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Lecture 3: Deep Learning Optimizations
Deep Learning @ UvA
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o How to define our model and optimize it in practice

o Optimization methods

o Data preprocessing and normalization

o Regularizations

o Learning rate

o Weight initializations

o Good practices

Lecture overview
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Empirical Risk 
Minimization
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A Neural/Deep Network in a nutshell

𝑎" 𝑥;𝑤&,…,) = ℎ" (ℎ"-& …ℎ& 𝑥,w& ,w"-& ,w")

w∗ ← argmin8 9
(:,;)⊆(=,>)

ℒ(𝑦, 𝑎" 𝑥; 𝑤&,…,) )

𝑤AB& = 𝑤A − 𝜂A𝛻8ℒ

1. The Neural Network

2. Learning by minimizing empirical error

3. Optimizing with Stochastic Gradient Descent based methods
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o The optimal machine learning solution is not necessarily the optimal 
solution

o They are practically equivalent

o Machine learning relates to optimization, with some differences

o In learning we usually do not optimize the intended task but an easier 
surrogate one

o Optimization is offline while Machine Learning can be online

What is a difference between Optimization and Machine Learning?
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o Pure optimization has a very direct goal: finding the optimum
◦ Step 1: Formulate your problem mathematically as best as possible
◦ Step 2: Find the optimum solution as best as possible
◦ E.g., optimizing the railroad network in the Netherlands

◦ Goal: find optimal combination of train schedules, train availability, etc

o In Machine Learning, instead, the real goal and the trainable goal are 
quite often different (but related)

◦ Even “optimal” parameters are not necessarily optimal ß Overfitting …
◦ E.g., You want to recognize cars from bikes (0-1 problem) in unknown images, but you 

optimize the classification log probabilities (continuous) in known images

Pure Optimization vs Machine Learning Training?
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o We ideally should optimize for
min
F

Ε:,H~JKLML ℒ w; x, y
i.e. the expected loss under the true underlying distribution

but we do not have access to this distribution

o Thus, borrowing from optimization, the best way we can get satisfactory 
solutions is by minimizing the empirical risk

min
8
Ε:,H~ PJKLML ℒ w; x, y = &

Q ∑STU
V ℒ W :S;8 ,;S

◦ That is, minimize the risk on the available training data sampled by the empirical data 
distribution (mini-batches)

◦ While making sure your parameters do not overfit the data

Empirical Risk Minimization
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Stochastic Gradient 
Descent (SGD)
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o To optimize a given loss function, most machine learning methods rely on 
Gradient Descent and variants

𝑤AB& = 𝑤A − 𝜂A𝑔A
◦ Gradient 𝑔A = 𝛻Aℒ

o Gradient on full training set à Batch Gradient Descent

𝑔A =
1
𝑚
9
[\&

Q

𝛻8ℒ (𝑤; 𝑥[, 𝑦[)

◦ Computed empirically from all available training samples (𝑥[, 𝑦[)
◦ Sample gradient à Only an approximation to the true gradient 𝑔A∗ if we knew the real 

data distribution

Gradient Descent
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o Conditions of convergence well understood
◦ Simpler theoretical analysis on weight dynamics and convergence rates

o Acceleration techniques can be applied
◦ Second order (Hessian based) optimizations are possible

◦ Measuring not only gradients, but also curvatures of the loss surface

Advantages of Batch Gradient Descent batch learning
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o Data is often too large to compute the full gradient, so slow training

o The loss surface is highly non-convex, so cannot compute the real 
gradient

o No real guarantee that leads to a good optimum

o No real guarantee that it will converge faster

Disadvantages of Batch Gradient Descent?
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o Often loss surfaces are
◦ highly non-convex
◦ very high-dimensional

o No real guarantee that 
◦ the final solution will be good
◦ we converge fast to final solution

o Datasets are typically too large
to compute complete gradients

Still, optimizing with Gradient Descent is not perfect
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o The gradient approximates the expectation E(𝛻 ℒ) by taking samples 
E 𝛻 ℒ ≈ ⁄& Q∑𝛻 ℒ[

◦ So called Monte Carlo approximation

o Following the central limit theorem, the standard error of this first 
approximation is given by ab √Q

◦ So, the error drops sublinearly with 𝑚. To compute 2x more accurate gradients, we 
need 4x data points

◦ And what’s the point anyways, since our loss function is only a surrogate?

