

Lecture 6: Recurrent & Graph Neural Networks Efstratios Gavves

Lecture overview

- Sequential data
- Recurrent Neural Networks
- Backpropagation through time
- Exploding and vanishing gradients
- LSTMs and variants
- Encoder-Decoder Architectures
- Graph Neural Networks

Sequence data

Sequence applications

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 3

Example of sequential data

- O Videos
- Other?

Example of sequential data

- Videos
- Other?
- Time series data
 - •Stock exchange
 - Biological measurements
 - Climate measurements
 - Market analysis
- Speech/Music
- User behavior in websites
- O

Applications

- Machine translation
- Image captioning
- Question answering
- Video generation
- Speech synthesis
- Speech recognition

A sequence of probabilities

○ Sequence → Chain rule of probabilities

$$p(x) = \prod_{i} p(x_i|x_1, ..., x_{i-1})$$

o For instance, let's model that "This is the best course!"

```
p(This is the best course!) = p(This) \cdot p(is|This) \cdot p(the|This is) \cdot ... \cdot p(!|This is the best course)
```

- Sequences might be of arbitrary or even infinite lengths
- Infinite parameters?

- Sequences might be of arbitrary or even infinite lengths
- o Infinite parameters?
- No, better share and reuse parameters
- \circ RecurrentModel(I think, therefore, I am. $\mid \theta$)

can be reused also for

```
RecurrentModel (Everything is repeated in circles. History is a Master because it teaches that it doesn't exist. It is the permutations that matter |\theta|)
```

- For a ConvNet that is not straightforward
- o Why?

- Sequences might be of arbitrary or even infinite lengths
- o Infinite parameters?
- No, better share and reuse parameters
- \circ RecurrentModel(I think, therefore, I am. $\mid \theta$)

can be reused also for

```
RecurrentModel (Everything is repeated in circles. History is a Master because it teaches that it doesn't exist. It is the permutations that matter |\theta|)
```

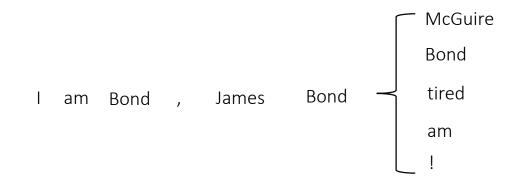
- For a ConvNet that is not straightforward
- Why? Fixed dimensionalities

Some properties of sequences?

Some properties of sequences

- Data inside a sequence are non identically, independently distributed (IID)
 - The next "word" depends on the previous "words"
 - Ideally on all of them
- We need context, and we need memory!

• Big question: How to model context and memory ?



Properties of sequences

- Data inside a sequence are non identically, independently distributed (IID)
 - The next "word" depends on the previous "words"
 - Ideally on all of them
- We need context, and we need memory!

• Big question: How to model context and memory ?

```
I am Bond , James Bond tired am !
```

One-hot vectors

- A vector with all zeros except for the active dimension
- 12 words in a sequence → 12 One-hot vectors
- After the one-hot vectors apply an embedding
 - Word2Vec, GloVE

<u>Vocabulary</u>	<u>One-hot vectors</u>							
I	1	1		0		0		0
am	am	0	am	1	am	0	am	0
Bond	Bond	0	Bond	0	Bond	1	Bond	0
James	James	0	James	0	James	0	James	1
tired	tired	0	tired	0	tired	0	tired	0
,	,	0	,	0	,	0	,	0
McGuire	McGuire	0	McGuire	0	McGuire	0	McGuire	0
!	!	0	!	0		0		0

Why not indices instead of one-hot vectors?

One-hot representation

OR?

Index representation

I am James McGuire

$$x_{"I"}=1$$

$$x_{"am"}=2$$

$$x_{"James"} = 4$$

$$x_{"McGuire"} = 7$$

Why not indices instead of one-hot vectors?

One-hot representation

$$\ell_2(x_{am}, x_{McQuire}) = \sqrt{2}$$

=

$$\ell_2(x_I, x_{am}) = \sqrt{2}$$

OR?

Index representation

I am James McGuire

$$x_{"I"}=1$$

$$x_{"am"}=2$$

$$x_{"Iames"} = 4$$

$$x_{"McGuire"} = 7$$

$$\ell_2(x_{am}, x_{McQuire}) = (7-2)^2 = 5$$

$$\ell_2(x_I, x_{am}) = (2-1)^2 = 1$$

Recurrent Neural Networks

Backprop through time

Output Recurrent NN Cell connections State Input

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 18

Memory

- Memory is a mechanism that learns a representation of the past
- \circ At timestep t project all previous information $1, \ldots, t$ onto a latent space c_t
 - $^{\circ}$ Memory controlled by a neural network $h_{ heta}$ with shared parameters heta
- \circ Then, at timestep t+1 re-use the parameters heta and the previous c_t

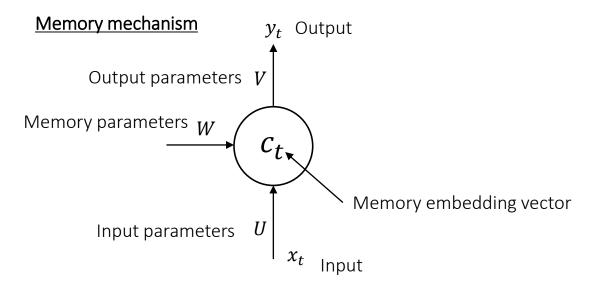
$$c_{t+1} = h_{\theta}(x_{t+1}, c_t)$$

• • •

$$c_{t+1} = h_{\theta}(x_{t+1}, h_{\theta}(x_t, h_{\theta}(x_{t-1}, \dots h_{\theta}(x_1, c_0))))$$

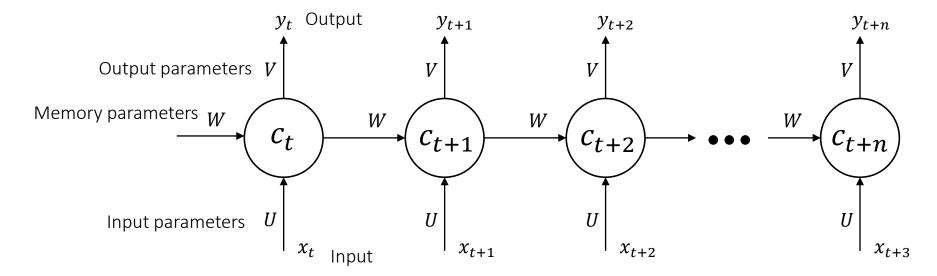
A graphical representation of memory

- In the simplest case, what are the Inputs/Outputs of our system
- \circ Sequence inputs \rightarrow we model them with parameters U
- \circ Sequence outputs \rightarrow we model them with parameters V
- \circ Memory I/O \rightarrow we model it with parameters W

