


Lecture overview

o How to train a VAE
o A bit of Monte Carlo Simulation
o How to sample from a stochastic computation graph

o How to estimate gradients when analytic computations are not possible
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Variational Autoencoders

R nstr
Input «---------oo o Ideally they are identical.  ---------------------- oo structed
/ input
X ~X
Probabilistic Encoder
q¢(2(|x)
Mean Sampled /
K latent vector

Probabilistic
X |—» ..—> Decoder > X’
Po(x|z)
o
Std. dev \

_ An compressed low dimensional
z=p+o0OE€ representation of the input.

e ~N(0,I)

https://lilianweng.qithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

VAE Training Pseudocode

Data:
D: Dataset
d¢(z|x): Inference model
pe(x,z): Generative model
Result:
0, ¢: Learned parameters

(6, ¢) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

e ~ p(e) (Random noise for every datapoint in M)

Compute Lg 4 (M, €) and its gradients Vg ¢£9 4,(./\/1 €)

Update 0 and ¢ using SGD optimizer

end " The ELBO’s gradients

s
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Variational Autoencoders

0 ELBOg () = Ey (2 [logpe (x|2)] = KL(q, (z|x)]|pa(2))
o How to model py (x|z) and q,(z|x)?

s
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Variational Autoencoders

0 ELBOg () = Ey (2 [logpe (x|2)] = KL(q, (z|x)]|pa(2))
o How to model py (x|z) and q,(z|x)?

o What about modelling them as neural networks

s
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Variational Autoencoders

_
o The approximate posterior q,, (z|x) is a CovnNet (or MLP)
°lnput x is an image Decoder/Genetratolr pg (x|2)
°Given input the output is a feature map from a latent variable z e
°Also known as encoder or inference or recognition network, because it

infers/recognizes the latent codes |
L | . pr2) WA 2
o The likelihood density py (x|z) is an inverted ConvNet (or MLP)
°Given the latent z as input, it reconstructs the input X
°Also known as decoder or generator network

qy(2]x)

o If we ignore the distribution of the latents z, p,(z)), then we
get the Vanilla Autoencoder

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS -7



Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(Q, 90) — II-::qcp(zpc) [108 Peo (XlZ)] T KL(Qcp(le)”p?\(Z))
o How to we optimize the ELBO?
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(@, (P) — [Eq(p(Z|x) [log Pe (X|Z)] _ KL(qcp (le)”p}\(z))
_ CIgo(le)
. j 4 (21%) log po (x|2) dz — f 4o (21%) log dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
So, we need to sample from the pdf instead

°When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically
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Training Variational Autoencoders

o Maximize the Evidence Lower Bound (ELBO)
°Or minimize the negative ELBO

L(H; 90) — II5:q<p(Z|x) [108P9(X|Z)] _ KL(Q(p(le)”p?\(Z))
B qp(Z|x)
= [ apz10) ogpo (xl2) dz = [ g (21) log e dz

pa(2)
o Forward propagation = compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.

°When pg (x|z) contains even a few nonlinearities, like in a neural network, the integral is hard
to compute analytically

o So, we need to sample from the pdf instead
o VAE is a stochastic model
o The second term is the KL divergence between two distributions that we know

s
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Training Variational Autoencoders

o J q,(z]x)logpg(x|2) dz

o The first term is an integral (expectation) that we cannot solve analytically.

*When pg(x|z) contains even a few nonlinearities, like in a neural network, the integral
is hard to compute analytically

o As we cannot compute analytically, we sample from the pdf instead
>Using the density g, (z[x) to draw samples
>Usually one sample is enough = stochasticity reduces overfitting

o VAE is a stochastic model

o The second term is the KL divergence between two distributions that we
know
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Training Variational Autoencoders

Q(p(zlx) d
pa(2)
o The second term is the KL divergence between two distributions that we
know

o J q,(z|x)log Z

o E.g., compute the KL divergence between a centered N(0, 1) and a non-
centered N (u, o) gaussian

s
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Typical VAE

o We set the prior py(z) to be the unit Gaussian
p(z)~ N(0,1)

o We set the likelihood to be a Bernoulli for binary
data

p(x|z)~Bernoulli(m)

o We set q,(z|x) to be a neural network (MLP,
ConvNet), which maps an input x to the Gaussian
distribution, specifically it’s mean and variance