Gradient Descent
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o Introduce a second approximation in computing the gradients à SGD
◦ Stochastically sample “mini-training” sets (“mini-batches”) from dataset 𝐷

𝐵f = 𝑠𝑎𝑚𝑝𝑙𝑒(𝐷)

𝑤AB& = 𝑤A −
𝜂A
|𝐵f|

9
[ ∈mn

𝛻8ℒ[

Stochastic Gradient Descent (SGD)
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o Randomness helps avoid overfitting solutions
◦ Variance of gradients increases when batch size decreases 

o In practice, accuracy is often better

o Much faster than Gradient Descent

o Suitable for datasets that change over time

Some advantages of SGD
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SGD is often better

Current solution

Full GD gradient

New GD solution

Noisy SGD gradient

Best GD solution

Best SGD solution

• No guarantee that this is what
is going to always happen.

• But the noisy SGD gradients can 
help escaping local optima

Loss surface
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SGD helps avoid overfitting

o Gradient Descent: Complete gradients fit optimally the (arbitrary) data we 
have, not necessarily the distribution that generates them

◦ All training samples are the “absolute representative” of the input distribution
◦ Suitable for traditional optimization problems: “find optimal route”
◦ But for ML we cannot make this assumption à test data are always different

o SGB: sampled mini-batches produce roughly representative gradients
◦ Model does not overfit (as much) to the particular training samples
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o Often data distribution changes over time, e.g. Instagram
◦ Should “cool 2010 pictures” have as much influence as 2018?

o GD is biased towards the more “past” samples

o A properly implemented SGD can track changes better 
[LeCun2002]

SGD for dynamically changing datasets

Popular last year
Kiki challenge

Popular in 2014 Popular in 2010
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o Applicable only with SGD

o Choose samples with maximum information content
◦ Mini-batches should contain examples from different classes
◦ Prefer samples likely to generate larger errors

◦ Otherwise gradients will be small à slower learning
◦ Check the errors from previous rounds and prefer “hard examples”
◦ Don’t overdo it though :P, beware of outliers

o In practice, split your dataset into mini-batches
◦ New epoch àcreate new randomly shuffled batches

Shuffling examples
Dataset

Shuffling at 
epoch t

Shuffling at 
epoch t+1
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o SGD is preferred to Gradient Descent

o Training is orders of magnitude faster
◦ In real datasets Gradient Descent is not even realistic

o Solutions generalize better
◦ Noisier gradients can help escape local minima
◦ More efficient à larger datasets à better generalization

o How many samples per mini-batch?
◦ Hyper-parameter, trial & error
◦ Usually between 32-256 samples
◦ A good rule of thumb à as many as your GPU fits

In practice
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o Ill conditioning
◦ Let’s check the 2nd order Taylor dynamics for optimizing the cost function

ℒ 𝜃 = ℒ(𝜃p) + 𝜃 − 𝜃p r𝑔 + &
s
𝜃 − 𝜃p rΗ(θ − θ′) (Η:Hessian)

ℒ 𝜃p − 𝜀𝑔 ≈ ℒ 𝜃′ − 𝜀𝑔r𝑔 + &
s
𝑔y𝐻𝑔

◦ Even if the gradient 𝑔 is strong, if   &
s
𝑔y𝐻𝑔 > 𝜀𝑔r𝑔 the cost will increase

o Local minima
◦ Non-convex optimization produces lots of equivalent, local minima

o Plateaus and cliffs
o Vanishing and exploding gradients
o Long-term dependencies

Challenges in optimization
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Advanced 
Optimizations
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Using different optimizers

Picture credit: Jaewan Yun

https://github.com/Jaewan-Yun/optimizer-visualization
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Pathological curvatures

Picture credit: Team Paperspace

https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
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o Normally all weights updated with same 
“aggressiveness”

◦ Often some parameters could enjoy more “teaching”
◦ While others are already about there

o Adapt learning per parameter
𝑤AB& = 𝑤A − 𝐻ℒ-&𝜂A𝑔A

o 𝐻ℒ is the Hessian matrix of ℒ: second-order 
derivatives

𝐻ℒ
[f =

𝜕ℒ
𝜕𝑤[𝜕𝑤f

Second order optimization
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o Yes, you just use the auto-grad

o Yes, you just compute the square of your derivatives

o No, the matrix would be too huge

Is it easy to use the Hessian in a Deep Network?
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o Inverse of Hessian usually very expensive
◦ Too many parameters

o Approximating the Hessian, e.g. with the L-BFGS algorithm
◦ Keeps memory of gradients to approximate the inverse Hessian
◦ L-BFGS works alright with Gradient Descent. What about SGD?