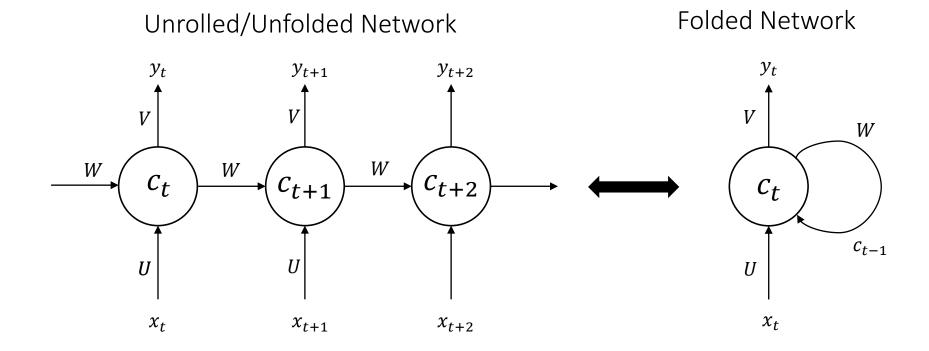


A graphical representation of memory

- In the simplest case, what are the Inputs/Outputs of our system
- \circ Sequence inputs \rightarrow we model them with parameters U
- \circ Sequence outputs \rightarrow we model them with parameters V
- \circ Memory I/O \rightarrow we model it with parameters W



Folding the memory



Recurrent Neural Networks - RNNs

Basically, two equations

$$c_t = \tanh(U x_t + W c_{t-1})$$

 $y_t = \operatorname{softmax}(V c_t)$

And a loss function

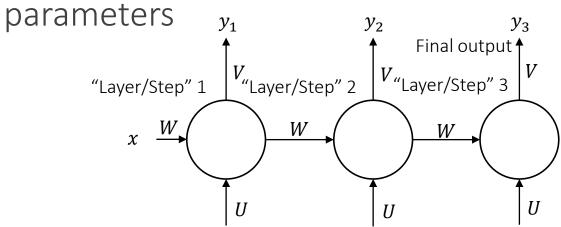
$$\mathcal{L} = \sum_{t} \mathcal{L}_{t}(y_{t}, y_{t}^{*})$$
$$= \sum_{t} y_{t}^{*} \log y_{t}$$

assuming the cross-entropy loss function

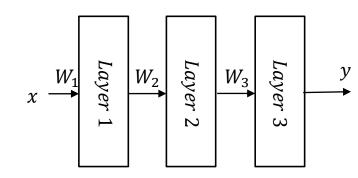


RNNs vs MLPs

- o Is there a big difference?
- o Instead of layers → Steps
- Outputs at every step → MLP outputs in every layer possible
- Main difference: Instead of layer-specific parameters → Layer-shared



3-gram Unrolled Recurrent Network



3-layer Neural Network

Hmm, layers share parameters ?!?

O How is the training done? Does Backprop remain the same?

Hmm, layers share parameters ?!?

- O How is the training done? Does Backprop remain the same?
- Basically, chain rule
 - So, again the same concept
- Yet, a bit more tricky this time, as the gradients survive over time

Backpropagation through time

$$c_t = \tanh(U x_t + W c_{t-1})$$

$$y_t = \operatorname{softmax}(V c_t)$$

$$\mathcal{L} = \sum_t y_t^* \log y_t$$

Let's say we focus on the third timestep loss

$$\frac{\frac{\partial \mathcal{L}}{\partial V}}{\frac{\partial \mathcal{L}}{\partial \mathcal{L}}} = \cdots$$

$$\frac{\partial \mathcal{L}}{\partial W} = \cdots$$

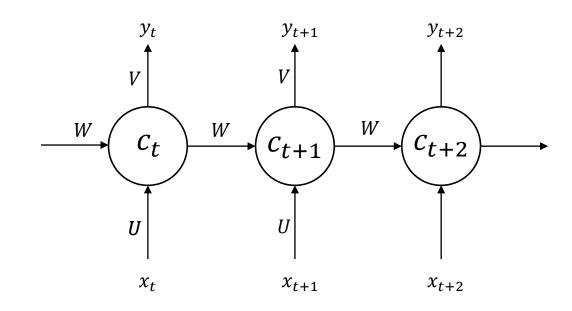
Backpropagation through time: $\partial \mathcal{L}_t/\partial V$

Expanding the chain rule

$$\frac{\partial \mathcal{L}_t}{\partial V} = \frac{\partial \mathcal{L}_t}{\partial y_{t_k}} \frac{\partial y_{t_k}}{\partial c_{t_l}} \frac{\partial c_{t_l}}{\partial V_{ij}} = \cdots$$
$$= \cdots = (y_t - y_t^*) \otimes c_t$$

- All terms depend only on the current timestep t
- Then, we should sum up all the gradients for all time steps

$$\frac{\partial \mathcal{L}}{\partial V} = \sum_{t} \frac{\partial \mathcal{L}_{t}}{\partial V}$$



Backpropagation through time: $\partial \mathcal{L}_t/\partial W$

Expanding with the chain rule

$$\frac{\partial \mathcal{L}_t}{\partial W} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial W}$$

- Ohowever, c_t itself depends on $c_{t-1} \rightarrow \frac{\partial c_t}{\partial W}$ depends also on $c_{t-1} \rightarrow$ The current dependency of c_t to W is recurrent
 - And continuing till we reach $c_{-1} = [0]$
- So, in the end we have

$$\frac{\partial \mathcal{L}_t}{\partial W} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_k} \frac{\partial c_k}{\partial W}$$

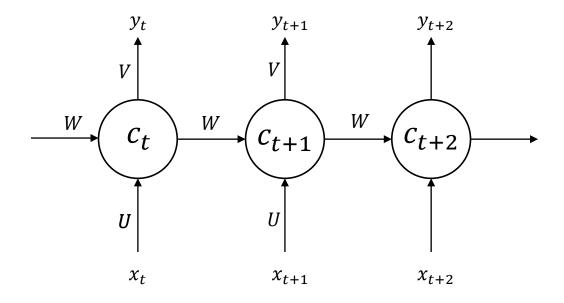
• The gradient $\frac{\partial c_t}{\partial c_k}$ itself is subject to the chain rule

$$\frac{\partial c_t}{\partial c_k} = \frac{\partial c_t}{\partial c_{t-1}} \frac{\partial c_{t-1}}{\partial c_{t-2}} \dots \frac{\partial c_{k+1}}{\partial c_k} = \prod_{j=k+1}^t \frac{\partial c_j}{\partial c_{j-1}}$$

o Then, we should sum up all the gradients for all time steps

$$c_t = \tanh(U x_t + W c_{t-1})$$

 $y_t = \operatorname{softmax}(V c_t)$



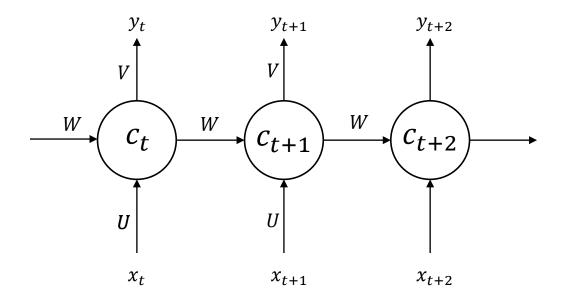
Backpropagation through time: $\partial \mathcal{L}_t / \partial U$

