


Lecture overview

o Early Generative Models

o Restricted Boltzmann Machines

o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Gentle intro to Bayesian Modelling and Variational Inference
o Variational Autoencoders

o Normalizing Flows
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Explicit density models

o Plug in the model density function to likelihood

o Then maximize the likelihood

v Direct
Maximum Likelihood
/ \ / GAN
?\

Problems Explicit density Tmplicit density

<N\ O

k hai
Tractable density Approximate density \Mar ov Chain

Fully visible belief nets \ GSN
-NADE / \.
_MADE Variational | Markov Cthn

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

o Design complex enough model
that meets data complexity

o At the same time, make sure model
is computationally tractable

models (nonlinear ICA)

o More details in the next lecture
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Restricted Boltzmann
WY ETSIES

Deep Boltzmann
Machines

Deep Belief Nets

Deep Belief Deep Boltzmann
Network Machine




How to define a generative model?

o We can define an explicit density function over all possible relations
W .between the input variables x,

pe) = | [we 6o

o Quite inefficient = think of all possible relations between 256 X 256 =
65K input variables

> Not just pairwise

o Solution: Define an energy function to model these relations

s
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Boltzmann Distribution

o First, define an energy function —E (x) that models the joint distribution

1
p(x) = Z exp(~E(x))

o Z is a normalizing constant that makes sure p(x) is a pdf: [ p(x) = 1

Z=) exp(~E(x))

s
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Why Boltzmann?

o Well understood in physics, mathematics and mechanics

o A Boltzmann distribution (also called Gibbs distribution) is a probability
distribution, probability measure, or frequency distribution of particles in a
system over various possible states

o The distribution is expressed in the form

E
F(state) < exp(— T

o E is the state energy, k is the Boltzmann constant, T is the thermodynamic
temperature

https://en.wikipedia.org/wiki/Boltzmmann distribution
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https://en.wikipedia.org/wiki/Boltzmann_distribution

Problem with Boltzmann Distribution?

s
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Problem with Boltzmann Distribution?

o Initially, thought of in the context of binary variables x

o Assuming binary variables x the normalizing constant has very high
computational complexity

o For n-dimensional x we must enumerate all possible 2™ operations for Z
o Clearly, gets out of hand for any decentn

o Solution: Consider only pairwise relations

s
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Boltzmann Machines

o The energy function becomes

E(x) = —x"Wx —b"x

o x is considered binary
o xT"Wx captures correlations between input variables

o b x captures the model prior
°The energy that each of the input variable contributes itself
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Problem with Boltzmann Machines?

s
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Problem with Boltzmann Machines?

o Still too complex and high-dimensional
olf x has 256 X 256 = 65536 dimensions

o The pairwise relations need a huge W: 4.2 billion dimensions

o Just for connecting two layers!

o Solution: Consider latent variables for model correlations
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Restricted Boltzmann Machines

o Restrict the model energy function further to a bottleneck over latents h

E(x)=—x"Wh—-b"x—c"h

s
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Restricted Boltzmann Machines

oE(x) = —x"Wh—-b"x—c"h

o The xTWh models correlations between x and the latent activations via the
parameter matrix W

oThe bTx, c" h model the priors

o Restricted Boltzmann Machines (RBM) assume X, h to be binary

s
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Restricted Boltzmann Machines

o Energy function: E(x) = —x"Wh —bTx —c'h
1
p(x) = Ez exp(—E(x, h))
n

°Not in the form & exp(x)/Z because of the )

o Free energy function: F(x) = —b"x — ¥;log ¥, exp(h; (¢; + W;x))
1
p(x) = - exp(—F(x))
Z=) exp(~F(x))
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Restricted Boltzmann Machines

o The F(x) defines a bipartite graph with undirected connections
°|nformation flows forward and backward
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Restricted Boltzmann Machines

o The hidden units h; are independent to each other
conditioned on the visible units

p(h|x) = Hp(hj‘x, 9)
J

o The visible units x; are independent to each other
conditioned on the hidden units

plh) = | [pCuln 0)

s
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Training RBMs

o The conditional probabilities are defined as sigmoids
p(hy|x,0) = o(W.jx + by)
p(x;lh,0) = c(W;x + ¢;)

o Maximize log-likelihood

1
£(6) = ) logp(x,|6)

and

1
p(x) = - exp(~F (x))

