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Lecture 8: Deep Generative Models
Efstratios Gavves
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oEarly Generative Models

oRestricted Boltzmann Machines

oDeep Boltzmann Machines

oDeep Belief Network

oContrastive Divergence

oGentle intro to Bayesian Modelling and Variational Inference

oVariational Autoencoders

oNormalizing Flows

Lecture overview
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Explicit density models

oPlug in the model density function to likelihood

oThen maximize the likelihood

Problems

oDesign complex enough model
that meets data complexity

oAt the same time, make sure model
is computationally tractable

oMore details in the next lecture



Restricted Boltzmann 
Machines
Deep Boltzmann 
Machines
Deep Belief Nets
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oWe can define an explicit density function over all possible relations 
𝜓𝑐between the input variables 𝑥𝑐

𝑝 𝑥 =ෑ

𝑐

𝜓𝑐 (𝑥𝑐)

oQuite inefficient  think of all possible relations between 256 × 256 =
65𝐾 input variables
◦Not just pairwise

oSolution: Define an energy function to model these relations

How to define a generative model?
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oFirst, define an energy function −𝐸(𝑥) that models the joint distribution

𝑝 𝑥 =
1

𝑍
exp(−𝐸(𝑥))

o𝑍 is a normalizing constant that makes sure 𝑝 𝑥 is a pdf: ∫ 𝑝 𝑥 = 1

𝑍 =෍

𝑥

exp(−𝐸(𝑥))

Boltzmann Distribution
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oWell understood in physics, mathematics and mechanics

oA Boltzmann distribution (also called Gibbs distribution) is a probability 
distribution, probability measure, or frequency distribution of particles in a 
system over various possible states

oThe distribution is expressed in the form

𝐹 𝑠𝑡𝑎𝑡𝑒 ∝ exp(−
𝐸

𝑘𝑇
)

o𝐸 is the state energy, 𝑘 is the Boltzmann constant, 𝑇 is the thermodynamic 
temperature

Why Boltzmann?

https://en.wikipedia.org/wiki/Boltzmann_distribution

https://en.wikipedia.org/wiki/Boltzmann_distribution
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Problem with Boltzmann Distribution?
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o Initially, thought of in the context of binary variables 𝑥

oAssuming binary variables 𝑥 the normalizing constant has very high 
computational complexity

oFor 𝑛-dimensional 𝑥 we must enumerate all possible 2𝑛 operations for 𝑍

oClearly, gets out of hand for any decent 𝑛

oSolution: Consider only pairwise relations

Problem with Boltzmann Distribution?
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oThe energy function becomes

𝐸 𝑥 = −𝑥𝑇𝑊𝑥 − 𝑏𝑇𝑥

o𝑥 is considered binary

o𝑥𝑇𝑊𝑥 captures correlations between input variables

o𝑏𝑇𝑥 captures the model prior
◦The energy that each of the input variable contributes itself

Boltzmann Machines
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Problem with Boltzmann Machines?
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oStill too complex and high-dimensional

o If 𝑥 has 256 × 256 = 65536 dimensions

oThe pairwise relations need a huge 𝑊: 4.2 billion dimensions

o Just for connecting two layers!

oSolution: Consider latent variables for model correlations

Problem with Boltzmann Machines?
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oRestrict the model energy function further to a bottleneck over latents ℎ

𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ

Restricted Boltzmann Machines
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o𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ

oThe 𝑥𝑇𝑊ℎ models correlations between 𝑥 and the latent activations via the 
parameter matrix 𝑊

oThe 𝑏𝑇𝑥, 𝑐𝑇ℎ model the priors

oRestricted Boltzmann Machines (RBM) assume x, ℎ to be binary

Restricted Boltzmann Machines
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oEnergy function: 𝐸 𝑥 = −𝑥𝑇𝑊ℎ − 𝑏𝑇𝑥 − 𝑐𝑇ℎ

𝑝 𝑥 =
1

𝑍
෍

ℎ

exp(−𝐸 𝑥, ℎ )

◦Not in the form ∝ exp(x)/Z because of the ∑

oFree energy function: 𝐹 𝑥 = −𝑏𝑇𝑥 − ∑𝑖 log∑ℎ𝑖
exp(ℎ𝑖(𝑐𝑖 +𝑊𝑖𝑥))

