


Lecture overview

o Sequential data

o Recurrent Neural Networks

o Backpropagation through time

o Exploding and vanishing gradients
o LSTMs and variants

o Encoder-Decoder Architectures

o Graph Neural Networks
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Sequence data

Sequence applications
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Example of sequential data

o Videos
o Other?
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Example of sequential data

o Videos
o Other?

o Time series data
°Stock exchange
°Biological measurements
°Climate measurements
> Market analysis

o Speech/Music

o User behavior in websites
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Applications

o Machine translation
o Image captioning
o Question answering
o Video generation
o Speech synthesis

o Speech recognition
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A sequence of probabilities

o Sequence =2 Chain rule of probabilities
pe) = | [peilry, xio)
i

o For instance, let’s model that “This i1s the best course!”

p(This 1is the best course!) =
= p(This) -

p(is|This) -

p(the|This is)-..-

p(!|This is the best course)
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What is the problem with sequences?

0 ?PP?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?

o No, better share and reuse parameters

o RecurrentModel (I think, therefore, I am. | 0)

can be reused also for

RecurrentModel (Everything is repeated in circles. History is a
Master because 1t teaches that i1t doesn’t exist. It 1s the

permutations that matter| 0)
o For a ConvNet that is not straightforward
o Why?
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What is the problem with sequences?

o Sequences might be of arbitrary or even infinite lengths

o Infinite parameters?

o No, better share and reuse parameters

o RecurrentModel (I think, therefore, I am. | 0)

can be reused also for

RecurrentModel (Everything is repeated in circles. History is a
Master because 1t teaches that i1t doesn’t exist. It 1s the

permutations that matter| 0)
o For a ConvNet that is not straightforward
o Why? Fixed dimensionalities
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Some properties of sequences?
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Some properties of sequences

o Data inside a sequence are non identically, independently distributed (IID)
°The next “word” depends on the previous “words”
°|ldeally on all of them

o We need context, and we need memory!

o Big question: How to model context and memory ?

— McGuire

Bond

| am Bond , James Bond — tired

am
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Properties of sequences

o Data inside a sequence are non identically, independently distributed (IID)
°The next “word” depends on the previous “words”
°|ldeally on all of them

o We need context, and we need memory!

o Big question: How to model context and memory ?

McGuire
Bond

| am Bond , James Bond tired

am
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One-hot vectors

o A vector with all zeros except for the active dimension
o012 words in a sequence = 12 One-hot vectors

o After the one-hot vectors apply an embedding
°Word2Vec, GloVE

Vocabulary One-hot vectors
I | 0

am

Bond

James

tired

am
Bond
James

McGuire
!

O 0O o O o oo -
O OO O o O K

O o o o o~ O O
O O o O, OO O
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Why not indices instead of one-hot vectors?

One-hot representation OR? Index representation

| am James McGuire | am James McGuire
0

1 O O xnIn j— 1

0 1 0 O

0 0 0 O X'am" =

O O 1 O xll n — 4

Xt=1,2,34 = 0 0 0 0 James
X'McGuire" =
0 0 0 O
0 0 0o 1
| 0 0 o 0 |
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Why not indices instead of one-hot vectors?

One-hot representation OR? Index representation
| am James McGuire | am James McGuire
0
1 O O xnIn —_ 1
0 1 0 0 _
O O O O x"am" — 2
O O 1 O xn n = 4
Xt=1,2,34 = 0 0 0 0 James
X'McGuire” = 7
0 0 0 0
0 0 0 1
. 0 o o0 0 _
? o) = V2 o (Xgm, X re) = (7—2)2=5
Z(xamr xMcQulre) - 2\tamy A*McQuire
= *
— 2 _
Co(X1, Xam) = V2 (X Xgm) = (2 -1 =1
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Recurrent Neural
Networks

