖
= σ𝑗

𝑑𝑧

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑥𝑖
 gradients from all possible paths

◦ or in vector notation

𝛻𝑥(𝑧) =
𝑑𝒚

𝑑𝒙

𝑇

⋅ 𝛻𝑦(𝑧)

◦
𝑑𝒚

𝑑𝒙
is the Jacobian

Chain rule

𝑧
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The Jacobian

o When 𝑥 ∈ ℛ3, 𝑦 ∈ ℛ2

𝐽 𝑦 𝑥 =
𝑑𝒚

𝑑𝒙
=

𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

𝜕𝑦1
𝜕𝑥3

𝜕𝑦2
𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦2
𝜕𝑥3
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o a = h 𝑥 = sin 0.5x2

o t = f y = sin 𝑦

o 𝑦 = 𝑔 𝑥 = 0.5 𝑥2

𝑑𝑓

𝑑𝑥
=
𝑑 [sin(𝑦)]

𝑑𝑔

𝑑 0.5𝑥2

𝑑𝑥

= cos 0.5𝑥2 ⋅ 𝑥

Chain rule in practice
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o The loss function ℒ(𝑦, 𝑎𝐿) depends on 𝑎𝐿, which depends on 𝑎𝐿−1, …, 
which depends on 𝑎𝑙

o Gradients of parameters of layer 𝑙 Chain rule

𝜕ℒ

𝜕𝑤𝑙
=

𝜕ℒ

𝜕𝑎𝐿
∙
𝜕𝑎𝐿

𝜕𝑎𝐿−1
∙
𝜕𝑎𝐿−1

𝜕𝑎𝐿−2
∙ … ∙

𝜕𝑎𝑙

𝜕𝑤𝑙

o When shortened, we need to two quantities

𝜕ℒ

𝜕𝑤𝑙
= (

𝜕𝑎𝑙

𝜕𝑤𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙

Backpropagation ⟺ Chain rule!!!

Gradient of a module w.r.t. its parameters Gradient of loss w.r.t. the module output
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𝜕ℒ

𝜕𝑤𝑙
= (

𝜕𝑎𝑙

𝜕𝑤𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙

o For 
𝜕𝑎𝑙

𝜕𝑤𝑙 we only need the Jacobian of the 𝑙-th module output 𝑎𝑙 w.r.t. to 

the module’s parameters 𝑤𝑙

o Very local rule  every module looks for its own
◦ No need to know what other modules do

o Since computations can be very local, this means that …

Backpropagation ⟺ Chain rule!!!
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𝜕ℒ

𝜕𝑤𝑙
= (

𝜕𝑎𝑙

𝜕𝑤𝑙
)𝑇⋅

𝜕ℒ

𝜕𝑎𝑙

o For 
𝜕𝑎𝑙

𝜕𝑤𝑙 we only need the Jacobian of the 𝑙-th module output 𝑎𝑙 w.r.t. to 

the module’s parameters 𝑤𝑙

o Very local rule  every module looks for its own
◦ No need to know what other modules do

o Since computations can be very local, this means that …
◦ graphs can be very complicated

◦ modules can be complicated (as long as they are differentiable)

Backpropagation ⟺ Chain rule!!!
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o For 
𝜕ℒ

𝜕𝑎𝑙
we apply chain rule again

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑎𝑙

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

o We can rewrite 
𝜕𝑎𝑙+1

𝜕𝑎𝑙
as gradient of module w.r.t. to input

◦ Remember, the output of a module is the input for the next one: 𝑎𝑙=𝑥𝑙+1

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1

Backpropagation ⟺ Chain rule!!!

Recursive rule (good for us)!!!

Gradient w.r.t. the module input

𝑎𝑙 = ℎ𝑙(𝑥𝑙; 𝑤𝑙)

𝑎𝑙+1 = ℎ𝑙+1(𝑥𝑙+1; 𝑤𝑙+1)

𝑥𝑙+1 = 𝑎𝑙
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How do we compute the gradient of multivariate activation functions, like 
softmax: 𝑎𝑗 = exp 𝑥𝑗/(𝑥1 + 𝑥2 + 𝑥3)?

o We vectorize the inputs and the outputs and compute the gradient as 
before

o We compute the Hessian matrix of the second-order derivatives: 
𝑑2𝑎𝑗/(𝑑𝑥𝑖𝑑𝑥𝑗)

o We compute the Jacobian matrix containing all the partial derivatives: 
𝑑𝑎𝑗/𝑑𝑥𝑖

