

Lecture 7: Generative Adversarial Networks Efstratios Gavves

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

• The students have already been notified

• The cases have been forwarded to the examinations board, who are responsible for evaluating the case

• Plagiarizing is bad

- for all other students, who did the work
- for the degree, which loses its values
- For the student's money, they actually lose the opportunity to learn
- For the teaching stuff, who put all the effort in delivering the course as well as they can

o In short, please don't do it otherwise there are consequences.

o Gentle intro to generative models

• Generative Adversarial Networks

• Variants of Generative Adversarial Networks

Generative models

(a) EBGAN (64x64)

(b) Our results (128x128)

o Generative modelling

- Learn the joint pdf: p(x, y)
- Model the world \rightarrow Perform tasks, *e.g.* use Bayes rule to classify: p(y|x)
- Naïve Bayes, Variational Autoencoders, GANs
- Discriminative modelling
 - Learn the conditional pdf: p(y|x)
 - Task-oriented
 - E.g., Logistic Regression, SVM

• What to pick?

•V. Vapnik: "One should solve the [classification] problem directly and never solve a more general [and harder] problem as an intermediate step."

• Typically, discriminative models are selected to do the job

- Generative models give us more theoretical guarantees that the model is going to work as intended
 - Better generalization
 - Less overfitting
 - Better modelling of causal relationships

Applications of generative modeling?

• Act as a regularizer in discriminative learning

- Discriminative learning often too goal-oriented
- Overfitting to the observations
- o Semi-supervised learning
 - Missing data
- Simulating "possible futures" for Reinforcement Learning
- Data-driven generation/sampling/simulation

Applications: Image Generation

(b) Generated by DCGANs (Reported in [13]).

(a) Generated by LSGANs.

2016

2017

Applications: Super-resolution

Applications: Cross-model translation

A map of generative models

Plug in the model density function to likelihood
 Then maximize the likelihood

Problems

- Modes must be complex enough \rightarrow to match data complexity
- Also, model must be <u>computationally tractable</u>
- More details in the next lectures

Generative modeling: Case I

• Density estimation

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

• No explicit probability density function (pdf) needed

 Instead, a sampling mechanism to draw samples from the pdf without knowing the pdf

Implicit density models: GANs

o Sample data in parallel

- Few restrictions on generator model
- No Markov Chains needed
- No variational bounds
- Better qualitative examples
 Weak but true

Generative modeling: Case II

• Sample Generation

Train examples

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

Generative modeling: Case II

• Sample Generation

Train examples

New samples (ideally)

• Generative

- You can sample novel input samples
- E.g., you can literally "create" images that never existed
- Adversarial
- $^{\circ}$ Our generative model G learns adversarially, by fooling an discriminative oracle model D

• Network

- Implemented typically as a (deep) neural network
- Easy to incorporate new modules
- Easy to learn via backpropagation

• Assume you have two parties

- Police: wants to recognize fake money as reliably as possible
- Counterfeiter: wants to make as realistic fake money as possible
- The police forces the counterfeiter to get better (and vice versa)

o Solution relates to Nash equilibrium

GAN: Pipeline

Generator network $x = G(z; \theta^{(G)})$

- Must be differentiable
- o No invertibility requirement
- Trainable for any size of z
- Can make conditionally Gaussian given z, but no strict requirement

The discriminator is just a standard neural network
 The generator looks like an inverse discriminator

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding $\varphi(t)$ is used by both generator and discriminator. It is projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing. Network Architecture

o Minimax

- o Maximin
- Heuristic, non-saturating game
- o Max likelihood game

$$\circ J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D(x) - \frac{1}{2} \mathbb{E}_{z \sim p_z} \log(1 - D(G(z)))$$

$$1/2$$

 $1/2$
 0
 $-1/2$
 $-1/2$
 0
 $1/2$
 $-1/2$
 $-1/2$
 $-1/2$

• D(x) = 1 → The discriminator believes that x is a true image • D(G(z)) = 1 → The discriminator believes that G(z) is a true image

Equilibrium is a saddle point of the discriminator loss
 Final loss resembles Jenssen-Shannon divergence

NIPS 2016 Tutorial: Generative Adversarial Networks

A reasonable loss for the generator?

• For the simple case of zero-sum game $J^{(G)} = -J^{(D)}$

• So, we can summarize game by $V(\theta^{(D)}, \theta^{(G)}) = -J^{(D)}(\theta^{(D)}, \theta^{(G)})$

• Easier theoretical analysis

○ In practice not used → when the discriminator starts to recognize fake samples, then ...

• For the simple case of zero-sum game $J^{(G)} = -J^{(D)}$

• So, we can summarize game by $V(\theta^{(D)}, \theta^{(G)}) = -J^{(D)}(\theta^{(D)}, \theta^{(G)})$

• Easier theoretical analysis

 o In practice not used → when the discriminator starts to recognize fake samples, the generator gradients vanish

• Equilibrium not any more describable by single loss

• Generator maximizes the log-probability of the discriminator being mistaken • Good $G(z) \rightarrow D(G(z)) = 1 \rightarrow J^{(G)}$ is maximized

 Heuristically motivated; generator can still learn even when discriminator successfully rejects all generator samples

DCGAN Architecture

Examples

Even vector space arithmetics ...