Backprop through
time
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Memory

o Memory is a mechanism that learns a representation of the past

o At timestep t project all previous information 1, ..., t onto a latent space ¢;
°Memory controlled by a neural network hg with shared parameters 6

oThen, at timestep t + 1 re-use the parameters 8 and the previous ¢;
Ct41 = ho(Xt41,Ct)

Ces1 = ho(Xe41, hg(xe, hg(Xi—q, ... hg(X1,Cp))))
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A graphical representation of memory

o In the simplest case, what are the Inputs/Outputs of our system
o Sequence inputs =2 we model them with parameters U
o Sequence outputs = we model them with parameters V

o Memory I/O = we model it with parameters W

Memory mechanism y, Output

Output parameters V

Memory parameters W

Memory embedding vector
Input parameters U

Xt nput
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A graphical representation of memory

o In the simplest case, what are the Inputs/Outputs of our system
o Sequence inputs =2 we model them with parameters U
o Sequence outputs = we model them with parameters V

o Memory I/O = we model it with parameters W

¥ Output Yt+1 Yi+2 Yt+n

Output parameters V V
Memory parameters W W
(XX
Input parameters U U
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Folding the memory

Unrolled/Unfolded Network Folded Network

Yt YVit+1 Vt+2

Xt Xt+1 Xt+2 Xt
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Recurrent Neural Networks - RNNSs

o Basically, two equations
¢, = tanh(U x; + Wci_q)
y; = softmax(V c¢;)

o And a loss function

L= z Li(Ye,Ve)

t
= Zyé‘ logy;
t

assuming the cross-entropy loss function
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RNNs vs MLPs

o Is there a big difference?
o Instead of layers = Steps
o Outputs at every step = MLP outputs in every layer possible

o Main difference: Instead of layer-specific parameters = Layer-shared
parameters Vs Vs

Final output

v
“Layer/Step” 1 | “Layer/Step”2 | “Layer/Step”3
wl 8 lw,| & |w.| § y
X X —& \(i 2: \('<B 3: \SD ———>
= < =
— (\] w
3-gram Unrolled Recurrent Network 3-layer Neural Network
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Hmm, layers share parameters 7?17

o How is the training done? Does Backprop remain the same?
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Hmm, layers share parameters 7?17

o How is the training done? Does Backprop remain the same?

o Basically, chain rule
°S0, again the same concept

o Yet, a bit more tricky this time, as the gradients survive over time
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Backpropagation through time

¢, = tanh(U x; + Wci_q)
y: = softmax(V c¢;)

L= zyif logy;
t

o Let’s say we focus on the third timestep loss
0L

=
0L

w_
U
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Backpropagation through time:0.L;/dV

o Expanding the chain rule

0L, 0L, Oy, Ocy
aV N aytk aCtl GVU B
== (Y — ¥:) Q¢

Yt YVt+1 Vt+2

o All terms depend only on the current
timestep ¢

o Then, we should sum up all the
gradients for all time steps

0L . a[/t Xt Xt+1 Xt+2

o Liov
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Backpropagation through time: d.L;/0W

o Expanding with the chain rule

c; = tanh(U x; + Wci_1)
oL, or.dy,dc, y: = softmax(V c¢;)
oW 0y, dc, OW

. dc
o However, ¢, itself depends on ¢,_; > —

v dependsalsoon ¢;_q =2
The current dependency of ¢; to W isrecurrent
> And continuing till we reach c_; = [0]

Yt+1

Yt+2

o So, inthe end we have

0L,  ~o 9L, By, dc, dc
ow £ 0y, Oc, dcy OW

. dcy . . . .
o The gradlenta—zt itself is subject to the chain rule
k

dc;

t
dcy O0cpq  OCpy1

Xt Xt+1
6Cj
dc, 0Ci_10Ci_,  Ocy

Xt+2
j=k+1 9¢j-1

o Then, we should sum up all the gradients for all time steps
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Backpropagation through time: d.£L;/0U

c; = tanh(U x; + Wci_1)

o For parameter matrix U a similar process Y, = softmax(V ¢,)