Uz, Oz ~ Chp(ZlX)
°The neural network has two outputs, one is the mean u, and

the other the a,, which corresponds to the covariance of the
Gaussian

O-Z'
HZ\ _
o

nuZ VA

qy(z]x)
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Typical VAE -

9z,
Hz —
o We set pg (X|z) to be an inverse neural network,
which maps Z to the Bernoulli distribution if our
(0]

outputs binary (e.g. Binary MNIST)
auZ VA

o Good exercise: Derive the ELBO for the standard VAE

°What does the reconstruction term look like with a Gaussian
latent space and Bernoulli output?

qy(z]x)
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO?
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Forward propagation in VAE

o Sample z from the approximate posterior density z~q,, (Z]|x)

°As q, is a neural network that outputs values from a specific and known parametric pdf,
e.g. a Gaussian, sampling from it is rather easy

°Often even a single draw is enough

o Second, compute the log pg (x|Z2)

°As pg is a a neural network that outputs values from a specific and known parametric pdf,
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

o Computing the ELBO is rather straightforward in the standard case

o How should we optimize the ELBO? Backpropagation?
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Backward propagation in VAE

o Backpropagation = compute the gradients of

L0, ) = Ezeq, (z1x) 108 o (x|2)] — KL(q,, (z]x)||pa(2))
o We must take the gradients with respect to the trainable parameters
o The generator network parameters 6

o The inference network/approximate posterior parameters ¢

o But how? Both the [E(+) and the KL(+) are integrals

°How can we backprop through them?

o Monte Carlo to the rescue

s
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How it started Stanislav Ulam

Manhattan project

John von Neumann
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Estimating t with Monte Carlo: A toy example

o One can estimate the value of m numerically ,,  »-dible=d1ids
. . . . . I-'I'E
o In this visualization only the upper right
guadrant of the circle -
0.4

o Basically, we count
how many points are in the circle vs

0.2
how many are in the square but not the circle

|:|.|:|'.- - . - i T _— . 1
e 0.2 (1.4 0.6 0.5 1.0

s
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Monte Carlo Integration

o Let’s try to compute the following integral

E(f) = f p(0)f (x)dx

where p(x) is a probability density function for x

o Often complex if p(x) and f(x) is slightly complicated

o As a consequence, often intractable or too expensive to compute

s
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Monte Carlo Integration

o Instead, we can approximate the integral as ?Vsummation
1 A
B = [ peof@dx =7y fG) =7,
X i=1

where x; is sampled from p(x)
of is an estimator because it approximately estimates the value of f

o This means that f itself is an RV (random variable) with a mean and
variance

s
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Monte Carlo Integration

o The estimator is unbiased: E(f) = E(f)

o Check the Law of Large Numbers

°“As the number of identically distributed, randomly generated variables increases, their
sample mean (average) approaches their theoretical mean.”

o The estimator variance is

Va?”(fn)—— [(f — E(fa))]

s
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Monte Carlo Integration: The gist

o Again, let’s say we have the estimator .
1 A
B = | p(0f @) = 3 ) fG) = f

x i=1

olf p(x) is a probability density function easy to sample, then instead of
computing the integral, we can randomly sample x; and approximate the
integral instead

o The error reduces at a rate of 0(\/N)

o This is possible only if the integral has the form of a pdf
°That is there is a pdfin it

s
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More generally

o Let’s assume you want to compute the value of an arbitrary integral
b
F = J f(x)dx
a

o With a suitable pdf p(x) to sample from then we can use the estimator

~ IO f(x)

B =~ ,
n& p(x;)

o In fact, it can be shown the expectation ofﬁ'n is exactly equal to the integral
b
IE[Fn] = j f(x)dx
a

(task for the interested reader)
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Why sampling?

o Estimate density of a function
b

Prla<X<bh)= f py(x) dx

a
o Estimate some quantities of interests, e.g., means or variances

b
u(x) = f x p(x) dx

a

o Optimize a function, e.g., locate that sample that minimizes or maximizes
our objective, e.g., ELBO

s
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Estimating T with Monte Carlo: Revisiting

o How is it done algorithmically?