𝑝 𝑥 =
1

𝑍
exp(−𝐹(𝑥))

𝑍 =෍

𝑥

exp(−𝐹(𝑥))

Restricted Boltzmann Machines

𝑥 ℎ
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oThe 𝐹 𝑥 defines a bipartite graph with undirected connections
◦ Information flows forward and backward

Restricted Boltzmann Machines

𝑥 ℎ
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oThe hidden units ℎ𝑗 are independent to each other
conditioned on the visible units

𝑝 ℎ 𝑥 =ෑ

𝑗

𝑝 ℎ𝑗 𝑥, 𝜃

oThe visible units 𝑥𝑖 are independent to each other
conditioned on the hidden units

𝑝 𝑥 ℎ =ෑ

𝑖

𝑝 𝑥𝑖 ℎ, 𝜃

Restricted Boltzmann Machines
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oThe conditional probabilities are defined as sigmoids

𝑝 ℎ𝑗 𝑥, 𝜃 = 𝜎 𝑊⋅𝑗𝑥 + 𝑏𝑗
𝑝 𝑥𝑖 ℎ, 𝜃 = 𝜎(𝑊⋅𝑖𝑥 + 𝑐𝑖)

oMaximize log-likelihood

ℒ 𝜃 =
1

Ν
෍

𝑛

log 𝑝(𝑥𝑛|𝜃)

and

𝑝 𝑥 =
1

𝑍
exp(−𝐹(𝑥))

Training RBMs

Hidden unit (features)



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP GENERATIVE MODELS - 19

oLet’s take the gradients

𝜕 log 𝑝(𝑥𝑛|𝜃)

𝜕𝜃
= −

𝜕𝐹 𝑥𝑛
𝜕𝜃

−
𝜕 log 𝑍

𝜕𝜃

= −෍

ℎ

𝑝 ℎ 𝑥𝑛, 𝜃
𝜕𝐸 𝑥𝑛|ℎ, 𝜃

𝜕𝜃
+෍

෤𝑥,ℎ

𝑝 ෤𝑥, ℎ 𝜃
𝜕𝐸 ෤𝑥, ℎ|𝜃

𝜕𝜃

Training RBMs

Hidden unit (features)



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP GENERATIVE MODELS - 20

oLet’s take the gradients
𝜕 log 𝑝(𝑥𝑛|𝜃)

𝜕𝜃
= −

𝜕𝐹 𝑥𝑛
𝜕𝜃

−
𝜕 log 𝑍

𝜕𝜃

= −෍

ℎ

𝑝 ℎ 𝑥𝑛, 𝜃
𝜕𝐸 𝑥𝑛|ℎ, 𝜃

𝜕𝜃
+෍

෤𝑥,ℎ

𝑝 ෤𝑥, ℎ 𝜃
𝜕𝐸 ෤𝑥, ℎ|𝜃

𝜕𝜃

oEasy because we just substitute in the definitions the 𝑥𝑛 and sum over ℎ

oHard because you need to sum over both ෤𝑥, ℎ which can be huge
◦ It requires approximate inference, e.g., MCMC

Training RBMs
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oApproximate the gradient with Contrastive Divergence

oSpecifically, apply Gibbs sampler for 𝑘 steps and approximate the gradient
𝜕 log 𝑝(𝑥𝑛|𝜃)

𝜕𝜃
= −

𝜕𝐸(𝑥𝑛, ℎ0|𝜃)

𝜕𝜃
−
𝜕𝐸(𝑥𝑘 , ℎ𝑘|𝜃)

𝜕𝜃

Training RBMs with Contrastive Divergence

Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural Computation, 2002
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o RBMs are just one layer

oUse RBM as a building block

o Stack multiple RBMs one on top of the other
𝑝 𝑥, ℎ1, ℎ2 = 𝑝 𝑥|ℎ1 ⋅ 𝑝 ℎ1|ℎ2

oDeep Belief Networks (DBN) are directed models
◦The layers are densely connected and have a single forward flow