0L, ~o 0L, Dy, dc, dcy

ou k=0 ayt act ack ou ye e+ Ye+2

Xt Xt+1 Xt+2
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Trading off Weight Update Frequency & Gradient Accuracy

¢, = tanh(U x; + Wce_q)

o At time t we use current weights wy to
y: = softmax(V c¢;)

compute states c; and outputs y;

o Then, we use the states and outputs to

backprop and get wy, ¢

Yt Yt+1 Yt+2
o Then, att + 1 we use w¢, 1 and the current

state ¢; 10 Y41 and Cpyq 4

o Then we update the weights again with y;, 4.

°The problem is y;41 was computed with ¢; in mind,
which in turns depends on the old weights w¢, not the
current ones w4 1. So, the new gradients are only an
estimate

> Getting worse and worse, the more we backprop X¢ Xt+1 Xp+2
through time
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Potential solutions

o Do fewer updates
°That might slow down training

o We can also make sure we do not backprop through more steps than our
frequency of updates
°But then we do not compute the full gradients
°Bias again = not really gaining much
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Vanishing gradients . . :
Expmdmiiradiems Decay of information through time

Truncated backprop

Timet=0 Timet=] Timet=2 Timet=3 Timet=4Y Timet=5 Timet=6.. Timet =100

@ @ O O @ O C
@) O © O @) O O
o —> ® — ® —> ® —_ O — — & | ==
@ L e ® O ®
S Y N T S S S
O O @ O O O
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An alternative formulation of an RNN

o Easier for mathematical analysis, and doesn’t change the mechanics of the
recurrent neural network

cg =W -tanh(c;—1) + U -x + b
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What is the problem

ac;

o As we just saw, the gradient itself is subject to the chain rule

aCk

t

dcy O0cpq OCryq 1—[ dc;
dc, 0ci_q0ci_y  Ocp dcj_q

dc;

j=k+1
o Product of ever expanding Jacobians
oEver expanding because we multiply more and more for longer dependencies
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Let’s look again the gradients

o Minimize the total loss over all time steps
arg m@inz Li(crp)
t
0L,
ow

s
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Let’s look again the gradients

o Minimize the total loss over all time steps

arg mlnzﬁt(ctg)

6Lt ﬁﬁt dcy dc,

ow "~ ﬁct dc, oW
d0L dc, 0L Oct Oct 1 0Criq
dc,dc, 0dc, 0c,_q Oci, — Ocq

>
t KT > sfwrt~term fMtarS t>1 - lmg~term fmtars
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Let’s look again the gradients

o Minimize the total loss over all time steps

argmlnzﬁt(ctg)
6Lt ﬁﬁt dcy dc,
ow "~ ﬁct dc, oW
d0L dc, 0L Oct Oct 1 0Criq
dc,dc, dc, 0c,_q Oci, —  Ocq
C
)| < W) diag (o ()]
Ct
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Let’s look again the gradients

dc
“etl| < W) diag (o' ()]
Ct
o If we assume that the norm of the weight W is bounded

. . . . 1
oSpectral radius (max eigenvalue) is smaller than an arbitrary small number A; < >

o And if we assume that the non linearity is bounded

ldiag (o' (eIl <y
=
< ! <1
4
14

0Ct+1
dc,
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Let’s look again the gradients

o Minimize the total loss over all time steps

argmmELt(cte)

0Lt OLt dc; dc,

ow dc; dc, OW
0Ldc, 0L dc, Ocey  Ocp _ 0L
dc,dc, 0c, Ociq Oc, ~ Oc, dc;

v
tKT1 > s[wrt term ﬂLCtOTS t>1 > lmg~term fmtars

o RNN gradients expanding product of

aCt 1

o Withn < 1 long-term factors = 0 exponentially fast

Pascanu, Mikolov, Bengio, On the difficulty of training recurrent neural networks, JMLR 2013
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Some cases

> 1, e.g. %% _ 15

dCt—1

aCt

o Let’s assume we have 10 time steps and =
t—-1

0L
o What would happen to the total a_m;?
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Some cases

> 1, e.g. 9% _ 15

0Ct—1

aCt

o Let’s assume we have 100 time steps and "
t—-1

0L
o What would happen to the total a—v;?