Hidden unit (features)
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Training RBMs

o Let’s take the gradients

0logp(x,|0) 0F (x,,) ~ OlogZ

ol7, Ea 20
| O Gl 6 | E hlo
=~ p(hlx,,6) &' : zpu S
h

Hidden unit (features)

s
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Training RBMs

o Let’s take the gradients
dlogp(x,|0) 6F(xn) dlogZ

006 Ea 006
a _|h, 8 aE h|6
= — E p(hx,, 6) (Hx ' ) 4 E p(%, h (x 9)

o Easy because we just substitute in the deflmtlons the x,, and sum over h

o Hard because you need to sum over both X, h which can be huge
°|t requires approximate inference, e.qg., MCMC

s
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Training RBMs with Contrastive Divergence

o Approximate the gradient with Contrastive Divergence

o Specifically, apply Gibbs sampler for k steps and approximate the gradient
dlogp(xn|0)  OE(xy, hol0) OE(xy, hy|6)

96 - 96 a 96
he ~ P(hlx) h: ~ P(h|x:)

OO

/v \ _
OO0 OO0

Observatlons Reconstructions
xi ~ P(x|h)

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002
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Deep Belief Network

o RBMs are just one layer

o Use RBM as a building block

‘ .49%(‘/5%'.{;

Il",ﬁ',"'/};."\
e

W W/,sf,/

o Stack multiple RBMs one on top of the other
p(x, hy, hy) = p(x|hy) - p(hy|hy)

o Deep Belief Networks (DBN) are directed models
°The layers are densely connected and have a single forward flow X

°This is because the RBM is directional, p(x;|h, 8) = a(W.;x + c;),
namely the input argument has only variable only from below

s
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Deep Boltzmann Machines

o Stacking layers again, but now with connection
from the above and from the below layers h.

o Since it’s a Boltzmann machine, we need an
energy function

p(hS|hs, hs) = o) W/ R+ > withk)
j l

1

s
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Deep Boltzmann Machines

o Schematically similar to Deep Belief Networks

. h;
o But, Deep Boltzmann Machines (DBM) are
undirected models
°Belong to the Markov Random Field family h
o So, two types of relationships: bottom-up and up-

bottom
p(hs|hs, hs) = () W/*R] + ) WiRE) b
i l

s
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Training Deep Boltzmann Machines

o Computing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used

s
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Variational Inference




Some (probabilistic) terminology

o Observed variables x

o Latent variables 6

°Both unobservable model parameters w and
unobservable model activations z

o0 = {w, z}
o Joint probability density function (pdf): p(x, 8)

Y
T

3 Mo

normal

o Marginal pdf: p(x) = fg (x,6) do —- \ \

o Prior pdf = marginal over input: p(8) = J_p(x, ) dx
o Usually a user defined pdf

/ '\
)
/ L i "\

7 normal

o Posterior pdf: p(8]x) -
o Likelihood pdf: p(x|6) i
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Bayesian Terminology

o Posterior pdf

Ii(g |(§3 3:) < Conditional probability
- < Bayes Rule

p(x
_ p(xlg) p(0) « Marginal probability

'p(alg |(g)) p(g) € Px)isconstant

B Jo,p(x,8") do’
o p(x|6) p(6)

o Posterior Predictive pdf
P Vnewly) = fp(Ynewle) p(Bly) do
6

s
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Bayesian Terminology

o Conjugate priors
°cwhen posterior and prior belong to the same family, so
the joint pdf is easy to compute

o Point estimate approximations of
latent variables

°instead of computing a distribution over all possible
values for the variable

°ccompute one point only

°e.g. the most likely (maximum likelihood or max a
posteriori estimate)