Woman with glasses

• When discriminator is optimal, the generator gradient matches that of maximum likelihood

On distinguishability criteria for estimating generative models

 \rightarrow Variance reduction?

•
$$L(D,G) = \int_{x} p_{r}(x) \log D(x) + p_{g}(x) \log(1 - D(x)) dx$$

• Minimize $L(D,G)$ w.r.t. $D \rightarrow \frac{dL}{dD} = 0$ and ignore the integral (we sample over all x)
• The function $x \rightarrow a \log x + b \log(1 - x)$ attains max in [0, 1] at $\frac{a}{a+b}$

• The optimal discriminator

$$D^*(x) = \frac{p_r(x)}{p_r(x) + p_g(x)}$$

• And at **optimality** $p_g(x) \rightarrow p_r(x)$, thus
$$D^*(x) = \frac{1}{2}$$
$$L(G^*, D^*) = -2\log 2$$
• By expanding the Jensen-Shannon divergence, we have

$$D_{JS}(p_r||p_g) = \frac{1}{2} D_{KL}(p_r||\frac{p_r + p_g}{2}) + \frac{1}{2} D_{KL}(p_g||\frac{p_r + p_g}{2})$$
$$= \frac{1}{2} \left(\log 2 + \int_x p_r(x) \log \frac{p_r(x)}{p_r(x) + p_g(x)} dx + \log 2\right)$$

• By expanding the Jensen-Shannon divergence, we have

$$D_{JS}(p_r||p_g) = \frac{1}{2} D_{KL}(p_r||\frac{p_r + p_g}{2}) + \frac{1}{2} D_{KL}(p_g||\frac{p_r + p_g}{2})$$
$$= \frac{1}{2} \left(\log 2 + \int_x p_r(x) \log \frac{p_r(x)}{p_r(x) + p_g(x)} dx + \log 2\right)$$

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

• Does the divergence make a difference?

○ Is there a difference between KL-divergence, Jensen-Shannon divergence, ...

$$D_{KL}(p_r||p_g) = \int_x p_r \log \frac{p_r}{p_g} dx$$
$$D_{JS}(p_r||p_g) = \frac{1}{2} D_{KL}(p_r||\frac{p_r + p_g}{2}) + \frac{1}{2} D_{KL}(p_g||\frac{p_r + p_g}{2})$$

o Let's check the KL-divergence

- Forward KL divergence: $D_{KL}(p(x)||q^*(x)) \rightarrow$ <u>high probability</u> everywhere that the data occurs
- Backward KL divergence: $D_{KL}(q^*(x)||p(x))$ → <u>low probability</u> wherever the data <u>does not</u> occur
- O Which version makes the model "conservative"?

 p_r is what we get and cannot change p_g is what we make through our model and (through training) change

$$D_{KL}(p_r||p_g) = \int_x p_r \log \frac{p_r}{p_g} dx$$

• $D_{KL}(p(x)||q^*(x))$ → high probability everywhere that the data occurs • $D_{KL}(q^*(x)||p(x))$ → low probability wherever the data does not occur • Which version makes the model "conservative"?

Maximum likelihood

Reverse KL

KL vs JS

o JS is symmetric, KL is not

GAN Problems: Reaching Nash equilibrium causes instabilities

o GANs is a mini-max optimization

• Non-cooperative game with a tied objective

○ Training is not always easy → When optimizing one player/network, we might hurt the other one → oscillations

• Assume two players f(x) = xyWe optimize one step at a time • Player 1 minimizes: $\min_{x} f_1(x) = xy \Rightarrow \frac{df_1}{dx} = y$ $\Rightarrow x_{t+1} \stackrel{x}{=} x_t - \eta \cdot y$ • Player 2 minimizes: $\min_{y} f_2(x) = -xy \Rightarrow \frac{df_2}{dx} = -x$ $\Rightarrow y_{t+1} = y_t + \eta \cdot x$

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D(x) - \frac{1}{2} \mathbb{E}_{z} \log(1 - D(G(z)))$$
$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{z} \log(D(G(z)))$$

o If the discriminator is quite bad
 → no accurate feedback for generator
 → no reasonable generator gradients

- But, if the discriminator is perfect, $D(x) = D^*(x)$ \rightarrow gradients go to 0
 - \rightarrow no learning anymore
- Bad when this happens early in the training
 - Easier to train the discriminator than the generator

GAN Problems: Mode collapse

• Very low variability

It is safer for the generator to produce samples from the mode it knows it approximates well