9L 9¢ 1,510 = 4.06 - 107

dce 0cy

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 42



Some cases

<1 eg %% _ 05

0Ct—1

Oct

o Let’s assume now that
dCt—1

0L
o What would happen to the total a_m;?
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Some cases

5 Let’s assume now that —<t < 1, e.g. %% _ 05
dCt—1 0Ct—1
o What would happen to the total %?
dL dc; 10 s
«x 0.5 =9.7-10
dcy dc,

o Do you think our optimizers like these kind of gradients?
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Some cases

5 Let’s assume now that —<t < 1, e.g. %% _ 05
dCt—1 0Ct—1
o What would happen to the total %?
dL dc; 10 s
«x 0.5 =9.7-10
dcy dc,

o Do you think our optimizers like these kind of gradients?
o Too large =2 unstable training, oscillations, divergence

o Too small = very slow training, has it converged?
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A visual example

o Recurrent networks as
iterated functions

0.5 0.5

01 0.1

0.8

y=fx  y= @)

0.8 08

07 07
06 0.6
05 0.5
04 04
03 03
02 0.2 8
01 01

2
o arge

y=f(f(f(x))) y=fo--of(x)
Credit: R. Grosse 6 times

Figure 2: Iterations of the function f(z) = 3.5z (1 — x).
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Vanishing & Exploding Gradients

o In recurrent networks, and in very deep networks in general (an RNN is not very
different from an MLP), gradients are much affected by depth

0L 0L aCT aCT_l aCt+1 aCt+1 0L . . .

— = : : N 1 > — « 1 = Vanishing gradien
dcg dct O0Ct—1 OCT—» dcc, and dce < ow < anishing & adient
0L 0L aCT aCT_l aCt+1 aCt+1 0L . .
—= - - I 1 =>—>1>E

9c, — 9or dor o1, oc, and ac, > v > xploding gradient
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Vanishing gradients & long memory

o Vanishing gradients are particularly a problem for long sequences
o Why?

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 48



Vanishing gradients & long memory

o Vanishing gradients are particularly a problem for long sequences
o Why?

o Exponential decay

612_1—[ dcy _HW 3 tanh
act_ ack_]__ al (Ck—l)

t=k=t1 tzk=t
o The further back we look (long-term dependencies), the smaller the
weights automatically become
cexponentially smaller weights

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 49



Why are vanishing gradients bad?

o Weight updates focus on early time steps .
. oL
o Updates for longer time steps become _

exponentially smaller w

o Bad learning, even if we train the model I
exponentially longer. Why? ¢ 942

. . (o V24 a
o Weights quickly learn (prefer) to “model” short- v
term transitions

° And ignore long-term transitions

o At best, even after longer training, they will try L
“fine-tune” the whatever bad “modelling” of w

SN 0L
long-term transitions \‘a_v; 0Ls
o After the short-term transitions are learned, the weights — . ow

are set for them and are likely suboptimal for long-term

/
,\im

o Eventually, as the _ are
inherently more prevalent, they will dominate _ _I_‘Mz L0Ls 9L, | 0L
K . -_ +— +
the learning and gradients oW ew aw W
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Quick fix for exploding gradients: Rescaling!