0" = argg maxp(x|0)p(8) (MAP)
0" = argg maxp(x|0) (MLE)

> Quite good when the posterior distribution is peaky

Point estimate of your
neural network weight

1% 2.1%

(low variance)

u-2¢  U-C H nto pt2c  pt3c
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Bayesian Modelling

o Estimate the posterior density p(8]x) for your training data x
o To do so, need to define the prior p(6) and likelihood p(x|@) distributions

o Once the p(08]x) density is estimated, Bayesian Inference is possible
°p(8]x) is a (density) function, not just a single number (point estimate)

o But how to estimate the posterior density?
>Markov Chain Monte Carlo (MCMC) = Simulation-like estimation
°Variational Inference = Turn estimation to optimization

s
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Variational Inference

o Estimating the true posterior p(@]x)is not always possible
cespecially for complicated models like neural networks

o Variational Inference assumes another function g(6|@) with
which we want to approximate the true posterior p(6]x)
°q(@|¢) is the approximate posterior

> Note that the approximate posterior does not depend on the observable
variables x

o We approximate by minimizing the reverse KL-divergence w.rt. @
¢" = argmin KL(q(6|9)||p(0]x))

o Turn inference into optimization

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 32




Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? /
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Variational Inference (graphically)

p(z|x) |

" KL(q(z:v*) || p(z] %))

Underestimating variance. Why?

How to overestimate variance? Forward KL /
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Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables 8 and the approximate posterior

q,(0) = q(0]p)

o What about the log marginal log p(x)?

s
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Variational Inference - Evidence Lower Bound (ELBO)

o Given latent variables 8 and the approximate posterior

q,(0) = q(0]p)

o We want to maximize the marginal p(x) (or the log marginal log p(x)

p(x,0)
qy(6)

logp(x) = Eq,6) llog

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 39




Evidence Lower Bound (ELBO): Derivations

s
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Evidence Lower Bound (ELBO): Derivations

o Given latent variables 8 and the approximate posterior
q(0) = q(0]p)
o The log marginal is

logp(x) = logfp(x 6) do A
O —

=lo f (x, 0) ag

g HP 8(0)

— log [Eq<p(9) [p( (3)) Jensen Inequality
{” + o(E(xD) < Elp()]

> for convex ¢

> Bqy@ |08, q(p(e)_ . logis convave
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https://en.wikipedia.org/wiki/Jensen's_inequality

ELBO: A second derivation

— ( L q(Z) log p(;({%)z) = L q9(Z) lﬂgp(X))
- /Z a(Z)log 2 (quf) + log p(X) /;7 q9(Z)
= —L + log p(X)

s
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ELBO: Formulation 1

p(x,0)
> E |
= g, (0) _ 08 q(p(g)

= Eq,0)[logp(x|0)] + E, (o)llogp(0)] — E, 0)|log q,(6)]
= Eq,0)[logp(x]6)] — KL(q,(8)[|p(8))
— ELBOg o, (%)

o Maximize reconstruction accuracy IEq¢(9)[logp(x|0)]

o While minimizing the KL distance between the prior p(0) and the
approximate posterior ¢, (6)

s
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ELBO: Formulation 2

p(x,0)
> [E lo
qp(0) | & q(p(@)
= Eq, 0 [logp(x,0)] — g (6|l0g g, (0)]
= Eq,(9)llogp(x, 6)] + H(6)

= ELBOg ,,(X)

o Maximize something like negative Boltzmann energy E; (g) [logp(x, 0)]

o While maximizing the entropy the approximate posterior g, (6)
> Avoid collapsing latents 6 to a single value (like for MAP estimates)

s
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ELBO vs. Marginal

o It is easy to see that the ELBO is directly related to the marginal
logp(x) = ELBOg (x) + KL(q,(0)||p(6]x))

o You can also see ELBOg (,(x) as Variational Free Energy

s
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ELBO vs. Marginal: Derivations

o It is easy to see that the ELBO is directly related to the marginal
ELBOG,(p(x) =