o In practice, SGD with momentum works just fine quite often

Second order optimization methods in practice
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o Don’t switch update direction all the 
time

o Maintain “momentum” from previous 
updates à dampens oscillations

𝑢AB& = 𝛾𝑢A − 𝜂A𝑔A
𝑤AB& = 𝑤A + 𝑢AB&

o Exponential averaging
◦ With 𝛾 = 0.9 and 𝑢� = 0
◦ 𝑢& ∝ −𝑔&
◦ 𝑢s ∝ −0.9𝑔& − 𝑔s
◦ 𝑢� ∝ −0.81𝑔& − 0.9𝑔s − 𝑔�

Momentum
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o The exponential averaging 
◦ cancels out the oscillating gradients 
◦ gives more weight to recent updates

o More robust gradients and learning 
à faster convergence

o In practice, initialize 𝛾 = 𝛾� = 0.5
and anneal to 𝛾� = 0.9

Momentum
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o Schedule
◦ 𝑟A = 𝛼𝑟A-& + 1 − 𝛼 𝑔As

◦ 𝑢A = − �
��B�

𝑔A
◦ 𝑤AB& = 𝑤A + 𝑢A

o Large gradients, e.g. too “noisy” loss surface
◦ Updates are tamed

o Small gradients, e.g. stuck in plateau of loss surface
◦ Updates become more aggressive

o Sort of performs simulated annealing

RMSprop

Square rooting boosts small values while suppresses large values

Decay hyper-parameter (Usually 0.9)
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o One of the most popular learning algorithms
𝑚A = 𝛽&𝑚A-& + 1 − 𝛽& 𝑔A
𝑣A = 𝛽s𝑣A-& + 1 − 𝛽s 𝑔As

�𝑚A =
𝑚A

1 − 𝛽&A
, P𝑣A =

𝑣A
1 − 𝛽sA

𝑢A = −
𝜂
P𝑣A + 𝜀

�𝑚A

𝑤AB& = 𝑤A + 𝑢A

◦ Recommended values: 𝛽& = 0.9, 𝛽s = 0.999, 𝜀 = 10-�

o Similar to RMSprop, but with momentum & correction bias

Adam [Kingma2014]



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP LEARNING OPTIMIZATIONS - 42

o Schedule
◦ 𝑟 = ∑�(𝛻^ℒ)s ⟹ 𝑤AB& = 𝑤A − 𝜂

��
�B�

◦ Gradients become gradually smaller and smaller

Adagrad [Duchi2011]
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o Use the future gradient instead of 
the current gradient

o Better theoretical convergence

o Generally works better with 
Convolutional Neural Networks

Nesterov Momentum [Sutskever2013]

Gradient

Gradient + momentum

Momentum

Look-ahead gradient 
from the next step

Momentum

Gradient + Nesterov 
momentum

𝑤AB& = 𝑤A + 𝑢AB&
𝑢AB& = 𝛾𝑢� − 𝜂A𝛻8���.�ℒ

𝑤AB�.� = 𝑤A + 𝛾𝑢�
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Visual overview

Picture credit: Jaewan Yun

https://github.com/Jaewan-Yun/optimizer-visualization
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Input Normalization

𝑥�
Layer l input distribution at (t)

Backpropagation

Layer l input distribution at (t+0.5)
𝑥�

Layer l input distribution at (t+1)
𝑥�

Batch Normalization
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o Most common: center data roughly around 0
◦ Activation functions usually “centered” around 0

◦ Important for propagation to next layer: x=0 à y=0        
does not introduce bias within layers (for ReLU and tanh)

◦ Important for training: strongest gradients around x=0
(for tanh and sigmoid)