 \circ For parameter matrix U a similar process

$$\frac{\partial \mathcal{L}_t}{\partial U} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial c_t} \frac{\partial c_t}{\partial c_k} \frac{\partial c_k}{\partial U}$$

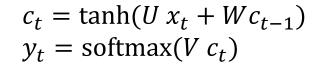
$$c_t = \tanh(U x_t + W c_{t-1})$$

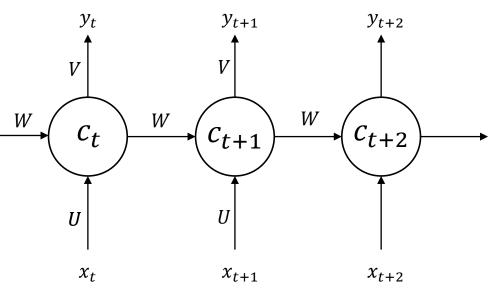
$$y_t = \operatorname{softmax}(V c_t)$$



Trading off Weight Update Frequency & Gradient Accuracy

- \circ At time t we use current weights w_t to compute states c_t and outputs y_t
- \circ Then, we use the states and outputs to backprop and get w_{t+1}
- o Then, at t+1 we use w_{t+1} and the current state c_t to y_{t+1} and c_{t+1}
- o Then we update the weights again with y_{t+1} . w
 - The problem is y_{t+1} was computed with c_t in mind, which in turns depends on the old weights w_t , not the current ones w_{t+1} . So, the new gradients are only an estimate
 - Getting worse and worse, the more we backprop through time





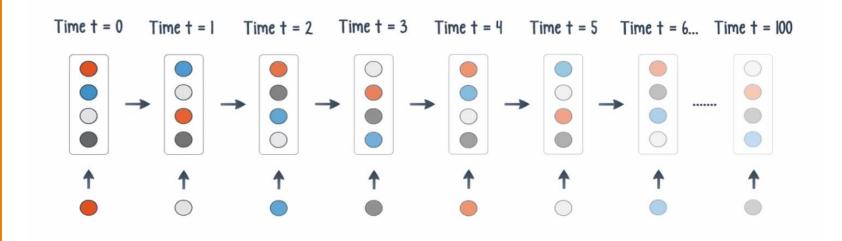
Potential solutions

- Do fewer updates
 - That might slow down training

- We can also make sure we do not backprop through more steps than our frequency of updates
 - But then we do not compute the full gradients
 - Bias again → not really gaining much

Vanishing gradients Exploding gradients Truncated backprop

Decay of information through time



An alternative formulation of an RNN

 Easier for mathematical analysis, and doesn't change the mechanics of the recurrent neural network

$$c_{t} = W \cdot \tanh(c_{t-1}) + U \cdot x_{t} + b$$

$$\mathcal{L} = \sum_{t} \mathcal{L}_{t}(c_{t})$$

$$\theta = \{W, U, b\}$$

What is the problem

 \circ As we just saw, the gradient $\frac{\partial c_t}{\partial c_k}$ itself is subject to the chain rule

$$\frac{\partial c_t}{\partial c_k} = \frac{\partial c_t}{\partial c_{t-1}} \frac{\partial c_{t-1}}{\partial c_{t-2}} \dots \frac{\partial c_{k+1}}{\partial c_k} = \prod_{j=k+1}^t \frac{\partial c_j}{\partial c_{j-1}}$$

- Product of ever expanding Jacobians
 - Ever expanding because we multiply more and more for longer dependencies

Let's look again the gradients

Minimize the total loss over all time steps

$$\arg\min_{\theta} \sum_{t} \mathcal{L}_{t}(c_{t,\theta})$$

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \cdots$$

Minimize the total loss over all time steps

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\substack{t = 1 \\ \sigma c_{t}}}^{t} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} = \frac{\partial \mathcal{L}}{\partial c_{t}} \cdot \frac{\partial c_{t}}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_{\tau}}$$

$$t \ll \tau \rightarrow short-term factors t \gg \tau \rightarrow long-term factors$$

Minimize the total loss over all time steps

$$\arg\min_{\theta} \sum_{t} \mathcal{L}_{t}(c_{t,\theta})$$

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} = \frac{\partial \mathcal{L}}{\partial c_{t}} \cdot \frac{\partial c_{t}}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_{\tau}}$$

$$\left\| \frac{\partial c_{t+1}}{\partial c_{t}} \right\| \leq \|W^{T}\| \cdot \|diag(\sigma'(c_{t}))\|$$

$$\left\| \frac{\partial c_{t+1}}{\partial c_t} \right\| \le \|W^T\| \cdot \|diag(\sigma'(c_t))\|$$

- \circ If we assume that the norm of the weight W is bounded
- •Spectral radius (max eigenvalue) is smaller than an arbitrary small number $\lambda_1 < \frac{1}{\gamma}$
- O And if we assume that the non linearity is bounded $\|diag(\sigma'(c_t))\| < \gamma$

$$\left\| \frac{\partial c_{t+1}}{\partial c_{t}} \right\| < \frac{1}{\gamma} \gamma < 1$$

Minimize the total loss over all time steps

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} = \frac{\partial \mathcal{L}}{\partial c_{t}} \cdot \frac{\partial c_{t}}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_{\tau}} \leq \eta^{t-\tau} \frac{\partial \mathcal{L}_{t}}{\partial c_{t}}$$

$$t \ll \tau \rightarrow short-term factors \quad t \gg \tau \rightarrow long-term factors$$

- o RNN gradients expanding product of $\frac{\partial c_t}{\partial c_{t-1}}$
- \circ With $\eta < 1$ long-term factors o 0 exponentially fast

Pascanu, Mikolov, Bengio, On the difficulty of training recurrent neural networks, JMLR 2013

- Let's assume we have 10 time steps and $\frac{\partial c_t}{\partial c_{t-1}} > 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 1.5$
- \circ What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$?

