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Lecture 9: Deep Sampling & Stochastic Gradients
Efstratios Gavves
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oHow to train a VAE

oA bit of Monte Carlo Simulation

oHow to sample from a stochastic computation graph

oHow to estimate gradients when analytic computations are not possible

Lecture overview
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Variational Autoencoders

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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VAE Training Pseudocode
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oELBO𝜃,𝜑 𝑥 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to model 𝑝𝜃(𝑥|𝑧) and 𝑞𝜑 𝑧|𝑥 ?

Variational Autoencoders
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oELBO𝜃,𝜑 𝑥 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to model 𝑝𝜃(𝑥|𝑧) and 𝑞𝜑 𝑧|𝑥 ?

oWhat about modelling them as neural networks

Variational Autoencoders
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oThe approximate posterior 𝑞𝜑 𝑧|𝑥 is a CovnNet (or MLP)
◦ Input 𝑥 is an image

◦Given input the output is a feature map from a latent variable 𝑧

◦Also known as encoder or inference or recognition network, because it 
infers/recognizes the latent codes

oThe likelihood density 𝑝𝜃(𝑥|𝑧) is an inverted ConvNet (or MLP)
◦Given the latent 𝑧 as input, it reconstructs the input 𝑥

◦Also known as decoder or generator network

o If we ignore the distribution of the latents z, pλ(z)), then we 
get the Vanilla Autoencoder

Variational Autoencoders

𝑧pλ(z)

𝑞𝜑 𝑧|𝑥

𝑝𝜃(𝑥|𝑧)

Encoder/Inference/Recognition
network

Decoder/Generator
network
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oHow to we optimize the ELBO?

Training Variational Autoencoders
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧

𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න
𝑧

𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

oForward propagation  compute the two terms

oThe first term is an integral (expectation) that we cannot solve analytically. 
So, we need to sample from the pdf instead
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral 
is hard to compute analytically

Training Variational Autoencoders
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oMaximize the Evidence Lower Bound (ELBO)
◦Or minimize the negative ELBO

ℒ 𝜃, 𝜑 = 𝔼𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑍) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

= න
𝑧

𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧 − න
𝑧

𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

o Forward propagation  compute the two terms

o The first term is an integral (expectation) that we cannot solve analytically.
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral is hard 

to compute analytically

o So, we need to sample from the pdf instead

o VAE is a stochastic model

o The second term is the KL divergence between two distributions that we know

Training Variational Autoencoders
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o𝑧 𝑞𝜑 𝑧 𝑥 log 𝑝𝜃(𝑥|𝑧) 𝑑𝑧

oThe first term is an integral (expectation) that we cannot solve analytically.
◦When 𝑝𝜃(𝑥|𝑧) contains even a few nonlinearities, like in a neural network, the integral 
is hard to compute analytically

oAs we cannot compute analytically, we sample from the pdf instead
◦Using the density 𝑞𝜑 𝑧 𝑥 to draw samples

◦Usually one sample is enough  stochasticity reduces overfitting

oVAE is a stochastic model

oThe second term is the KL divergence between two distributions that we 
know

Training Variational Autoencoders
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o𝑧 𝑞𝜑 𝑧 𝑥 log
𝑞𝜑(𝑧|𝑥)

𝑝𝜆(𝑧)
𝑑𝑧

oThe second term is the KL divergence between two distributions that we 
know

oE.g., compute the KL divergence between a centered 𝑁(0, 1) and a non-
centered 𝑁(𝜇, 𝜎) gaussian

Training Variational Autoencoders
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oWe set the prior pλ(z) to be the unit Gaussian
p 𝑧 ~ 𝑁(0, 1)

oWe set the likelihood to be a Bernoulli for binary 
data

𝑝(𝑥|𝑧)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋)

oWe set 𝑞𝜑(z|x) to be a neural network (MLP, 
ConvNet), which maps an input x to the Gaussian 
distribution, specifically it’s mean and variance
◦𝜇𝑧, 𝜎𝑧 ~ 𝑞𝜑(z|x)

◦The neural network has two outputs, one is the mean 𝜇𝑥 and 
the other the 𝜎𝑥, which corresponds to the covariance of the 
Gaussian

Typical VAE

𝑞𝜑 𝑧|𝑥

𝜇𝑧 𝜎𝑧

𝜇𝑧

𝜎𝑧
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oWe set 𝑝𝜃(x|z) to be an inverse neural network, 
which maps Z to the Bernoulli distribution if our 
outputs binary (e.g. Binary MNIST)

oGood exercise: Derive the ELBO for the standard VAE
◦What does the reconstruction term look like with a Gaussian 
latent space and Bernoulli output?