. . oL
o First, get the gradient g « PR

o Check if the norm is larger than a threshold 6,

olf itis, rescale it to have same direction and threshold norm

0

o Simple, but works! ' g
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An illustration

Without clipping With clipping

J(w,b)
J(w,b)

N N

b b

— Goodfellow et al., Deep Learning
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Can we rescale gradients also for vanishing gradients? No!

o The nature of the problem is different
o Exploding gradients =2 you might have bouncing and unstable optimization

o Vanishing gradients =2 you simply do not have a gradient to begin with
oRescaling of what exactly?

o Unclear how would you rescale in a principled way, without affecting the
rest of the time-steps

o In any case, even with re-scaling we would still focus on the short-term
gradients
cLong-term dependencies would still be ignored

s
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Building intuition

o With exploding gradients, the gradient is sort of
good just too large ol

lg
°That is, the direction of the gradient is good, but the
magnitude is too much

°Problem with optimization—=> bouncing, oscillation, etc.

o With vanishing gradients, the gradient is not good
in the first place

>Neither the direction because of numerical instabilities,
nor the magnitude are good

cEven if we rescale, are we sure we are going to change
weights in the right direction? We cannot be sure.
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Biased gradients?

o Backpropagating all the way till infinity is unrealistic
> We would backprop forever (or simply it would be computationally very expensive)
°And in case, the gradients would be inaccurate because of intermediate updates

o What about truncating backprop to the last K steps
0L (t=k

~ m _
1
G+ ow lt=0

o Unfortunately, this leads to biased gradients
0L ‘t=°°

—_— — =+ 21
Jt+1 aw le—o Jt+1

o Other algorithms exist but they are not as successful
> Maybe we will visit them later
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LSTM and variants

fe It . Ot

mg
0ut}mt
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How to fix the vanishing gradients?

o Error signal over time must have not too large, not too small norm

o Let’s have a look at the loss function
t
0Ly dL, dy; dc; dc;

oW L. 0y, dc, dc, OW
7=1
dc; B dcy
ey t2k2rack_1

o How to make the product roughly the same no matter the length?
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How to fix the vanishing gradients?

o Error signal over time must have not too large, not too small norm

o Let’s have a look at the loss function
t
0Ly dL, dy; dc; dc;

oW L. 0y, dc, dc, OW
7=1
dc; B dcy
ey tZkZTaCk_l

o How to make the product roughly the same no matter the length?

o Use the identity function with gradient of 1

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 58



Main idea of LSTMs

o Over time the state change is ¢;1q = ¢ + ACiy 1
o This constant over-writing over long time steps leads to chaotic behavior

o Input weight conflict
°Are all inputs important enough to write them down?

o Output conflict
°Are all outputs important enough to be read?

o Forget conflict
°|s all information important enough to be remembered over time?
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LSTMs

o RNNs
c. =W -tanh(¢;—q) + U -x; + b
o LSTMs -
[ = a(xtU(i) + 'mt_lw(i)) O *
f =0, UD +m_,wh) A 0 aﬁ
0= a(xtU(O) + mt_lw(")) t t - t
C; = tanh(xtU(g) + mt—lw(g)) o || o |[tanh|| @ ‘
G =C1Of+OI me__1 m,
m; = tanh(c;) © o o Output
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LSTMSs: A marking difference

Additivity leads to strong gradients

o RNNs Bounded by sigmoidal f
ce =W -tanh(c;—q) +U -x; + b

o LSTMs

i = O'(xtU(l) + mt_]_W(l)) @ f_l'_\ ¢y

— O'(xtU(f) +mt 1W(f) 3 —

0O — O-(xtU(O) + mt 1W ) ft " Ot

C; = tanh(xtU(g) +my_{ W) J

Cq = Ciq ©) f Ct ON o || o ||tanh|| O ‘

m; = tanh(c;) ® o w1 nd
o The previous state ¢;_; and the next state ¢y are | Output

also connected by add|t|on X

° |t is also connected by the tanh, but at least there is the
addition to make sure of good grad|ents

Nice tutorial: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Cd C;

Cell state line
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LSTM nonlinearities