Data pre-processing

ReLU J tanh(𝑥)J 𝜎(𝑥)L

J

L
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o Assume: Input variables follow a Gaussian distribution (roughly)

o Normalize by:
◦ Computing mean and standard deviation from training set
◦ Subtracting the mean from training/validation/testing samples 

and dividing the result by the standard deviation

Unit Normalization: 𝑁 𝜇, 𝜎s → 𝑁 0, 1

𝑥 𝑥 − 𝜇 𝑥 − 𝜇
𝜎

Picture credit: 
Stanford Course

http://cs231n.github.io/neural-networks-2/
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o When input dimensions have similar ranges …

… and with the right non-linearity …

… centering might be enough (i.e. subtract the mean)

◦ e.g. in images all dimensions are pixels - all pixels have more or less the same ranges

Even simpler: Centering the input
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o Input variables should be as decorrelated as possible
◦ Input variables are “more independent”
◦ Model is forced to find non-trivial correlations between inputs
◦ Decorrelated inputs à Better optimization

o Obviously decorrelating inputs is not good when inputs are by definition 
correlated, like in sequences

Data pre-processing
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o Input distributions change for 
every layer, especially during 
training

o Normalize the layer inputs with 
batch normalization

◦ Roughly speaking, normalize 𝑥� to 
𝑁(0, 1), then rescale using trainable 
parameters

Batch normalization [Ioffe2015]

ℒ
ℒ

Batch normalization
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Batch normalization – The algorithm

o 𝜇ℬ ←
&
Q
∑[\&Q 𝑥[ [compute mini-batch mean]

o 𝜎ℬ ←
&
Q
∑[\&Q 𝑥[ − 𝜇ℬ s [compute mini-batch variance]

o �𝑥[ ←
:S-¡ℬ

bℬ
¢B�

[normalize input]

o �𝑦[ ← 𝛾�𝑥[ + 𝛽 [scale and shift input]

Trainable parameters
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o 𝜇 = 𝜇: + 𝛽, 𝜎 = 𝜎: + 𝛾
o 𝜇 = 𝛽, 𝜎 = 𝛾
o 𝜇 = 𝛽, 𝜎 = 𝛽 + 𝛾
o 𝜇 = 𝛾, 𝜎 = 𝛽

What is the mean/stdev Batch Norm 𝑦 = 𝛾𝑥 + 𝛽?
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o 𝜇 = 𝜇: + 𝛽, 𝜎 = 𝜎: + 𝛾
o 𝜇 = 𝛽, 𝜎 = 𝛾
o 𝜇 = 𝛽, 𝜎 = 𝛽 + 𝛾
o 𝜇 = 𝛾, 𝜎 = 𝛽

What is the mean/stdev Batch Norm 𝑦 = 𝛾𝑥 + 𝛽?
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Batch normalization – Intuition I

𝑥�
Layer l input distribution at (t) Layer l input distribution at (t+0.5) Layer l input distribution at (t+1)

Backpropagation

𝑥� 𝑥�

Batch Normalization

o Covariate shift
◦ At each step, a layer must not only adapt the weights to fit better the data
◦ It must also adapt to the change of its input distribution, as its input is itself the result 

of another layer that changes over steps

o The distribution fed to the layers of a network should be somewhat:
◦ Zero-centered
◦ Constant through time and data
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Batch normalization – Intuition II

o 𝛽, 𝛾 are trainable parameters, so when they change there is still 
internal covariate shift

o 2nd explanation: Batch norm simplifies the learning dynamics
◦ Neural network output is determined by higher order interactions between 

layers; this complicates the gradient update
◦ Mean of BatchNorm output is 𝛽, std is 𝛾; independent from the activation 

values themselves à suppresses higher order interactions and makes 
training easier

o This angle better explains practical observations:
◦ Why batch norm works better after the nonlinearity?
◦ Why have 𝛾 and 𝛽 if the problem is the covariate shift?
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o Can use higher learning rates à faster training

o Neurons of all layers get activated in a near optimal “regime”

o Model regularization
◦ Neuron activations not deterministic,

depend on the batch
◦ Per mini-batch mean and variance are

noisy
◦ Injected noise reduces overfitting during search

Batch normalization - Benefits
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o How do we ship the Batch Norm layer after training?
◦ We might not have batches at test time

o Usually: keep a moving average of the mean and 
variance during training

◦ Plug them in at test time
◦ To the limit, the moving average of mini-batch statistics 

approaches the batch statistics

From training to test time

o 𝜇ℬ ←
&
Q
∑[\&Q 𝑥[

o 𝜎ℬ ←
&
Q
∑[\&Q 𝑥[ − 𝜇ℬ s

o �𝑥[ ←
:S-¡ℬ

bℬ
¢B�

o �𝑦[ ← 𝛾�𝑥[ + 𝛽
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Regularization