GAN Problems: Low dimensional supports

- o Data lie in low-dim manifolds
- However, the manifold is not known
- $_{\rm O}$ During training p_g is not perfect either, especially in the start
- So, the support of p_r and p_g is nonoverlapping and disjoint
 → not good for KL/JS divergences
- Easy to find a discriminating line

o Instead of KL/JS, use Wasserstein (Earth Mover's) Distance $W(p_r, p_g) = \inf_{\gamma \sim \Pi(p_r, p_g)} E_{(x,y) \sim \gamma} |x - y|$

• Even for non-overlapping supports, the distance is meaningful

o Instead of matching image statistics, match feature statistics

$$J^{(D)} = \left\| \mathbb{E}_{x \sim p_r} f(x) - \mathbb{E}_{z \sim p_z} f(G(z)) \right\|_2^2$$

 $\circ f$ can be any statistic of the data, like the mean or the median

- Use SGD-like algorithm of choice
- •Adam Optimizer is a good choice
- O Use two mini-batches simultaneously
 - The first mini-batch contains real examples from the training set
 - The second mini-batch contains fake generated examples from the generator
- Optional: run k-steps of one player (e.g. discriminator) for every step of the other player (e.g. generator)

• Learning a conditional model p(y|x) is often generates better samples • Denton et al., 2015

Even learning p(x, y) makes samples look more realistic
 Salimans et al., 2016

• Conditional GANs are a great addition for learning with labels

• Default discriminator cost:

cross_entropy(1., discriminator(data))
+ cross_entropy(0., discriminator(samples))

• One-sided label smoothing:

cross_entropy(0.9, discriminator(data))
+ cross_entropy(0., discriminator(samples))

• Do not smooth negative labels:

cross_entropy(1.-alpha, discriminator(data))
+ cross_entropy(beta, discriminator(samples))

- Max likelihood often is overconfident
- Might return accurate prediction, but too high probabilities
- o Good regularizer
 - Szegedy et al., 2015
- Does not reduce classification accuracy, only confidence
- Specifically for GANs
 - Prevents discriminator from giving very large gradient signals to generator
 - Prevents extrapolating to encourage extreme samples

• Generally, good practice for neural networks

• Given inputs
$$X = \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$

 \circ Compute mean and standard deviation of features of X: μ_{bn} , σ_{bn}

• Normalize features

• Subtract mean, divide by standard deviation

Batch normalization: Graphically

Layer k
$$z_k = h(x_{k-1})$$
 $x_{k+1} = z_k$ Layer k+1

Batch normalization: Graphically

But, can cause strong intra-batch correlation

Reference batch normalization

- Training with two mini-batches
- One fixed reference mini-batch for computing mean and standard deviation
- The other for doing the training as usual
- Proceed as normal, only use the mean and standard deviation for the batch norm from the fixed reference minibatch
- Problem: Overfitting to the reference mini-batch

o Usually the discriminator wins

- That's good, in that the theoretical justification assume a perfect discriminator
- Usually the discriminator network is bigger than the generator
- Sometimes running discriminator more often than generator works better • However, no real consensus
- Do not limit the discriminator to avoid making it too smart
 - Better use non-saturating cost
 - Better use label smoothing

• Optimization is tricky and unstable

• finding a saddle point does not imply a global minimum

• An equilibrium might not even be reached

• Mode-collapse is the most severe form of non-convergence

Open Question: Mode collapse

• Discriminator converges to the correct distribution

• Generator however places all mass in the most likely point

• Discriminator converges to the correct distribution

• Generator however places all mass in the most likely point

• Problem: low sample diversity

o Classify each sample by comparing to other examples in the mini-batch

o If samples are too similar, the model is penalized

- Despite the nice images, who cares?
- o It would be nice to quantitatively evaluate the model
- For GANs it is even hard to estimate the likelihood

- The generator must be differentiable
- o It cannot be differentiable if outputs are discrete
- E.g., harder to make it work for text
- Possible workarounds
- REINFORCE [Williams, 1992]
- Concrete distribution [Maddison et al., 2016]
- Gumbel softmax [Jang et al., 2016]
- Train GAN to generate continuous embeddings

Open Question: Semi-supervised classification

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

o InfoGAN [Chen et al., 2016]

- Conditional GANs
 - Standard GANs have **no encoder**!
- o Actor-Critic
 - Related to Reinforcement Learning

Conditional GAN

GANs interpreted as actor-critic [Pfau and Vinyals, 2016]
GANs as inverse reinforcement learning [Finn et al., 2016]
GANs for imitation learning [Ho and Ermin 2016]

Application: Image to Image translation

Application: Style transfer

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES

o https://www.youtube.com/watch?v=XOxxPcy5Gr4
Summary

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES GENERATIVE ADVERSARIAL NETWORKS - 78 GANs are generative models using supervised learning to approximate an intractable cost function

 GANs can simulate many cost functions, including max likelihood

 Finding Nash equilibria in high-dimensional, continuous, non-convex games is an important open research problem

 GAN research is in its infancy, most works published only in 2016. Not mature enough yet, but very compelling results