Co_ c
o t—1 , 5
0)
ft Lt O¢
0]
C.
tanh o O |[|tanh|| O
mt_l A :t
tanh
Xt

oo € (0,1): control gate — something like a switch

otanh € (—1, 1): recurrent nonlinearity
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LSTM Step by Step #1

f — O'(xtU(f) + mt_1W(f)) |
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LSTM Step by Step #2

I = O-(xtU(l) + mt_]_W(i))

¢; = tanh(x, U9 + m,_ W) g

o | [tanh

o Decide what new information is relevant from the new input and should
be added to the new memory
> Modulate the input i;
> Generate candidate memories ¢;
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LSTM Step by Step #3

fi It

N

Gt =C1Of+C O

o Compute and update the current cell state ¢;
°Depends on the previous cell state
°What we decide to forget
°What inputs we allow
°The candidate memories
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LSTM Step by Step #4

0 =0(x U@ +m;_ W) %,

m, = tanh(c;) © o ! "

o Modulate the output

°Does the new cell state relevant? = Sigmoid 1
°|f not = Sigmoid O

o Generate the new memory
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Unrolling the LSTMs

o Just the same like for RNNs

o The engine is a bit different (more complicated)
°Because of their gates LSTMs capture long and short term dependencies

D)
D
X
D
Q)
D

Lo |[o |ttanhf[ o | Lo [ o |ftanhf[ o |
l [ ] | l [ ] |
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LSTM variants

o LSTM with peephole connections

o Gates have access also to the previous cell states ¢;_; (not only memories)
o Bi-directional recurrent networks

o Gated Recurrent Units (GRU)

o Phased LSTMs

o Skip LSTMs

o And many more ...
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Encoder-Decoder
Architectures

Moropa cerogHa xopowasa <EOS>

f f f f

LSTM > LSTM LSTM LSTM |—»

I I ] ] I I f f ]

Today the weather is good  <EOS>

LSTM

A 4

LSTM

A 4

LSTM

A 4

LSTM » LSTM

A 4

\ 4

\ 4

[loroga cerogHA  xopollas

Encoder Decoder
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Machine translation

o The phrase in the source language is one sequence
o “Today the weather is good”

o It is captured by an Encoder LSTM

o The phrase in the target language is also a sequence
°“INoroaa ceroaHAa xopowaa”

o It is captured by a Decoder LSTM

Moropa cerogHa xopowasa <EOS>

f f f f

LSTM » LSTM » LSTM » LSTM » LSTM » LSTM > LSTM > LSTM » LSTM [—»
Today the weather is good  <EOS> Moroga cerogHa  xopoluas
Encoder Decoder
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Image captioning

o Similar to image translation

o The only difference is that the Encoder LSTM is an image ConvNet
VGG, ResNet, ...

o Keep decoder the same

Today the weather s good <EOS>
t t t t { t

Convnet LSTM [—» LSTM [ LSTM [ LsTM | LsTM > LsT™
1 f 1 f 1

Today the weather s good
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Image captioning demo

Click to qo to the Vides in You tu}e

a man in a suit and tie standing in Bt of & buuldmg ’

NeuralTalk and Walk, recognition, text description of the image while walking
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https://www.youtube.com/watch?v=8BFzu9m52sc

Graph Neural
Networks

UVA DEEP LEARNING COURSE

EFSTRATIOS GAVVES
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Hidden layer

RelU

Hidden layer




Why Graphs?

o Many domains & data have graph structure

o Examples?
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Why Graphs?

o Social networks

o Knowledge graphs

o Recommender systems

o Chemical compounds

rrrrr

o And more

Knowledge
Graph

aaaaa

MMMMMMM
MMMMMMMMMMM

R = 5'-deoxyadenosyl, Me, OH, CN
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Predictions tasks on graphs?
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Predictions tasks on graphs?

o Node classification
o Filling out missing edges
o Filling out missing nodes

o Novel graph generation
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DeepWalk