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP LEARNING OPTIMIZATIONS - 59

o Neural networks typically have thousands, if not millions of parameters
◦ Usually, the dataset size smaller than the number of parameters

o Overfitting is a grave danger
o Proper weight regularization is crucial to avoid overfitting

w∗ ← argmin8 9
(:,;)⊆(=,>)

ℒ(𝑦, 𝑎" 𝑥; 𝑤&,…,) ) + 𝜆Ω(𝜃)

o Possible regularization methods
◦ ℓs-regularization
◦ ℓ&-regularization
◦ Dropout
◦ …

Regularization
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o Most important (or most popular) regularization

w∗ ← argmin8 9
(:,;)⊆(=,>)

ℒ(𝑦, 𝑎" 𝑥;𝑤&,…,) ) +
𝜆
2
9

�
𝑤�s

o The ℓs-regularization is added to the gradient descent update rule

𝑤AB& = 𝑤A − 𝜂A 𝛻^ℒ + 𝜆𝑤� ⟹
𝑤AB& = 1 − 𝜆𝜂A 𝑤 A − 𝜂A𝛻^ℒ

o 𝜆 is usually about 10-&, 10-s

ℓs-regularization 

“Weight decay”, because 
weights get smaller
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o ℓ&-regularization is one of the most important regularization techniques

w∗ ← argmin8 9
(:,;)⊆(=,>)

ℒ(𝑦, 𝑎" 𝑥;𝑤&,…,) ) +
𝜆
2
9

�
|𝑤�|

o Also ℓ&-regularization is added to the gradient descent update rule

𝑤AB& = 𝑤A − 𝜂A 𝛻^ℒ + 𝜆
𝑤 A

|𝑤 A |

o ℓ&-regularization à sparse weights
◦ 𝜆 ↗ à more weights become 0

ℓ&-regularization 

Sign function
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o To tackle overfitting another popular technique is early stopping

o Monitor performance on a separate validation set

o Training the network will decrease training error, as well validation error 
(although with a slower rate usually)

o Stop when validation error starts increasing
◦ This quite likely means the network starts to overfit

Early stopping
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o During training randomly set activations to 0
◦ Neurons sampled at random from a Bernoulli distribution with 𝑝 = 0.5

o During testing all neurons are used
◦ Neuron activations reweighted by 𝑝

o Benefits
◦ Reduces complex co-adaptations or co-dependencies between neurons
◦ Every neuron becomes more robust
◦ Decreases overfitting

Dropout [Srivastava2014]
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Original model
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 1
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 2
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o Effectively, a different architecture for every input batch during training
◦ Similar to model ensembles

Dropout

Batch 2
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Learning rate
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o The right learning rate 𝜂A very important for fast convergence
◦ Too strong à gradients overshoot and bounce
◦ Too weak à slow training

o Learning rate per weight is often advantageous
◦ Some weights are near convergence, others not

Learning rate
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o The step sizes theoretically should satisfy the following [Robbins–Monro]

∑A� 𝜂A = ∞ and     ∑A� 𝜂As < ∞
o Intuitively, 

◦ The first term ensures that search will explore enough
◦ The second term ensures convergence

Convergence
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o Constant
◦ Learning rate remains the same for all epochs

o Step decay
◦ Decrease every T number of epochs 

or when validation loss stopped decreasing

o Inverse decay 𝜂A =
��
&B�A

o Exponential decay 𝜂A = 𝜂�𝑒-�A

o Often step decay preferred
◦ simple, intuitive, works well

Learning rate schedules
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o Try several log-spaced values 10-&, 10-s, 10-�, … on a smaller set
◦ Then, you can narrow it down from there around where you get the lowest validation

error

o You can decrease the learning rate every 10 (or some other value) full 
training set epochs

◦ Although this highly depends on your data

In practice

Picture credit: 
Stanford Course

http://cs231n.github.io/neural-networks-2/
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Weight initialization
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o There are few contradictory requirements:

o Weights need to be small enough
◦ Otherwise output values explode

o Weights need to be large enough
◦ Otherwise signal is too weak for any serious learning

o Around origin (𝟎) for symmetric functions (tanh, sigmoid)
◦ When training starts, better stimulate activation functions near their linear regime
◦ larger gradients à faster training

Weight initialization

Linear regime

Large gradients

Linear regime

Large gradients
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o Weights must be initialized to preserve the variance of the activations 
during the forward and backward computations

Question: Why similar input/output variance?

o Initialize weights to be different from one another
◦ Don’t give same values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient à no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization
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o Weights must be initialized to preserve the variance of the activations 
during the forward and backward computations

Question: Why similar input/output variance?