s
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ELBO vs. Marginal: Derivations

o It is easy to see that the ELBO is directly related to the marginal
ELBOg (p(x) =
= Eq,(0) | logp(x,0)] —Eq,0) [log q,(8)]
= Eq, 0 [logp(6]x)] + IEq(p@ [log p(x)] = Eq,,0)[log g, (6)]
= Eq, o) llogp(x)] — KL(q,(0)||p(0]x))

log p(x) LK L(q,(8)||p(6]x)) logp(x) does not depend on g, ()
= Eq,0)[1]=1

logp(x) = ELBOg ¢ (%) + KL(q,(0)|Ip(0]x))
o You can also see ELBOg (,(x) as Variational Free Energy

s
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ELBO interpretations

ologp(x) = ELBOg,,(x) + KL(q4,(8)|[p(6]x))
o The log-likelihood log p(x) constant > does not depend on any parameter

o Also, ELBOg ,(x) > 0 and KL(q,(8)||p(8]x)) > 0

1. The higher the Variational Lower Bound ELBOg (,(x), the smaller the
difference between the approximate posterior q,, (@) and the true
posterior p(6|x) = better latent representation

2. The Variational Lower Bound ELBOg (%) approaches the log-likelihood
- better density model

s
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Amortized Inference

o The variational distribution g(8]¢) does not depend directly on data
°Only indirectly, via minimizing its distance to the true posterior KL(q(8|¢@)||p(8]x))

o So, with q(8|@) we have a major optimization problem

o The approximate posterior must approximate the whole dataset x =
|x1, X5, ..., Xy ] jOintly

o Different neural network weights for each data point x;

s
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Amortized Inference

o Better share weights and “amortize” optimization between individual data
points

q(0]p) = q,(0]x)
o Predict model parameters 8 using a @-parameterized model of the input x

o Use amortization for data-dependent parameters that depend on data
°E.g., the latent activations that are the output of a neural network layer: z~q, (z|x)

s
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Amortized Inference (Intuitively)

o The original view on Variational Inference is that g(8|¢) describes the
approximate posterior of the dataset as a whole

o Imagine you don’t want to make a practical model that returns latent
activations for a specific input

o Instead, you want to optimally approximate the true posterior of the
unknown weights with an model with latent parameters

o It doesn’t matter if these parameters are “latent activations” z or “model
variables” w

s
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Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — Eq¢(9) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

Opg(x|z) instead of p(x|0)

o l.e., the likelihood model pgy(x|z) has weights parameterized by 6

o Conditioned on latent model activations parameterized by z

s
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Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — Eq¢(9) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

o Py (z) instead of p(0)

ol.e., a A-parameterized prior only on the latent activations z

o Not on model weights

s
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Variational Autoencoders

o Let’s rewrite the ELBO a bit more explicitly
ELBOH,go(x) — [Eq¢(9) [lng(X|9)] o KL(Q(p(H)”p(e))
— IIEq(p(z|x) [108299 (X|Z)] o KL(Q(p (z|x)||p;\(z))

©q,(z|x) instead of q(8]¢)

o The model g, (z|x) approximates the posterior density of the latents z

o The model weights are parameterized by @

s
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Variational Autoencoders

0 ELBOg () = Ey (2 [logpe (x|2)] = KL(q, (z|x)]|pa(2))
o How to model py (x|z) and q,(z|x)?

s
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Variational Autoencoders

0 ELBOg () = Ey (2 [logpe (x|2)] = KL(q, (z|x)]|pa(2))
o How to model py (x|z) and q,(z|x)?

o What about modelling them as neural networks

s
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Variational Autoencoders

_
o The approximate posterior q,, (z|x) is a CovnNet (or MLP)
°lnput x is an image Decoder/Genetratolr pg (x|2)
°Given input the output is a feature map from a latent variable z e
°Also known as encoder or inference or recognition network, because it

infers/recognizes the latent codes |
L | . pr2) WA 2
o The likelihood density py (x|z) is an inverted ConvNet (or MLP)
°Given the latent z as input, it reconstructs the input X
°Also known as decoder or generator network

qy(2]x)

o If we ignore the distribution of the latents z, p,(z)), then we
get the Vanilla Autoencoder