Algorithm

1. Perform random walks on the graph to generate node sequences

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk

Algorithm
1. Perform random walks on the graph to generate node sequences

2. Run skip-gram to learn the node embedding

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk

Algorithm

1. Perform random walks on the graph to generate node sequences

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES RECURRENT NEURAL NETWORKS - 81


https://arxiv.org/abs/1403.6652

DeepWalk

Algorithm
1. Perform random walks on the graph to generate node sequences

2. Run skip-gram to learn node embeddings Sequence #2 Source Target
node node

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk

Algorithm
1. Perform random walks on the graph to generate node sequences

2. Run skip-gram to learn node embeddings Sequence #2 Source Target
node node

Siamese

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk

Algorithm
1. Perform random walks on the graph to generate node sequences

2. Run skip-gram to learn node embeddings Sequence #2 Source Target
node node

Siamese

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk: Results

Y » T 4 ] ' ®®
-08 @Eg s o °o® . "
—1.0 ’ L] u,, as v
—127... ®
(a) Input: Karate Graph (b) Output: Representation

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

DeepWalk: A problem

o The method is transductive

o Whenever a new node is added to the graph, the model must be retrained

o This is not useful for dynamic graphs

DeepWalk: Online Learning of Social Representations, Perozzi et al, 2014
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https://arxiv.org/abs/1403.6652

GraphSage

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,, Vv € V}; depth K; weight matrices
W* VEk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy,Vk € {1, ..., K'}; neighborhood function N : v — 2V

Output : Vector representations z,, for all v € V

hY + x,,Vv eV ;

fork=1...K do

forv € Vdo

hf; () < AGGREGATE({hi~!, Vu € N(v)});

h* «+ o (W’“ : CONCAT(h’,j_l,hj“\[(,U)))

1
2
3
4

5

end
hy < hi/|[h}l]2, Vv eV

end
z, — h* Yo ey

GraphSage: Inductive Representation Learning on Large Graphs, Hamilton et al., 2017
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http://snap.stanford.edu/graphsage/

GraphSage: How to aggregate?

o Mean aggregation h* « ¢(W - MEAN({h* "1} U {h*~" Vu € N(0v)})
o LSTM aggregation
pool

o Pooling aggregation AGGREGATE, " = max({c (Wpeht. +b),Vu; € N(v)})

oloss  Jg(zu) = —log (0(z,2,)) — Q- E, p, (v log (0(—2, 2., ))
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Graph Convolutional Networks

o Assuming a graph G = (V, £)
o A node has a description x;, all stored ina N X D matrix X = [..., x;, ... |

o The graph structure is encoded by the adjacency matrix A

o A neural network on this graph then is /‘\ i ; N

y+1) — h(H(l),A)

000 1 0101 01 11
000 1 1010 1011
Graph Convolutional Networks, Kipf and Welling, 2016 0001 0101 101
1110 1010 1110
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https://tkipf.github.io/graph-convolutional-networks/

Graph Convolutional Networks: A simple example

oh(HWY, A) = a(AHOW W)

o Two problems

> Given a node, the adjacency matrix A considers neighboring nodes but not the node itself 2
Aggregation does not use the node itself

° A node might have different numbers of neighbors and change the scale of the multiplication

o Add the identity matrix to A4 Degree matrix

b _ [ d) ifi=j
Y0 otherwise

o Left multiply by D™1A: D is the degree matrix
o Combining all, we have the following module

10 1
h(H(l),A) =o(D 2AD 2 H(l)W(l))
A=A+1

Graph Convolutional Networks, Kipf and Welling, 2016

S o OO NO
cC oo WwWwoo
SO WO oo
S WO oo o
NO OO OOo

'coococow
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https://tkipf.github.io/graph-convolutional-networks/

o Sequential data

o Recurrent Neural Networks

o Backpropagation through time
summary o Exploding and vanishing gradients
o LSTMs and variants

o Encoder-Decoder Architectures

o Graph Neural Networks
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