Answer: Because the output of one module is the input to another

o Initialize weights to be different from one another
◦ Don’t give same values to all weights (like all 𝟎)
◦ In that case all neurons generate same gradient à no learning

o Generally speaking initialization depends on
◦ non-linearities
◦ data normalization

Weight initialization
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o For 𝑎 = 𝑤𝑥 the variance is
𝑣𝑎𝑟 𝑎 = 𝐸 𝑥 s𝑣𝑎𝑟 𝑤 + E 𝑤 s𝑣𝑎𝑟 𝑥 + 𝑣𝑎𝑟 𝑥 𝑣𝑎𝑟 𝑤

o Since 𝐸 𝑥 = 𝐸 𝑤 = 0
𝑣𝑎𝑟 𝑎 = 𝑣𝑎𝑟 𝑥 𝑣𝑎𝑟 𝑤 ≈ 𝑑 ⋅ 𝑣𝑎𝑟 𝑥[ 𝑣𝑎𝑟 𝑤[

o For 𝑣𝑎𝑟 𝑎 = 𝑣𝑎𝑟 𝑥 ⇒ 𝑣𝑎𝑟 𝑤[ = &
¯

o Draw random weights from
𝑤~𝑁 0, 1/𝑑

where 𝑑 is the number of input variables to the layer

One way of initializing weights
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o For tanh:  initialize weights from U − ²
¯³´UB¯³

, ²
¯³´UB¯³

◦ 𝑑�-& is the number of input variables to the tanh layer and 𝑑� is the number of the 
output variables

o For a sigmoid U −4 ¶ ²
¯³´UB¯³

, 4 ¶ ²
¯³´UB¯³

Xavier initialization [Glorot 2010]
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o Unlike sigmoidals, ReLUs return 0 half of the time

o Double the weight variance
◦ Compensate for the zero flat-area 
à Input and output maintain same variance

o Draw random weights from w~𝑁 0, 2/𝑑
where 𝑑 is the number of input variables 
to the layer

[He2015] Initialization for ReLUs
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o Always check your gradients if not computed automatically
o Check that in the first round you get loss that corresponds to random guess
o Check network with few samples

◦ Turn off regularization. You should predictably overfit and get a loss of 0
◦ Turn on regularization. The loss should be higher than before

o Have a separate validation set
◦ Use validation set for hyper-parameter tuning
◦ Compare the curve between training and validation sets - there should be a gap, but not too large

o Preprocess the data (at least to have 0 mean)
o Initialize weights based on activations functions

◦ Xavier or He initialization

o Use regularization (ℓs-regularization, dropout, ...)
o Use batch normalization

Babysitting Deep Nets



UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

DEEP LEARNING OPTIMIZATIONS - 82

Summary

o SGD and advanced SGD-like optimizers
o Input normalization and Batch normalization
o Regularization
o Learning rate
o Weight initialization

Reading material
o Chapter 8, 11
o And the papers mentioned in the slide
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Reading material

Deep Learning Book
o Chapter 8, 11
Papers
o Efficient Backprop

o How Does Batch Normalization Help Optimization? (No, It Is Not About 
Internal Covariate Shift)

Blog
o https://medium.com/paperspace/intro-to-optimization-in-deep-learning-

momentum-rmsprop-and-adam-8335f15fdee2

o http://ruder.io/optimizing-gradient-descent/

o https://github.com/Jaewan-Yun/optimizer-visualization

o https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-
descent/

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1805.11604
https://medium.com/paperspace/intro-to-optimization-in-deep-learning-momentum-rmsprop-and-adam-8335f15fdee2
http://ruder.io/optimizing-gradient-descent/
https://github.com/Jaewan-Yun/optimizer-visualization
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