◦This is because the RBM is directional, 𝑝 𝑥𝑖 ℎ, 𝜃 = 𝜎(𝑊⋅𝑖𝑥 + 𝑐𝑖), 
namely the input argument has only variable only from below

Deep Belief Network
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oStacking layers again, but now with connection 
from the above and from the below layers

oSince it’s a Boltzmann machine, we need an 
energy function
𝐸 𝑥, ℎ1, ℎ2|𝜃 = 𝑥𝑇𝑊1ℎ1 + ℎ1

𝑇𝑊2ℎ2 + ℎ2
𝑇𝑊3ℎ3

𝑝 ℎ2
𝑘 ℎ1, ℎ3 = 𝜎(෍

𝑗

𝑊1
𝑗𝑘
ℎ1
𝑗
+෍

𝑙

𝑊3
𝑘𝑙ℎ3

𝑘)

Deep Boltzmann Machines
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oSchematically similar to Deep Belief Networks

oBut, Deep Boltzmann Machines (DBM) are 
undirected models
◦Belong to the Markov Random Field family

oSo, two types of relationships: bottom-up and up-
bottom

𝑝 ℎ2
𝑘 ℎ1, ℎ3 = 𝜎(෍

𝑗

𝑊1
𝑗𝑘
ℎ1
𝑗
+෍

𝑙

𝑊3
𝑘𝑙ℎ3

𝑘)

Deep Boltzmann Machines
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oComputing gradients is intractable

o Instead, variational methods (mean-field) or sampling methods are used

Training Deep Boltzmann Machines



Variational Inference
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oObserved variables 𝑥

o Latent variables 𝜃
◦Both unobservable model parameters 𝑤 and

unobservable model activations 𝑧

◦𝜃 = {𝑤, 𝑧}

o Joint probability density function (pdf): 𝑝(𝑥, 𝜃)

oMarginal pdf: 𝑝 𝑥 = ∫
𝜃
𝑝 𝑥, 𝜃 𝑑𝜃

o Prior pdf marginal over input: 𝑝 𝜃 = ∫𝑥 𝑝 𝑥, 𝜃 𝑑𝑥
◦Usually a user defined pdf

o Posterior pdf: 𝑝 𝜃|𝑥

o Likelihood pdf: 𝑝 𝑥|𝜃

Some (probabilistic) terminology

𝑥
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o Posterior pdf
𝑝 𝜃|𝑥 =

=
𝑝(𝑥, 𝜃)

𝑝(𝑥)

=
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)

=
𝑝 𝑥 𝜃 𝑝(𝜃)

∫𝜃′𝑝(𝑥, θ′) 𝑑θ′
∝ 𝑝 𝑥 𝜃 𝑝(𝜃)

o Posterior Predictive pdf

𝑝 𝑦𝑛𝑒𝑤|𝑦 = න
𝜃

𝑝 𝑦𝑛𝑒𝑤 𝜃 𝑝 𝜃 𝑦 𝑑𝜃

Bayesian Terminology

 Conditional probability

 Bayes Rule

Marginal probability 

 𝑝(𝑥 ) is constant 
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o Conjugate priors
◦when posterior and prior belong to the same family, so 

the joint pdf is easy to compute

o Point estimate approximations of
latent variables
◦ instead of computing a distribution over all possible 

values for the variable
◦ compute one point only
◦e.g. the most likely (maximum likelihood or max a 

posteriori estimate)

𝜃∗ = arg𝜃max𝑝 𝑥 𝜃 𝑝 𝜃 (𝑀𝐴𝑃)
𝜃∗ = arg𝜃max𝑝 𝑥 𝜃 (𝑀𝐿𝐸)

◦Quite good when the posterior distribution is peaky
(low variance)

Bayesian Terminology

*
Point estimate of your 

neural network weight
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oEstimate the posterior density 𝑝 𝜃|𝑥 for your training data 𝑥

oTo do so, need to define the prior 𝑝 𝜃 and likelihood 𝑝 𝑥|𝜃 distributions

oOnce the 𝑝 𝜃|𝑥 density is estimated, Bayesian Inference is possible
◦𝑝 𝜃|𝑥 is a (density) function, not just a single number (point estimate)

oBut how to estimate the posterior density?
◦Markov Chain Monte Carlo (MCMC)  Simulation-like estimation