T T ey
o What is our F(x), f(x) and p(x)? et AT B0 £ - AT
0.8 f_x ” ‘
: . C Ty Bt k.
0.6 W50 T AR Gniadas
" . i L 4 -.'_ ‘. -I |' SR
At e UL e
0.2 sat bt SRSl B
FEANT N G, IR
h. al "' ._;:-._:_.:'. ¥ 5‘. 1 de s '-.‘
|:|_,:|I'..' Bao s == = b T :
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Estimating T with Monte Carlo: Revisiting

= 3000, 7= 3.1133

o How is it done algorithmically? el i g

o Whatisour F, f(x) and p(x)? 0.8 |
o We know that the area of the circle is E. = mp* :
o We define an inscribing unit square 0.6 1:
with an area E; = (2p)? = 4p*? '
o Their ratio is therefore E—C = % 0.4 15 i
< el
o We set our pdf to be the uniform distribution K
in the unit square and sample points from it 0. 1 fim & b
o By theory we know that the ideal value of the BRI A S DAL E S
integral is F = — 0.0 i il ea ERL e 0 LT
4 g0 0.2 0.4 0.6 0.8 1.0

o We set f(x) = 1ifthe point js in};lpne circle (distance from center smaller than radius),

otherwise O, and then count Pl
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Sampling == Simulation

o In the “simulation view” everything is a sample. Also your training data are
samples. Not deterministic data points, random samples

0 S0, no point in *optimizing™ for these samples. Only makes sense to optimize
for the process the generates these samples.

o But how can we optimize something that we don’t know yet, something that
we in fact try to learn in the first place?

s
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Sampling == Simulation

o By simulation: we simulate the function we attempt to learn using the existing
samples, and then generate new samples to see if they make sense

o In typical optimization we make a call to (deterministic) function value. In
stochastic optimization we call random variable and call for an estimate of
function value

o Estimate of loss, estimate of gradient, estimate of Hessian

o Doubly stochastic optimization, if combined with mini-batching

s
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Types of Monte Carlo Sampling

o Direct sampling
°cSample directly from the pdf

o Importance sampling

°|nstead of sampling directly from the target pdf, use another simpler pdf to sample
from.

°Then, reweight the results according to the ratio between the simpler sampling pdf
and the target pdf

o Rejection sampling
°Sample from a broader distribution
°Reject samples that are outside a predefined region
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Applications

o High-energy Physics
o Finance
o Machine Learning

o All sort of simulations
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Monte Carlo in Learning (aka stochastic gradient estimation)

o We have a general probabilistic objective we want to compute
F(O) = | p(x; 0)f (x; p)dx

°The pdf p(x; @) is also known as the measure with distributional parameters 8
°The structured function f(x; @) is called the cost with structural parameters ¢

°We assume a pdf that is continuous in its domain and differentiable wrt 8

o Then we want to learn
n="VeF(0) = VaE[f (x; ¢)]

o This gradient of expectation is called sensitivity analysis

s
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Challenges with sensitivity analysis

n=VeF(0) = VE[f(x; p)]

s
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Challenges with sensitivity analysis

n="VeF(0) =VeE[f(x; 9)]
o x typically high dimensional

o In high dimensions quadrature is not reliable and numerical integration is
hard

o Often the parameters @ are too many in the order of thousands

o Often the cost function is not differentiable or even not known (black box)

o In short the integral (expectation) is often intractable

s
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Desired properties of Monte Carlo estimators

o Consistency
>With larger samples should the estimate should converge to the true value of the integral

o Unbiasedness Eyx.0)|fn] = Epx:0y[f]

°lmportant for gradient estimation =2 guarantees convergence of stochastic optimization

o Minimum variance
cLearning more efficient (updates in more consistent direcitons)
°More accurate gradient estimates

o Computational efficiency
°The fewer samples the better, even 1 sample if possible
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Stochastic gradients: A pipeline

Input parameter ] Simulation output F(#)
eb- System or Environment

| Gradient estimate

Vo F(0)

Simulation

Optimisation

Gradient-based
New 6 optimisation

Figure 1: Stochastic optimisation loop comprising a simulation phase and an optimisation phase.
The simulation phase produces a simulation of the stochastic system or interaction with the envi-
ronment, as well as unbiased estimators of the gradient.