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 60



Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(Q, 90) — II-::qcp(zpc) [108 Peo (XlZ)] T KL(Qcp(le)”p?\(Z))
o How to we optimize the ELBO?

s
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(@, (P) — [Eq(p(Z|x) [log Pe (X|Z)] _ KL(qcp (le)”p}\(z))
_ CIgo(le)
. j 4 (21%) log po (x|2) dz — f 4o (21%) log dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
So, we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

s
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(H; 90) — II5:q<p(Z|x) [108P9(X|Z)] _ KL(Q(p(le)”p?\(Z))
B qp(Z|x)
= [ apz10) ogpo (xl2) dz = [ g (21) log e dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.

°When pg (x|z) contains even a few nonlinearities, like in a neural network, the integral is hard
to compute analytically

o So, we need to sample from the pdf instead
o VAE is a stochastic model
o The second term is the KL divergence between two distributions that we know

s
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Training Variational Autoencoders

o J q,(z]x)logpg(x|2) dz

o The first term is an integral (expectation) that we cannot solve analytically.

*When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

o As we cannot compute analytically, we sample from the pdf instead
>Using the density g, (z[x) to draw samples
>Usually one sample is enough = stochasticity reduces overfitting

o VAE is a stochastic model

o The second term is the KL divergence between two distributions that we
know

s
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Training Variational Autoencoders

Q(p(zlx) d
pa(2)
o The second term is the KL divergence between two distributions that we
know

o J q,(z|x)log Z

o E.g., compute the KL divergence between a centered N(0, 1) and a non-
centered N (u, o) gaussian
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Typical VAE

o We set the prior py(z) to be the unit Gaussian
p(z)~ N(0,1)

o We set the likelihood to be a Bernoulli for binary
data

p(x|z)~Bernoulli(m)

o We set q,(z|x) to be a neural network (MLP,
ConvNet), which maps an input x to the Gaussian
distribution, specifically it’s mean and variance

Uz, Oz ~ Chp(ZlX)
°The neural network has two outputs, one is the mean u, and

the other the a,, which corresponds to the covariance of the
Gaussian

O-Z'
HZ\ _
o

nuZ VA

qy(z]x)
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Typical VAE -

9z,
Hz —
o We set pg (X|z) to be an inverse neural network,
which maps Z to the Bernoulli distribution if our
(0]

outputs binary (e.g. Binary MNIST)
auZ VA

o Good exercise: Derive the ELBO for the standard VAE

qy(2]x)
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in the latent space

10N

Interpolati

VAE

round 65536: train in latent space

JITTITITOOCLAAAAONNNDNNNN
TITITITITCOOCAANANNNNNNN
FTITTITIITCTOAAANAANNNNNNN-
FITTTTITOCSANNNNNNN
FOTTTTITooo~nnNNNNNNN
FrrorooorroeeanananNNNNAN
T oo NN NNNN -~ -~
DO PPPPPCr T ™RIRNNNN - = —
QOO OEPCEPIPIRANS == —
DO OO MO0 n 00 0 Oy - — — —
AaddaNNmmy s S~~~~~~
Aadddadagagageseyh s SNS~N~~~
AddAdAAI IV VNN L NN N NN NN
Ad339999VVOUVVUNNNNNN
35999999V OOVUYVY U NNNNYN]
D99V VVOOQQVUVV L NN\
D999V V00O QQAUQVVTUNNN
QIAIJ9I999900000QQQAQ Q0 TN\
9399999000000 QQQQQQ QU™
0000000000000000000d4

N

O - N M<T IN O™ 0O
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Summary
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o Gentle intro to Bayesian Modelling and
Variational Inference

o Restricted Boltzmann Machines
o Deep Boltzmann Machines

o Deep Belief Network

o Contrastive Divergence

o Variational Autoencoders

o Normalizing Flows