◦Variational Inference  Turn estimation to optimization

Bayesian Modelling
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oEstimating the true posterior 𝑝 𝜃|𝑥 is not always possible
◦especially for complicated models like neural networks 

oVariational Inference assumes another function 𝑞 𝜃|𝜑 with 
which we want to approximate the true posterior 𝑝 𝜃|𝑥
◦𝑞 𝜃|𝜑 is the approximate posterior

◦Note that the approximate posterior does not depend on the observable 
variables 𝑥

oWe approximate by minimizing the reverse KL-divergence w.r.t. 𝜑
𝜑∗ = argmin

𝜑
𝐾𝐿(𝑞(𝜃|𝜑)||𝑝 𝜃|𝑥 )

oTurn inference into optimization

Variational Inference
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Variational Inference (graphically)

Underestimating variance. Why?
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Variational Inference (graphically)

Underestimating variance. Why?
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Variational Inference (graphically)

Underestimating variance. Why?
How to overestimate variance?
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Variational Inference (graphically)

Underestimating variance. Why?
How to overestimate variance? Forward KL
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oGiven latent variables 𝜃 and the approximate posterior

𝑞𝜑 𝜃 = 𝑞 𝜃|𝜑

oWhat about the log marginal log 𝑝 𝑥 ?

Variational Inference - Evidence Lower Bound (ELBO)
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oGiven latent variables 𝜃 and the approximate posterior

𝑞𝜑 𝜃 = 𝑞 𝜃|𝜑

oWe want to maximize the marginal 𝑝 𝑥 (or the log marginal log 𝑝 𝑥

log 𝑝 𝑥 ≥ 𝔼𝑞𝜑 𝜃 log
𝑝(𝑥, 𝜃)

𝑞𝜑 𝜃

Variational Inference - Evidence Lower Bound (ELBO)



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP GENERATIVE MODELS - 40

Evidence Lower Bound (ELBO): Derivations
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oGiven latent variables 𝜃 and the approximate posterior
𝑞𝜑 𝜃 = 𝑞 𝜃|𝜑

oThe log marginal is

log 𝑝 𝑥 = logන
𝜃

𝑝 𝑥, 𝜃 𝑑𝜃

= logන
𝜃

𝑝 𝑥, 𝜃
𝑞𝜑 𝜃

𝑞𝜑 𝜃
𝑑𝜃

= log 𝔼𝑞𝜑(𝜃)
𝑝(𝑥, 𝜃)

𝑞𝜑 𝜃

≥ 𝔼𝑞𝜑 𝜃 log
𝑝(𝑥, 𝜃)

𝑞𝜑 𝜃

Evidence Lower Bound (ELBO): Derivations

Jensen Inequality

• 𝜑 𝔼 x ≤ 𝔼 𝜑 𝑥

for convex 𝜑
• log is convave

https://en.wikipedia.org/wiki/Jensen's_inequality
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ELBO: A second derivation
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≥ 𝔼𝑞𝜑 𝜃 log
𝑝(𝑥, 𝜃)

𝑞𝜑 𝜃
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) + 𝔼𝑞𝜑 𝜃 log 𝑝 𝜃 − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))

= ELBOθ,φ(x)

oMaximize reconstruction accuracy 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃)

oWhile minimizing the KL distance between the prior p(θ) and the 
approximate posterior 𝑞𝜑 𝜃

ELBO: Formulation 1
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≥ 𝔼𝑞𝜑 𝜃 log
𝑝(𝑥, 𝜃)

𝑞𝜑 𝜃
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑(𝜃)

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) + Η θ

= ELBOθ,φ(x)

oMaximize something like negative Boltzmann energy 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃)

oWhile maximizing the entropy the approximate posterior 𝑞𝜑 𝜃
◦Avoid collapsing latents θ to a single value (like for MAP estimates)

ELBO: Formulation 2
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o It is easy to see that the ELBO is directly related to the marginal

log 𝑝(𝑥) = ELBOθ,φ x + 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))

oYou can also see ELBOθ,φ x as Variational Free Energy

ELBO vs. Marginal
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o It is easy to see that the ELBO is directly related to the marginal
ELBOθ,φ x =