- Let's assume we have 100 time steps and $\frac{\partial c_t}{\partial c_{t-1}} > 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 1.5$
- \circ What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$?

$$\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 1.5^{10} = 4.06 \cdot 10^{17}$$

- o Let's assume now that $\frac{\partial c_t}{\partial c_{t-1}} < 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$ o What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$?

- Let's assume now that $\frac{\partial c_t}{\partial c_{t-1}} < 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$
- o What would happen to the total $\frac{\partial \mathcal{L}_t}{\partial w}$? $\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 0.5^{10} = 9.7 \cdot 10^{-5}$

O Do you think our optimizers like these kind of gradients?

- Let's assume now that $\frac{\partial c_t}{\partial c_{t-1}} < 1$, e.g. $\frac{\partial c_t}{\partial c_{t-1}} = 0.5$

o What would happen to the total
$$\frac{\partial \mathcal{L}_t}{\partial w}$$
?
$$\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} \propto 0.5^{10} = 9.7 \cdot 10^{-5}$$

- O Do you think our optimizers like these kind of gradients?
- o Too large → unstable training, oscillations, divergence
- Too small → very slow training, has it converged?

A visual example

 Recurrent networks as iterated functions

Credit: R. Grosse

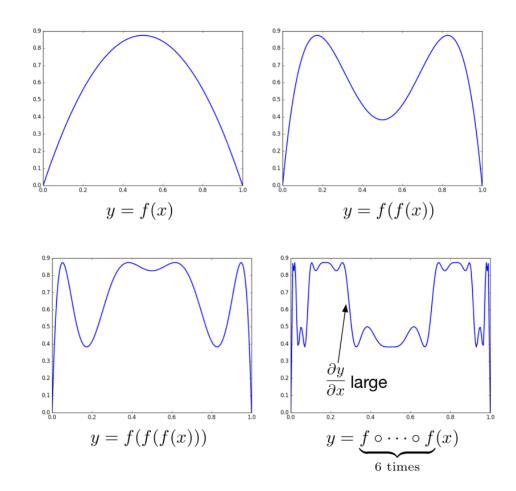


Figure 2: Iterations of the function f(x) = 3.5 x (1 - x).

Vanishing & Exploding Gradients

o In recurrent networks, and in very deep networks in general (an RNN is not very different from an MLP), gradients are much affected by depth

$$\frac{\partial \mathcal{L}}{\partial c_t} = \frac{\partial \mathcal{L}}{\partial c_T} \cdot \frac{\partial c_T}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdot \dots \cdot \frac{\partial c_{t+1}}{\partial c_{c_t}} \text{ and } \frac{\partial c_{t+1}}{\partial c_t} < 1 \Rightarrow \frac{\partial \mathcal{L}}{\partial w} \ll 1 \Rightarrow \text{Vanishing gradient}$$

$$\frac{\partial \mathcal{L}}{\partial c_t} = \frac{\partial \mathcal{L}}{\partial c_T} \cdot \frac{\partial c_T}{\partial c_{T-1}} \cdot \frac{\partial c_{T-1}}{\partial c_{T-2}} \cdot \dots \cdot \frac{\partial c_{t+1}}{\partial c_{c_t}} \text{ and } \frac{\partial c_{t+1}}{\partial c_t} > 1 \Rightarrow \frac{\partial \mathcal{L}}{\partial W} \gg 1 \Rightarrow \text{Exploding gradient}$$

Vanishing gradients & long memory

- Vanishing gradients are particularly a problem for long sequences
- o Why?

Vanishing gradients & long memory

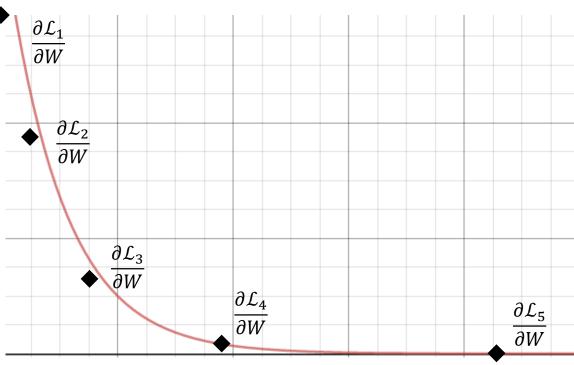
- Vanishing gradients are particularly a problem for long sequences
- OWhy?
- Exponential decay

$$\frac{\partial \mathcal{L}}{\partial c_t} = \prod_{t \ge k \ge \tau} \frac{\partial c_k}{\partial c_{k-1}} = \prod_{t \ge k \ge \tau} W \cdot \partial \tanh(c_{k-1})$$

- The further back we look (long-term dependencies), the smaller the weights automatically become
 - exponentially smaller weights

Why are vanishing gradients bad?

- Weight updates focus on early time steps
- Updates for longer time steps become exponentially smaller
- Bad learning, even if we train the model exponentially longer. Why?
- Weights quickly learn (prefer) to "model" shortterm transitions
 - And ignore long-term transitions
- At best, even after longer training, they will try "fine-tune" the whatever bad "modelling" of long-term transitions
 - After the short-term transitions are learned, the weights are set for them and are likely suboptimal for long-term
- Eventually, as the short-term transitions are inherently more prevalent, they will dominate the learning and gradients



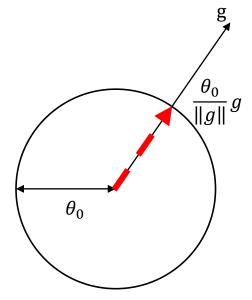
$$\frac{\partial \mathcal{L}}{\partial W} = \frac{\partial \mathcal{L}_1}{\partial W} + \frac{\partial \mathcal{L}_2}{\partial W} + \frac{\partial \mathcal{L}_3}{\partial W} + \frac{\partial \mathcal{L}_4}{\partial W} + \frac{\partial \mathcal{L}_5}{\partial W}$$

Quick fix for exploding gradients: Rescaling!

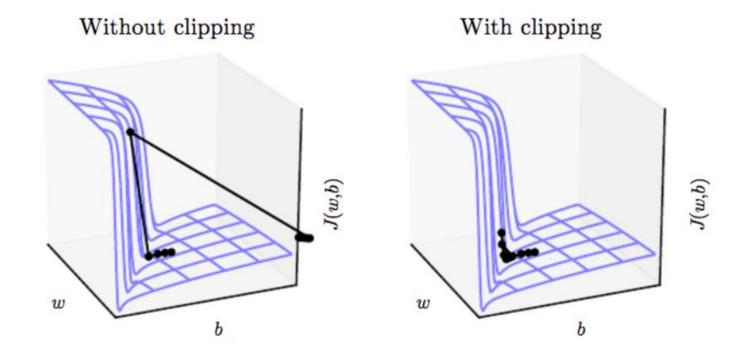
- First, get the gradient $g \leftarrow \frac{\partial \mathcal{L}}{\partial W}$
- \circ Check if the norm is larger than a threshold $heta_0$
- o If it is, rescale it to have same direction and threshold norm

$$g \leftarrow \frac{\theta_0}{\|g\|} g$$

o Simple, but works!