Quiz
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How do we compute the gradient of multivariate activation functions, like 
softmax: 𝑎𝑗 = exp 𝑥𝑗/(𝑥1 + 𝑥2 + 𝑥3)?

o We vectorize the inputs and the outputs and compute the gradient as 
before

o We compute the Hessian matrix of the second-order derivatives: 
𝑑2𝑎𝑗/(𝑑𝑥𝑖𝑑𝑥𝑗)

o We compute the Jacobian matrix containing all the partial derivatives: 
𝑑𝑎𝑗/𝑑𝑥𝑖

Quiz
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o Often module functions depend on multiple input variables
◦ For instance, softmax!

◦ Each output dimension depends on multiple input dimensions

o For these cases there are multiple paths for each 𝑎𝑗

o So, for the 
𝜕𝑎𝑙

𝜕𝑥𝑙
(or 

𝜕𝑎𝑙

𝜕𝑤𝑙) we must compute the Jacobian matrix

o The Jacobian is the generalization of gradient for multivariate functions
◦ e.g. in softmax 𝑎2 depends on all 𝑒𝑥1 , 𝑒𝑥2 and 𝑒𝑥3 , not just on 𝑒𝑥2

Multivariate functions 𝑓(𝒙)

𝑎𝑗 =
𝑒𝑥𝑗

𝑒𝑥1 + 𝑒𝑥2 + 𝑒𝑥3
, 𝑗 = 1,2,3
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o Quite often one output dim depends only on a single input dim
◦ e.g. a sigmoid  𝑎 = 𝜎(𝑥), or 𝑎 = tanh(𝑥), or 𝑎 = exp(𝑥)

o Not need for full Jacobian, only the diagonal: anyways 
d𝑎𝑖

𝑑𝑥𝑗
= 0, ∀ i ≠ j

o Can rewrite equations as inner products to save computations

Diagonal Jacobians

𝑑𝒂

𝑑𝒙
=
𝑑𝝈

𝑑𝒙
=

𝜎(𝑥1)(1 − 𝜎(𝑥1)) 0 0
0 𝜎(𝑥2)(1 − 𝜎(𝑥2)) 0
0 0 𝜎(𝑥3)(1 − 𝜎(𝑥3))

~

𝜎(𝑥1)(1 − 𝜎(𝑥1))
𝜎(𝑥2)(1 − 𝜎(𝑥2))
𝜎(𝑥3)(1 − 𝜎(𝑥3))

𝑎 𝑥 = σ 𝒙 = σ

𝑥1
𝑥2
𝑥3

=

σ(𝑥1)
σ(𝑥2)
σ(𝑥3)
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𝐿𝑜𝑠𝑠

Data Input

ℎ1(𝑥1; 𝑤1)

ℎ2(𝑥2; 𝑤2)

ℎ3(𝑥3; 𝑤3)

ℎ4(𝑥4; 𝑤4)

ℎ5(𝑥5; 𝑤5)

ℎ2(𝑥2; 𝑤2)

ℎ5(𝑥5; 𝑤5)

o Simply compute the activation of each module in the network
𝑎𝑙 = ℎ𝑙 𝑥𝑙; 𝑤

◦ Then, set 𝑥𝑙+1: = 𝑎𝑙

◦ Must know the precise function behind each module ℎ𝑙(… )

o Then, repeat recursively
◦ Visit modules one by one starting from the data input
◦ One module’s output is another module’s input
◦ Some modules might have several inputs from multiple modules 
◦ Store intermediate values  save compute time at the cost of memory

o Compute modules activations with the right order
◦ Make sure all the inputs are computed at the right time

Forward graph
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Data: 𝒅𝑳𝒐𝒔𝒔(𝑰𝒏𝒑𝒖𝒕)

𝑑ℎ1(𝑥1; 𝑤1)

𝑑ℎ2(𝑥2; 𝑤2)

𝑑ℎ3(𝑥3; 𝑤3)

𝑑ℎ4(𝑥4; 𝑤4)

𝑑ℎ5(𝑥5; 𝑤5)

𝑑ℎ2(𝑥2; 𝑤2)

𝑑ℎ5(𝑥5; 𝑤5)o Same story but in reverse
◦ Take the reverse network (reverse connections) and go backwards