ELBO vs. Marginal: Derivations
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o It is easy to see that the ELBO is directly related to the marginal
ELBOθ,φ x =
= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥, 𝜃) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝜃|𝑥) + 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥) − 𝔼𝑞𝜑 𝜃 log 𝑞𝜑 𝜃

= 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥) − 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))

= log 𝑝(𝑥) − 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))
⇒
log 𝑝(𝑥) = ELBOθ,φ x + 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))

oYou can also see ELBOθ,φ x as Variational Free Energy

ELBO vs. Marginal: Derivations

log 𝑝(𝑥) does not depend on 𝑞𝜑 𝜃

𝔼𝑞𝜑 𝜃 [1]=1
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o log 𝑝(𝑥) = ELBOθ,φ x + 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝(𝜃|𝑥))

oThe log-likelihood log 𝑝(𝑥) constant  does not depend on any parameter

oAlso, ELBOθ,φ x > 0 and 𝐾𝐿(𝑞𝜑 𝜃 ||𝑝 𝜃 𝑥 ) > 0

1. The higher the Variational Lower Bound ELBOθ,φ x , the smaller the 
difference between the approximate posterior 𝑞𝜑 𝜃 and the true 
posterior 𝑝 𝜃 𝑥  better latent representation

2. The Variational Lower Bound ELBOθ,φ x approaches the log-likelihood 
 better density model

ELBO interpretations
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oThe variational distribution 𝑞 𝜃|𝜑 does not depend directly on data
◦Only indirectly, via minimizing its distance to the true posterior 𝐾𝐿(𝑞 𝜃|𝜑 ||𝑝(𝜃|𝑥))

oSo, with 𝑞 𝜃|𝜑 we have a major optimization problem

oThe approximate posterior must approximate the whole dataset 𝑥 =
[𝑥1, 𝑥2, … , 𝑥𝑁] jointly

oDifferent neural network weights for each data point 𝑥𝑖

Amortized Inference
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oBetter share weights and “amortize” optimization between individual data 
points

𝑞 𝜃|𝜑 = 𝑞𝜑(𝜃|𝑥)

oPredict model parameters 𝜃 using a 𝜑-parameterized model of the input 𝑥

oUse amortization for data-dependent parameters that depend on data
◦E.g., the latent activations that are the output of a neural network layer: z~𝑞𝜑(𝑧|𝑥)

Amortized Inference
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Amortized Inference (Intuitively)

oThe original view on Variational Inference is that 𝑞 𝜃|𝜑 describes the 
approximate posterior of the dataset as a whole

o Imagine you don’t want to make a practical model that returns latent 
activations for a specific input

o Instead, you want to optimally approximate the true posterior of the 
unknown weights with an model with latent parameters

o It doesn’t matter if these parameters are “latent activations” 𝑧 or “model 
variables” 𝑤
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oLet’s rewrite the ELBO a bit more explicitly
ELBO𝜃, 𝜑 𝑥 = 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))

= 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

o𝑝𝜃(𝑥|𝑧) instead of 𝑝(𝑥|𝜃)

o I.e., the likelihood model 𝑝𝜃(𝑥|𝑧) has weights parameterized by 𝜃

oConditioned on latent model activations parameterized by 𝑧

Variational Autoencoders
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oLet’s rewrite the ELBO a bit more explicitly
ELBO𝜃, 𝜑 𝑥 = 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))

= 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

opλ(z) instead of p(θ)

o I.e., a 𝜆-parameterized prior only on the latent activations z

oNot on model weights

Variational Autoencoders
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oLet’s rewrite the ELBO a bit more explicitly
ELBO𝜃, 𝜑 𝑥 = 𝔼𝑞𝜑 𝜃 log 𝑝(𝑥|𝜃) − KL(𝑞𝜑 𝜃 ||p(θ))

= 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

o𝑞𝜑 𝑧|𝑥 instead of 𝑞 𝜃|𝜑

oThe model 𝑞𝜑 𝑧|𝑥 approximates the posterior density of the latents 𝑧

oThe model weights are parameterized by 𝜑

Variational Autoencoders
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oELBO𝜃,𝜑 𝑥 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to model 𝑝𝜃(𝑥|𝑧) and 𝑞𝜑 𝑧|𝑥 ?