Credit: Monte Carlo Gradient Estimation in Machine Learning
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Applications of stochastic gradients

qe(le)]
p(z)

o Variational inference: n = Vg, (z1x) [logp(x|2) — log

o Reinforcement learning: 1 = Vg By () [ 2 Ve 7(St, a)]
o Sensitivity analysis
o Discrete event systems and queuing theory

o Experimental design
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Families of MC gradient estimators

o Score-function estimator
o Pathwise gradient estimators

o Measure-valued gradient estimators

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 40




Score-function estimator (aka REINFORCE)

o This estimator revolves around the following derivative
dlogf(x) _ 1 df(x)
dx C f(x)  dx

o Or with pdfs

Vg logp(x; 0) = Vop(x; )

p(x;0)

o Vg logp(x; 0) is more generally called the score-function

s
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Deriving the score-function estimator

n = VeE,(x.0) [f(X)] = Vg /P(XE 0)f(x)dx = /f(X)VQP(XE 0)dx

_ / p(x; 0) f(x) Vg log p(x; 8)dx
— Ep(x;ﬂ) [f(X)VQ lng(X, 9)]

N
- 1 s(n s (n ~(n
Iy =+ 2 f&")Velogpx™:0); %) ~ p(x; ).

n=1

s
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Score-function estimator properties

o Any type of function f(x) can be used, so simulators or black box functions
(Reinforcement Learning) go well with it

o The measure (pdf) must be differentiable wrt to its parameters
o It must be easy to sample from the measure
o Even with 1 sample you get something

o But, very high variance in general = not always working as desired = variance
reduction methods are usually needed
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Pathwise gradient estimator (aka reparameterization trick)

o Instead of sampling directly from a complex pdf
o sometimes it is possible to rewrite as a simpler pdf
°Then deterministically (backprop possible ;) ) transform the sample

i“"’p(x;e) — i:g(éag)a ENp(e)a

o At the heart of this method is the change of variables formula

p(x;0) = p(€) |[Veg(e; 0)| 7.
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Deriving pathwise gradients

1= VoE, o [f(x)] = Ve / p(x; 0) f (x)dx

v / p(€)f(g(e; 0))de
=E, ) [Vof(g(e; 0))]

N
— 1 ~(n ~(n
iy =~ D Vof(g(e™:0)): €™ ~p(e).

n=1

s
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An example: The Gaussian distribution

o Let’s say we want to take samples from

z~N(w,0%)

o We can instead first sample from
e~N(0,1)

and then transform our random & sample like
Z=UT+E O

o Can be seen also as standardization

http://blog.shakirm.com/2015/10/machine-learning-
trick-of-the-day-4-reparameterisation-tricks/
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Pathwise gradient estimator properties

o Only differentiable cost functions
> Unlike score-function estimators that work with any cost function

o We do not need to know the measure explicitly. Only the deterministic
transformation and the base sampling distribution

o Very efficient. Even a single sample suffices no matter dimensionality

o Low variance in general, lower than the score-function estimator
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Qualitative comparison between estimators (1)

—— Score function —— Score function + variance reduction —— Pathwise —— Measure-valued + variance reduction

— Value of the cost - -- Derivative of the cost
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Figure 2: Variance of the stochastic estimates of VgEn(z(u.02) [(z — k)?] for p = 0 =1 as a function
of k for three different classes of gradient estimators. Left: 6 = u; right: 6 = 0. The graphs in the
bottom row show the function (solid) and its gradient (dashed) for k& € {—3,0, 3}.
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Qualitative comparison between estimators (1)