An illustration



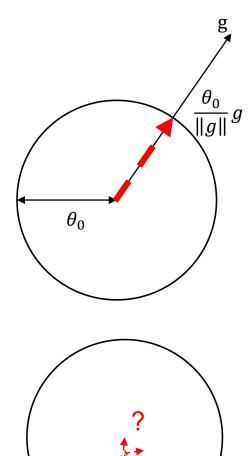
— Goodfellow et al., Deep Learning

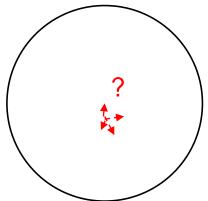
Can we rescale gradients also for vanishing gradients? No!

- The nature of the problem is different
- Exploding gradients → you might have bouncing and unstable optimization
- Vanishing gradients → you simply do not have a gradient to begin with
 Rescaling of what exactly?
- Unclear how would you rescale in a principled way, without affecting the rest of the time-steps
- In any case, even with re-scaling we would still focus on the short-term gradients
 - Long-term dependencies would still be ignored

Building intuition

- With exploding gradients, the gradient is sort of good just too large
 - That is, the direction of the gradient is good, but the magnitude is too much
 - Problem with optimization > bouncing, oscillation, etc.
- With vanishing gradients, the gradient is not good in the first place
 - Neither the direction because of numerical instabilities, nor the magnitude are good
 - Even if we rescale, are we sure we are going to change weights in the right direction? We cannot be sure.





Biased gradients?

- Backpropagating all the way till infinity is unrealistic
 - We would backprop forever (or simply it would be computationally very expensive)
 - And in case, the gradients would be inaccurate because of intermediate updates
- What about truncating backprop to the last K steps

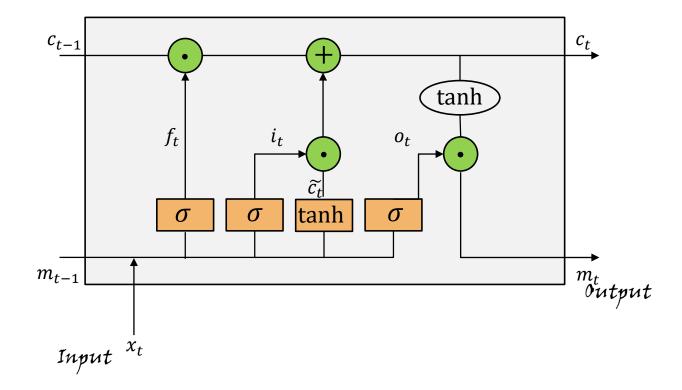
$$\tilde{g}_{t+1} \propto \frac{\partial \mathcal{L}}{\partial w} \Big|_{t=0}^{t=k}$$

Unfortunately, this leads to biased gradients

$$g_{t+1} = \frac{\partial \mathcal{L}}{\partial w} \Big|_{t=0}^{t=\infty} \neq \tilde{g}_{t+1}$$

- Other algorithms exist but they are not as successful
 - Maybe we will visit them later

LSTM and variants



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 56

How to fix the vanishing gradients?

- Error signal over time must have not too large, not too small norm
- O Let's have a look at the loss function

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{r}}{\partial y_{t}} \frac{\partial y_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$
$$\frac{\partial c_{t}}{\partial c_{\tau}} = \prod_{t \geq k \geq \tau} \frac{\partial c_{k}}{\partial c_{k-1}}$$

O How to make the product roughly the same no matter the length?

How to fix the vanishing gradients?

- Error signal over time must have not too large, not too small norm
- Let's have a look at the loss function

$$\frac{\partial \mathcal{L}_{t}}{\partial W} = \sum_{\tau=1}^{t} \frac{\partial \mathcal{L}_{r}}{\partial y_{t}} \frac{\partial y_{t}}{\partial c_{t}} \frac{\partial c_{t}}{\partial c_{\tau}} \frac{\partial c_{\tau}}{\partial W}$$
$$\frac{\partial c_{t}}{\partial c_{\tau}} = \prod_{t \geq k \geq \tau} \frac{\partial c_{k}}{\partial c_{k-1}}$$

- O How to make the product roughly the same no matter the length?
- Use the identity function with gradient of 1

Main idea of LSTMs

- \circ Over time the state change is $c_{t+1} = c_t + \Delta c_{t+1}$
- This constant over-writing over long time steps leads to chaotic behavior
- Input weight conflict
 - Are all inputs important enough to write them down?
- Output conflict
 - Are all outputs important enough to be read?
- Forget conflict
 - Is all information important enough to be remembered over time?

LSTMs

ORNNs

$$c_t = W \cdot \tanh(c_{t-1}) + U \cdot x_t + b$$

O LSTMs

$$i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$$

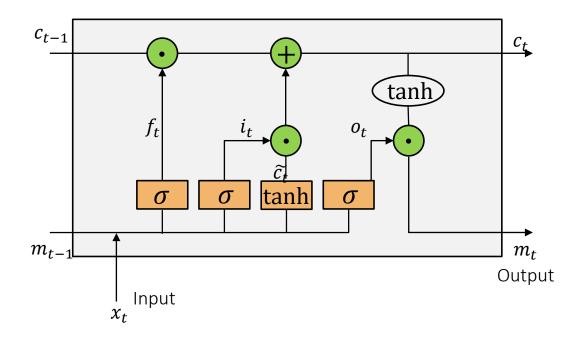
$$f = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)})$$

$$o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})$$

$$\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$$

$$c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$$

$$m_t = \tanh(c_t) \odot o$$



LSTMs: A marking difference

O RNNs

$$c_t = W \cdot \tanh(c_{t-1}) + U \cdot x_t + b$$

LSTMs

$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

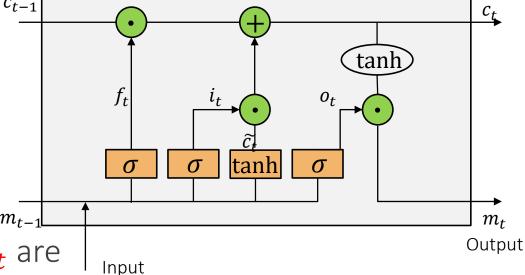
$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\tilde{c}_{t} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \tilde{c}_{t} \odot i$$

$$m_{t} = \tanh(c_{t}) \odot o$$

Additivity leads to strong gradients Bounded by sigmoidal *f*



- \circ The previous state c_{t-1} and the next state c_t are also connected by addition
 - It is also connected by the tanh, but at least there is the addition to make sure of good gradients