◦ Instead of activation functions, use gradients of activation functions

o Requirements
◦ Must know the gradient formulation of each module 𝜕ℎ𝑙 𝑥𝑙; 𝑤𝑙

◦ w.r.t. both their inputs 𝑥𝑙 and parameters 𝑤𝑙

◦ Note: We need the forward computations first.
Activations are part of the gradients, including the final loss and its gradient
The total loss is the sum of losses for all inputs in our batch

o The whole process can be described very neatly and concisely
with the backpropagation algorithm

Backward graph
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝑤𝑙 with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1
𝜕ℒ

𝜕𝑤𝑙
=
𝜕𝑎𝑙

𝜕𝑤𝑙
⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇
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Backpropagation: Recursive chain rule

o Step 1. Compute forward propagations for all layers recursively

𝑎𝑙 = ℎ𝑙 𝑥𝑙 and 𝑥𝑙+1 = 𝑎𝑙

o Step 2. Once done with forward propagation, follow the reverse path. 
◦ Start from the last layer and for each new layer compute the gradients

◦ Cache computations when possible to avoid redundant operations

o Step 3. Use the gradients 
𝜕ℒ

𝜕𝑤𝑙
with Stochastic Gradient Descend to train

𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇

⋅
𝜕ℒ

𝜕𝑎𝑙+1
𝜕ℒ

𝜕𝑤𝑙
=
𝜕𝑎𝑙

𝜕𝑤𝑙
⋅
𝜕ℒ

𝜕𝑎𝑙

𝑇

Vector with dimensions [𝑑𝑙+1× 1]

Jacobian matrix with dimensions 𝑑𝑙+1 × 𝑑𝑙
𝑇

Vector with dimensions [𝑑𝑙× 1]

Matrix with dimensions [𝑑𝑙−1× 𝑑𝑙]

Vector with dimensions [𝑑𝑙−1× 1]

Vector with dimensions [1 × 𝑑𝑙]
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Backpropagation visualization

ℒ

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1
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Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)

Example
𝑎1 = 𝜎(𝑤1𝑥1)

Store!!! 
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𝑤1

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎1 = 𝜎(𝑤1𝑥1)

Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2)

Example

𝑎2 = 𝜎(𝑤2𝑥2)

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎2 = 𝜎(𝑤2𝑥2)

Backpropagation visualization at epoch (𝑡)

ℒ
Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

Example

ℒ 𝑦, 𝑎2 = 𝑦 − 𝑎2 2 = 𝑦 − 𝑥3 2

Store!!! 
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𝑎1 = 𝜎(𝑤1𝑥1)

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ
Backpropagation Example

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝑤3

𝑎3 = ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3 2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ

Stored during forward computations

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2

𝜕𝑤2

𝜕ℒ

𝜕𝑎2
=
𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3

𝜕𝑎2

Backpropagation
Exampl
e ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3

2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑤2
= 𝑥2𝜎(𝑤2𝑥2)(1 − 𝜎(𝑤2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡)

ℒ
Backpropagation

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

Exampl
e ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3 2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝑤2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑎1
=
𝜕𝑎2

𝜕𝑎2
= 𝑤2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝑤1 =
𝜕ℒ

𝜕𝑤1 𝑥
1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝑤1𝑥1)

𝜕𝑎1

𝜕𝑤1 = 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)?
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Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎1= ℎ1(𝑥1)
𝑎1 = 𝜎(𝑤1𝑥1)

Store!!! 
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𝑤1

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℎ3(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎1 = 𝜎(𝑤1𝑥1)

Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎2= ℎ2(𝑥2) 𝑎2 = 𝜎(𝑤2𝑥2)

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



𝑎2 = 𝜎(𝑤2𝑥2)

Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Forward propagations

Compute and store 𝑎3= ℎ3(𝑥3)

ℒ 𝑦, 𝑎2 = 𝑦 − 𝑎2 2 = 𝑦 − 𝑥3 2

Store!!! 
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𝑎1 = 𝜎(𝑤1𝑥1)

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)

ℒ
Backpropagation

𝜕ℒ

𝜕𝑎3
= … Direct computation

𝜕ℒ

𝜕𝑤3

𝑎3 = ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3 2

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1



Backpropagation visualization at epoch (𝑡 + 1)