— Score function —— Score function + variance reduction — Pathwise — Measure-valued + variance reduction

— Value of the cost - -+ Derivative of the cost
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[
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o
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L
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Variance of the estimator for p
Variance of the estimator for ¢
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10°,

10° -

._.
<
Variance of the estimator for o

Variance of the estimator for

5

Figure 3: Variance of the stochastic estimates of VgEr(y)..02) [f(z; k)] for 4 = 0 =1 as a function
of k. Top: f(x;k) = exp(—kx?), bottom: f(x;k) = coskx. Left: 6 = p; right: # = 0. The graphs
in the bottom row show the function (solid) and its gradient (dashed): for k& € {0.1,1,10} for the
exponential function, and k£ € {0.5,1.58,5.} for the cosine function.

UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 49




Variance reduction

o To make estimated gradients more usable, it is often important to reduce
their variance = variance reduction

o A popular method is by control variates

o If we have a function h(x) for which we know the expectation
cControl variate

o Then we can estimate the gradient like
f(x) = F(x) = B(A(%) — Epxig) [A(X)])
ﬁ — % Zf:l f(i(n)) — f_ _ lB(B T ]Ep(x;ﬂ) [h(X)]),

o In expectation the effect of h(x) vanishes, but during sampling variance is
reduced
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Original form Reparameterised form

|_ _________________ 1 r-—-=- - - - - - =-=-=-=-=-=-=-= 1
| | [ |
| [ |
: \f % : : Backprop l \f :
I '
0 _onc 0 [ |
Revisiting VAE learning | VI | 2o, _goxe)
| ! | d|
| - /\ :
L - |
e o1y \¢ @ @-re
: | | = aL/aq-h |
| o L | l I
- : Deterministic node [Kingma, 2013]
[Bengio, 2013]
: [Kingma and Welling 2014]
. - Random node [Rezende et al 2014]
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Gradients w.r.t. the generator parameters 6

o Backpropagation = compute the gradients of
L0, ) = E;q,z10logpe(x]2)] — KL(q4, (Z|x)||pa(Z))
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Gradients w.r.t. the generator parameters 6

o Backpropagation = compute the gradients of
L0, ) = Ezvq, (210108 o (x|2)] = KL(gq,, (z]x)[[pa(2))
with respect to 8 and ¢
oVoL =E, 4, (2x)|Ve logpe (x|2)]
o The expectation and sampling in IEZ~q(p(Z|x)do not depend on 6

o Also, the KL does not depend on 6, so no gradient from over there!

© S0, no problem = Just Monte-Carlo integration using samples z drawn
from q,,(z|x)
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Gradients w.r.t. the recognition parameters @

o Backpropagation = compute the gradients of
L, ) =E, ;, nllogpe(x|z)] — KL(q,(z|x)||pa(z))
o Our latent variable z is a Gaussian (in standard VAE) represented by u,, o,
o So, we can train by sampling randomly from that Gaussian z~N (u;, 07)
o Problem?

o Sampling z~q,, (z|x) is not differentiable
°And after sampling z, it’s a fixed value (not a function), so we cannot backprop

o Not differentiable = no gradients
o No gradients = No backprop = No training!
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Solution: Monte Carlo Differentiation?

O chIEz~q<p(z|x) [log pg (x]2)] = 0 JFZ o (z|x) log pg (x|z)dz
= f Volay (z]x)]logpg (x|2)dz

Z

o Problem: Monte Carlo integration not possible anymore
°No density function inside the integral
°Only the gradient of a density function

o Similar to Monte Carlo integration, we want to have an expression where
there is a density function inside the summation

o That way we can express it again as Monte Carlo integration
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Solution: Monte Carlo Differentiation?