Nice tutorial: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

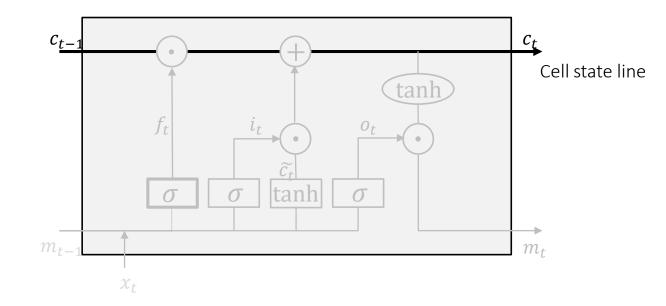
$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\tilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \tilde{c_{t}} \odot i$$

$$m_{t} = \tanh(c_{t}) \odot o$$



LSTM nonlinearities

$$i = \sigma(x_t U^{(i)} + m_{t-1} W^{(i)})$$

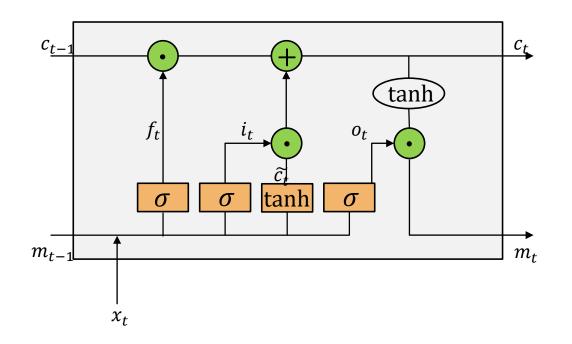
$$f = \sigma(x_t U^{(f)} + m_{t-1} W^{(f)})$$

$$o = \sigma(x_t U^{(o)} + m_{t-1} W^{(o)})$$

$$\widetilde{c_t} = \tanh(x_t U^{(g)} + m_{t-1} W^{(g)})$$

$$c_t = c_{t-1} \odot f + \widetilde{c_t} \odot i$$

$$m_t = \tanh(c_t) \odot o$$



- $\circ \sigma \in (0,1)$: control gate something like a switch
- \circ tanh ∈ (-1, 1): recurrent nonlinearity

$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

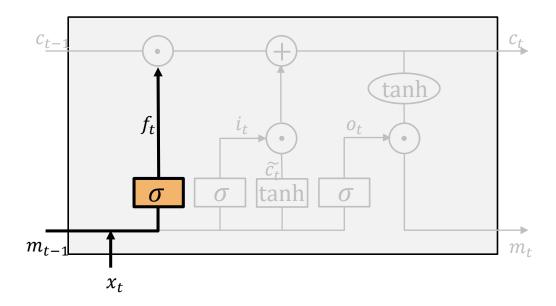
$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\tilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \tilde{c_{t}} \odot i$$

$$m_{t} = \tanh(c_{t}) \odot o$$



$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

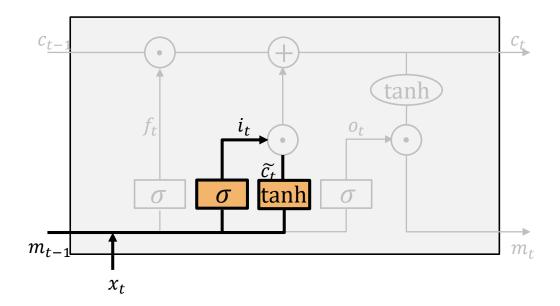
$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\widetilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \widetilde{c_{t}} \odot i$$

$$m_{t} = \tanh(c_{t}) \odot o$$



- Decide what new information is relevant from the new input and should be added to the new memory
 - $^{\circ}$ Modulate the input i_t
 - \circ Generate candidate memories $\widetilde{c_t}$

$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

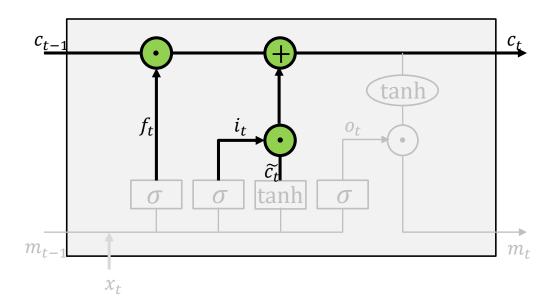
$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\tilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \tilde{c_{t}} \odot i$$

$$m_{t} = \tanh(c_{t}) \odot o$$



- \circ Compute and update the current cell state c_t
 - Depends on the previous cell state
 - What we decide to forget
 - What inputs we allow
 - The candidate memories

$$i = \sigma(x_{t}U^{(i)} + m_{t-1}W^{(i)})$$

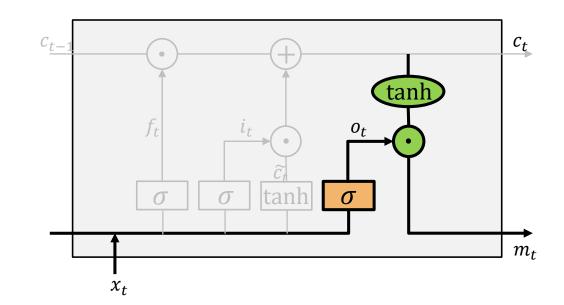
$$f = \sigma(x_{t}U^{(f)} + m_{t-1}W^{(f)})$$

$$o = \sigma(x_{t}U^{(o)} + m_{t-1}W^{(o)})$$

$$\tilde{c_{t}} = \tanh(x_{t}U^{(g)} + m_{t-1}W^{(g)})$$

$$c_{t} = c_{t-1} \odot f + \tilde{c_{t}} \odot i$$

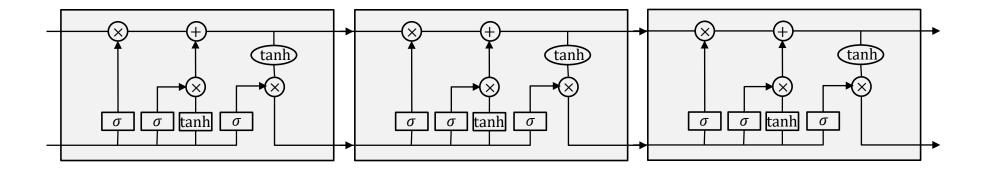
$$m_{t} = \tanh(c_{t}) \odot o$$



- Modulate the output
 - Does the new cell state relevant? → Sigmoid 1
 - ∘ If not → Sigmoid 0
- Generate the new memory