ℒ

Stored during forward computations

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2

𝜕𝑤2

𝜕ℒ

𝜕𝑎2
=
𝜕ℒ

𝜕𝑎3
∙
𝜕𝑎3

𝜕𝑎2

ℒ 𝑦, 𝑥3 = 0.5 𝑦 − 𝑥3
2

𝜕ℒ

𝜕𝑎2
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑎2
=

𝜕ℒ

𝜕𝑥3
= −(𝑦 − 𝑥3)

𝜕ℒ

𝜕𝑤2 =
𝜕ℒ

𝜕𝑎2
𝑥2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑤2
= 𝑥2𝜎(𝑤2𝑥2)(1 − 𝜎(𝑤2𝑥2))

= 𝑥2𝑎2(1 − 𝑎2)

𝜕𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Store!!! 
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝑤2)

𝑎1 = ℎ1(𝑥1, 𝑤1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1

Backpropagation



Backpropagation visualization at epoch (𝑡 + 1)

ℒ

𝜕ℒ

𝜕𝜃1
=
𝜕ℒ

𝜕𝑎1
∙
𝜕𝑎1
𝜕𝜃1

𝜕ℒ

𝜕𝑎1
=
𝜕ℒ

𝜕𝑎2
∙
𝜕𝑎2
𝜕𝑎1

ℒ 𝑦, 𝑎3 = 0.5 𝑦 − 𝑎3 2

𝜕ℒ

𝜕𝑎1
=

𝜕ℒ

𝜕𝑎2
𝑤2𝑎2(1 − 𝑎2)

𝑎2 = 𝜎(𝑤2𝑥2)

𝜕𝑎2

𝜕𝑎1
=
𝜕𝑎2

𝜕𝑎2
= 𝑤2𝑎2(1 − 𝑎2)

𝜕ℒ

𝜕𝑤1 =
𝜕ℒ

𝜕𝑤1 𝑥
1𝑎1(1 − 𝑎1)

𝑎1 = 𝜎(𝑤1𝑥1)

𝜕𝑎1

𝜕𝑤1 = 𝑥1𝑎1(1 − 𝑎1)

Computed from the exact previous 
backpropagation step (Remember, recursive rule)
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𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1

𝑎3 = ℒ(𝑥3)

𝑎2 = ℎ2(𝑥2, 𝜃2)

𝑎1 = ℎ1(𝑥1, 𝜃1)

𝑤1

𝑤2

𝑤3 = ∅

𝑥1

Backpropagation



o To make sure everything is done correctly  “Dimension analysis”

o The dimensions of the gradient w.r.t. 𝑤𝑙 must be equal to the dimensions 
of the respective weight 𝑤𝑙

dim
𝜕ℒ

𝜕𝑎𝑙
= dim 𝑎𝑙

dim
𝜕ℒ

𝜕𝑤𝑙
= dim 𝑤𝑙

Dimension analysis
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o For  
𝜕ℒ

𝜕𝑎𝑙
=

𝜕𝑎𝑙+1

𝜕𝑥𝑙+1

𝑇
𝜕ℒ

𝜕𝑎𝑙+1

[𝑑𝑙× 1] = 𝑑𝑙+1 × 𝑑𝑙
𝑇 ⋅ [𝑑𝑙+1× 1]

o For  
𝜕ℒ

𝜕𝑤𝑙 =
𝜕𝑎𝑙

𝜕𝑤𝑙 ⋅
𝜕ℒ

𝜕𝑤𝑙

𝑇

[𝑑𝑙−1× 𝑑𝑙] = [𝑑𝑙−1× 1] ∙ [1 × 𝑑𝑙]

Dimension analysis

dim 𝑎𝑙 = 𝑑𝑙
dim 𝑤𝑙 = 𝑑𝑙−1 × 𝑑𝑙
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o Backprop is as simple as it is complicated

o Mathematically, just the chain rule
◦ Found some time around the 1700s by I. Newton and Leibniz, who invented calclulus

◦ That simple, that we can even automate it (“reverse-mode differentiation”)

o However, why is it that we can train a highly non-complex machine with 
many local optima, like neural nets, with a strongly local learning 
algorithm like Backprop?
◦ Why even is it a good choice?

◦ Not really known, even today

So, Backprop, what’s the big deal?
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Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

MODULAR LEARNING- PAGE 94

o Modularity in Neural Networks

o Neural Network Modules

o Neural Network Cheatsheet

o Backpropagation

Reading material

o Chapter 6

o Efficient Backprop, LeCun et al., 1998