OVoE, g, (210 [logpe(x|2)] =V, | q,(2|x) logpg (x|2)dz
Volay(z|x)]logpe (x|2)dz

VA

o [ Vypla,(z|x)]logpg (x|2)dz =
qy(z|x)
- | 7,[1, (7] log pe (x|2)dz

240 (Z|x) :
NOTE: V,log f(x) _f( ) ()
= qu)(zlx)\zp[i 0g 1, (z|x)|log pg (x|2)dz
— IIEzqu(p(zpc) [Vgo :lOg o (le) log pg (x|2)]
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Solution: Monte Carlo Differentiation == REINFORCE

O chIEvaq(p(le) [log pg(x|2)] = Ez~q¢(z|x) [V(p [log dy (Z|x)] log pg (X|Z)]
— z V(P [lOg q(p (lex)] lOg Po (XlZi) , ZiNq(p (Z x)
i

o Also known as REINFORCE or score-function estimator
*log pg (x|z) is called score function
°Used to approximate gradients of non-differentiable function
°Highly popular in Reinforcement Learning, where we also sample from policies

o Problem: Typically high-variance gradients =

o =2 Slow and not very effective learning

s
UVA DEEP LEARNING COURSE — EFSTRATIOS GAVVES DEEP GENERATIVE MODELS - 58




Solution: Reparameterization trick

o Remember, we have a Gaussian output z~N (uz, o)

o For certain pdfs, including the Gaussian, we can rewrite their random
variable z as deterministic transformations of an auxiliary and simpler
random variable €

z~N(u,0) & z=u+¢-o, e~N(0,1)

o i, o are deterministic (not random) values

o Long story short:
o We can model u, o by our NN encoder/recognition

o And & comes externally
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What do we gain?

o Change of variables
z = g(€)
p(z)dz = p(e)de

° Intuitively, think that the probability mass must be invariant after the transformation

o In our case
e~q(e) =N(0,1),z = g,(e) = pyp + € 0,

O VoL, g, 212 llog pe (x]2)] =V, fz 7, (z|x) logpg (x|z)dz
= Vo jq(‘g) 10gp9 (xl.ugo; Op, E)dé'
&

= Jq(e)V(p log pg (x|u(p, Oy e)de
&

O V(pIEZ~q¢(Z|x) [lOg Pe (XlZ)] ~ Zi V(p lOg Pe (x|ﬂ<p; Op) gi) ’ giNN(O' 1)

> The Monte Carlo integration does not depend on the parameter of interest ¢ anymore
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Solution: Reparameterization trick

o Sampling directly from e~N(0,1) leads to low-variance estimates
compared to sampling directly from z~N (u,, o)
°Why low variance? Exercise for the interested reader

o Remember: since we are sampling for z, we are also sampling gradients
oStochastic gradient estimator

o More distributions beyond Gaussian possible: Laplace, Student-t, Logistic,
Cauchy, Rayleight, Pareto

High-variance
gradient

Low-variance
gradient

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
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http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Once more: what is random in the reparameterization trick?

o Again, the latent variable is z = u, + € - g,
oy and g, are deterministic functions (via the neural network encoder)

o & is a random variable, which comes externally

o The z as a result is itself a random variable, because of ¢

o However, now the randomness is not associated with the neural network
and its parameters that we have to learn
°The randomness instead comes from the external &€
°The gradients flow through u, and g,
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Reparameterization Trick (graphically)

Original form Reparameterised form

Backprop \;/

0f/9z; 2, = 9PXE)

v/

of/0g B X/ ~ p(€)

—

o 3L/3(pi N
L T e A
«_ : Deterministic node [Kingma, 2013]
4 [Bengio, 2013]
: [Kingma and Welling 2014]
. - Random node [Rezende et al 2014]
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To sum up on VAEs

0 So, our latent variable z is a Gaussian (in the standard VAE) represented by
the mean and variance u,, g, which are the output of a neural net

0 So, we can train by sampling randomly from that Gaussian
z~N(Uz, 07)

o Once we have that z, however, it’s a fixed value (not a function), so we
cannot backprop

o Better not use REINFORCE algorithm to approximate gradients
>High-variance gradients =2 slow and not very effective learning

o Instead the reparameterization trick (pathwise gradients) assuming a
differentiable cost function
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o How to train a VAE
o A bit of Monte Carlo Simulation

Summary ® Howhto sample from a stochastic computation
grap

o How to estimate gradients when analytic
computations are not possible

o Variance reduction
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