Unrolling the LSTMs

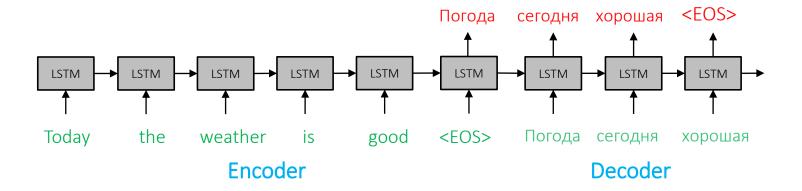
- Just the same like for RNNs
- The engine is a bit different (more complicated)
 - Because of their gates LSTMs capture long and short term dependencies



LSTM variants

- LSTM with peephole connections
- \circ Gates have access also to the previous cell states c_{t-1} (not only memories)
- Bi-directional recurrent networks
- Gated Recurrent Units (GRU)
- O Phased LSTMs
- O Skip LSTMs
- O And many more ...

Encoder-Decoder Architectures



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 70

Machine translation

- The phrase in the source language is one sequence
 - "Today the weather is good"
- It is captured by an Encoder LSTM
- The phrase in the target language is also a sequence
 - "Погода сегодня хорошая"
- o It is captured by a Decoder LSTM

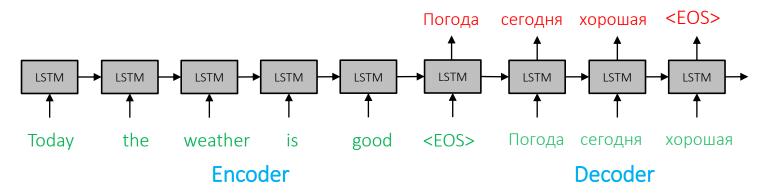


Image captioning

- Similar to image translation
- The only difference is that the Encoder LSTM is an image ConvNet
 VGG, ResNet, ...
- Keep decoder the same

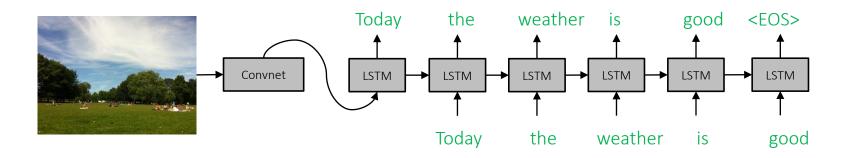
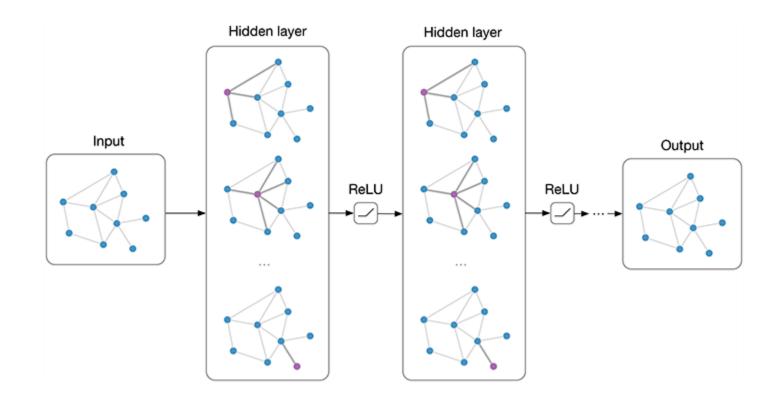


Image captioning demo

Click to go to the video in Youtube

NeuralTalk and Walk, recognition, text description of the image while walking

Graph Neural Networks



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 74

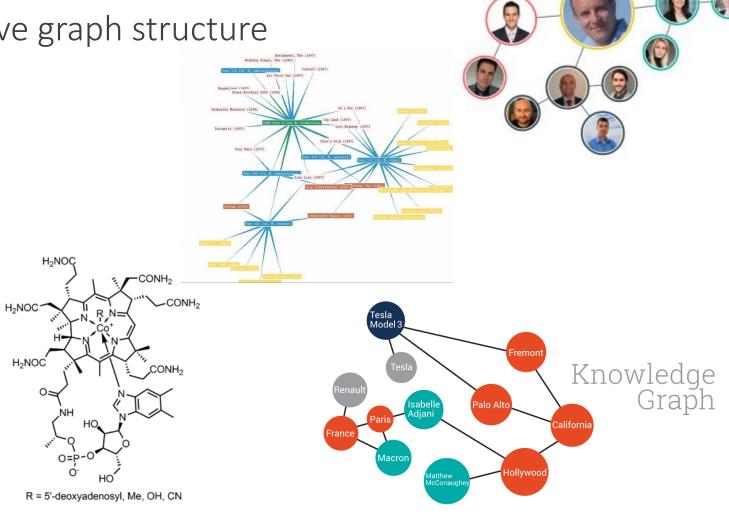
Why Graphs?

- Many domains & data have graph structure
- o Examples?

Why Graphs?

Many domains & data have graph structure

- Social networks
- Knowledge graphs
- Recommender systems
- Chemical compounds
- And more



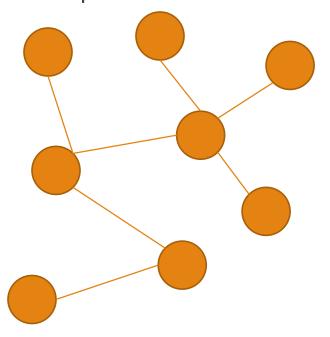
Predictions tasks on graphs?

Predictions tasks on graphs?