Variational Autoencoders
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oELBO𝜃,𝜑 𝑥 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to model 𝑝𝜃(𝑥|𝑧) and 𝑞𝜑 𝑧|𝑥 ?

oWhat about modelling them as neural networks

Variational Autoencoders
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oThe approximate posterior 𝑞𝜑 𝑧|𝑥 is a CovnNet (or MLP)
◦ Input 𝑥 is an image

◦Given input the output is a feature map from a latent variable 𝑧

◦Also known as encoder or inference or recognition network, because it 
infers/recognizes the latent codes

oThe likelihood density 𝑝𝜃(𝑥|𝑧) is an inverted ConvNet (or MLP)
◦Given the latent 𝑧 as input, it reconstructs the input ෤𝑥

◦Also known as decoder or generator network

o If we ignore the distribution of the latents z, pλ(z)), then we 
get the Vanilla Autoencoder

Variational Autoencoders

𝑧pλ(z)

𝑞𝜑 𝑧|𝑥

𝑝𝜃(𝑥|𝑧)

Encoder/Inference/Recognition
network

Decoder/Generator
network
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to we optimize the ELBO?

Training Variational Autoencoders
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧

𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න
𝑧

𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

oForward propagation  compute the two terms

oThe first term is an integral (expectation) that we cannot solve analytically. 
So, we need to sample from the pdf instead
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral 
is hard to compute analytically

Training Variational Autoencoders
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧

𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න
𝑧

𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

o Forward propagation  compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral is hard 

to compute analytically

o So, we need to sample from the pdf instead

o VAE is a stochastic model

o The second term is the KL divergence between two distributions that we know

Training Variational Autoencoders
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o∫𝑧 𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧

oThe first term is an integral (expectation) that we cannot solve analytically.
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral 
is hard to compute analytically

oAs we cannot compute analytically, we sample from the pdf instead
◦Using the density 𝑞𝜑 𝑧 𝑥 to draw samples

◦Usually one sample is enough  stochasticity reduces overfitting

oVAE is a stochastic model

oThe second term is the KL divergence between two distributions that we 
know

Training Variational Autoencoders
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o∫𝑧 𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

oThe second term is the KL divergence between two distributions that we 
know

oE.g., compute the KL divergence between a centered 𝑁(0, 1) and a non-
centered 𝑁(𝜇, 𝜎) gaussian

Training Variational Autoencoders
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oWe set the prior pλ(z) to be the unit Gaussian
p 𝑧 ~ 𝑁(0, 1)

oWe set the likelihood to be a Bernoulli for binary 
data

𝑝(𝑥|𝑧)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋)

oWe set 𝑞𝜑(z|x) to be a neural network (MLP, 
ConvNet), which maps an input x to the Gaussian 
distribution, specifically it’s mean and variance
◦𝜇𝑧, 𝜎𝑧 ~ 𝑞𝜑(z|x)

◦The neural network has two outputs, one is the mean 𝜇𝑥 and 
the other the 𝜎𝑥, which corresponds to the covariance of the 
Gaussian

Typical VAE

𝑞𝜑 𝑧|𝑥

𝜇𝑧 𝜎𝑧

𝜇𝑧

𝜎𝑧
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oWe set 𝑝𝜃(x|z) to be an inverse neural network, 
which maps Z to the Bernoulli distribution if our 
outputs binary (e.g. Binary MNIST)

oGood exercise: Derive the ELBO for the standard VAE

Typical VAE

𝑞𝜑 𝑧|𝑥

𝜇𝑧 𝜎𝑧

𝜇𝑧

𝜎𝑧
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VAE: Interpolation in the latent space
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Summary

oGentle intro to Bayesian Modelling and 
Variational Inference

oRestricted Boltzmann Machines

oDeep Boltzmann Machines

oDeep Belief Network

oContrastive Divergence

oVariational Autoencoders

oNormalizing Flows