- Node classification
- Filling out missing edges
- Filling out missing nodes
- Novel graph generation

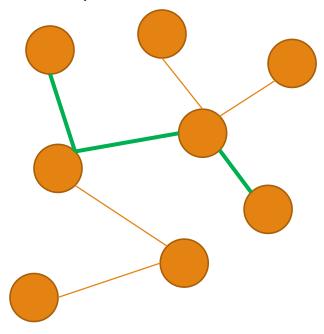
Algorithm

1. Perform random walks on the graph to generate node sequences



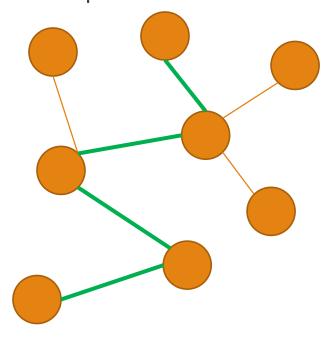
Algorithm

- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn the node embedding



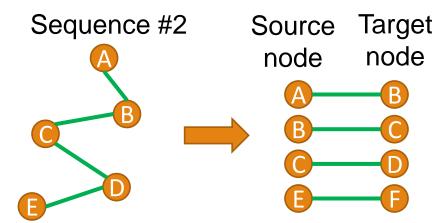
Algorithm

1. Perform random walks on the graph to generate node sequences



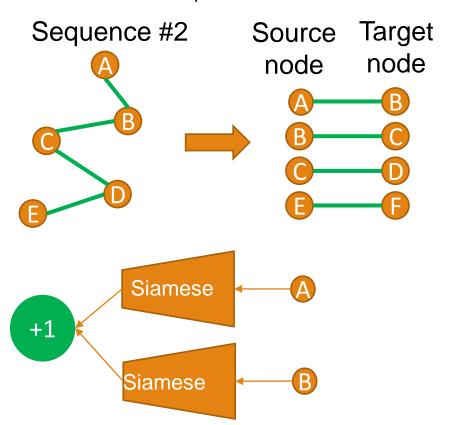
Algorithm

- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



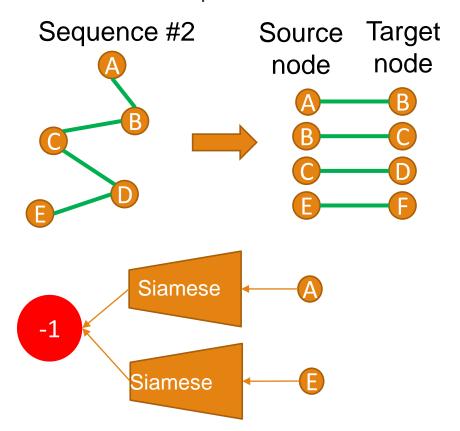
Algorithm

- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings

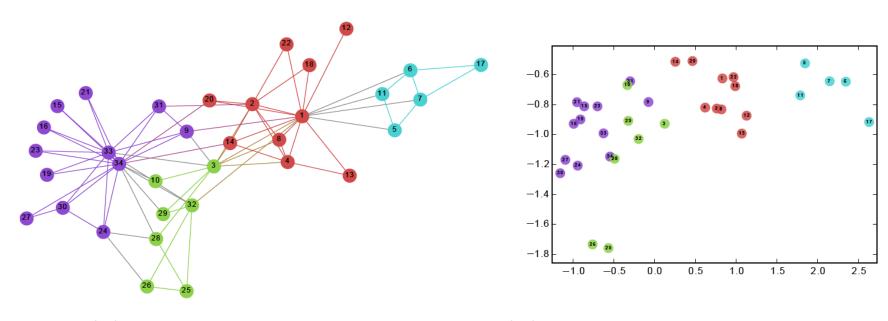


Algorithm

- 1. Perform random walks on the graph to generate node sequences
- 2. Run skip-gram to learn node embeddings



DeepWalk: Results



(a) Input: Karate Graph

(b) Output: Representation

DeepWalk: A problem

The method is transductive

OWhenever a new node is added to the graph, the model must be retrained

This is not useful for dynamic graphs

GraphSage

Input: Graph $G(\mathcal{V}, \mathcal{E})$: input features $\{\mathbf{x}_n, \forall n \in \mathcal{V}\}$: depth K: weight matrices

Input: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions AGGREGATE $_k, \forall k \in \{1, ..., K\}$; neighborhood function $\mathcal{N}: v \to 2^{\mathcal{V}}$

Output: Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$

```
\begin{array}{l} \mathbf{1} \ \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V} \ ; \\ \mathbf{2} \ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{3} \ \middle| \ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{4} \ \middle| \ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathrm{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{5} \ \middle| \ \mathbf{h}_{v}^{k} \leftarrow \sigma \left(\mathbf{W}^{k} \cdot \mathrm{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \\ \mathbf{6} \ \middle| \ \mathbf{end} \\ \mathbf{7} \ \middle| \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/\|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V} \\ \mathbf{8} \ \mathbf{end} \\ \mathbf{9} \ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{array}
```

GraphSage: Inductive Representation Learning on Large Graphs, Hamilton et al., 2017

GraphSage: How to aggregate?

 \circ Mean aggregation $\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{mean}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\})$

LSTM aggregation

o Pooling aggregation $\operatorname{AGGREGATE}_{k}^{\operatorname{pool}} = \max(\left\{\sigma\left(\mathbf{W}_{\operatorname{pool}}\mathbf{h}_{u_{i}}^{k} + \mathbf{b}\right), \forall u_{i} \in \mathcal{N}(v)\right\})$

$$OLOSS J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

Graph Convolutional Networks

 \circ Assuming a graph $G = (\mathcal{V}, \mathcal{E})$

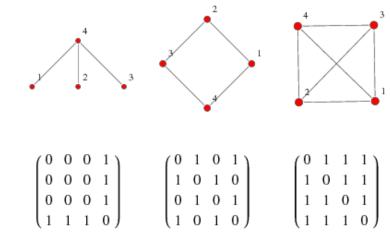
 \circ A node has a description x_i , all stored in a $N \times D$ matrix $X = [..., x_i, ...]$

 \circ The graph structure is encoded by the adjacency matrix A

O A neural network on this graph then is

$$H^{(l+1)} = h(H^{(l)}, A)$$

Graph Convolutional Networks, Kipf and Welling, 2016



Graph Convolutional Networks: A simple example

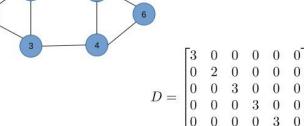
- $oh(H^{(l)}, A) = \sigma(AH^{(l)}W^{(l)})$
- o Two problems
 - \circ Given a node, the adjacency matrix A considers neighboring nodes but not the node itself \rightarrow Aggregation does not use the node itself
 - A node might have different numbers of neighbors and change the scale of the multiplication
- Add the identity matrix to A
- \circ Left multiply by $D^{-1}A:D$ is the degree matrix
- o Combining all, we have the following module

 $h(H^{(l)}, A) = \sigma(D^{-\frac{1}{2}} \hat{A} D^{-\frac{1}{2}} H^{(l)} W^{(l)})$ $\hat{A} = A + I$

Graph Convolutional Networks, Kipf and Welling, 2016

Degree matrix

$$D_{ij} = \begin{cases} d(i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$



Summary

- Sequential data
- Recurrent Neural Networks
- Backpropagation through time
- Exploding and vanishing gradients
- LSTMs and variants
- Encoder-Decoder Architectures
- Graph Neural Networks