Typical VAE

𝑞𝜑 𝑧|𝑥

𝜇𝑧 𝜎𝑧

𝜇𝑧

𝜎𝑧
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oSample 𝑧 from the approximate posterior density  𝑧~𝑞𝜑 𝑍 𝑥
◦As 𝑞𝜑 is a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Gaussian, sampling from it is rather easy

◦Often even a single draw is enough

oSecond, compute the log 𝑝𝜃(𝑥|𝑍)
◦As 𝑝𝜃 is a a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

oComputing the ELBO is rather straightforward in the standard case

oHow should we optimize the ELBO?

Forward propagation in VAE
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oSample 𝑧 from the approximate posterior density  𝑧~𝑞𝜑 𝑍 𝑥
◦As 𝑞𝜑 is a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Gaussian, sampling from it is rather easy

◦Often even a single draw is enough

oSecond, compute the log 𝑝𝜃(𝑥|𝑍)
◦As 𝑝𝜃 is a a neural network that outputs values from a specific and known parametric pdf, 
e.g. a Bernoulli for white/black pixels, computing the log-prob is easy

oComputing the ELBO is rather straightforward in the standard case

oHow should we optimize the ELBO? Backpropagation?

Forward propagation in VAE
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oBackpropagation  compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oWe must take the gradients with respect to the trainable parameters

oThe generator network parameters 𝜃

oThe inference network/approximate posterior parameters 𝜑

oBut how? Both the 𝔼(⋅) and the KL(⋅) are integrals
◦How can we backprop through them?

oMonte Carlo to the rescue

Backward propagation in VAE
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Monte Carlo Estimation
Monte Carlo Simulation
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How it started Stanislav Ulam

Manhattan project

John von Neumann
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oOne can estimate the value of π numerically

o In this visualization only the upper right
quadrant of the circle

oBasically, we count
how many points are in the circle vs 
how many are in the square but not the circle

Estimating π with Monte Carlo: A toy example
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oLet’s try to compute the following integral

𝔼(𝑓) = න
𝑥

𝑝 𝑥 𝑓 𝑥 𝑑𝑥

where 𝑝 𝑥 is a probability density function for 𝑥

oOften complex if 𝑝 𝑥 and 𝑓 𝑥 is slightly complicated

oAs a consequence, often intractable or too expensive to compute

Monte Carlo Integration
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o Instead, we can approximate the integral as a summation

𝔼 𝑓 = න
𝑥

𝑝 𝑥 𝑓 𝑥 𝑑𝑥 ≈
1

𝑁


𝑖=1

𝑁

𝑓 𝑥𝑖 = መ𝑓 ,

where 𝑥𝑖 is sampled from  𝑝 𝑥

o መ𝑓 is an estimator because it approximately estimates the value of 𝑓

oThis means that መ𝑓 itself is an RV (random variable) with a mean and 
variance

Monte Carlo Integration
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oThe estimator is unbiased: 𝔼 𝑓 = 𝔼 መ𝑓

oCheck the Law of Large Numbers
◦“As the number of identically distributed, randomly generated variables increases, their 
sample mean (average) approaches their theoretical mean.”

oThe estimator variance is

𝑉𝑎𝑟 መ𝑓𝑛 =
1

𝑛
𝔼[(𝑓 − 𝔼( መ𝑓𝑛))]

Monte Carlo Integration
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oAgain, let’s say we have the estimator

𝔼 𝑓 = න
𝑥

𝑝 𝑥 𝑓 𝑥 ≈
1

𝑁


𝑖=1

𝑁

𝑓 𝑥𝑖 = መ𝑓

o If 𝑝 𝑥 is a probability density function easy to sample, then instead of 
computing the integral, we can randomly sample 𝑥𝑖 and approximate the 
integral instead

oThe error reduces at a rate of 𝑂(√𝑁)

oThis is possible only if the integral has the form of a pdf
◦That is there is a pdf in it

Monte Carlo Integration: The gist
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o Let’s assume you want to compute the value of an arbitrary integral

𝐹 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

oWith a suitable pdf 𝑝 𝑥 to sample from then we can use the estimator

𝐹𝑛 =
1

𝑛


𝑛

𝑓 𝑥𝑖
𝑝 𝑥𝑖

, 𝑥𝑖~𝑝(𝑥)

o In fact, it can be shown the expectation of 𝐹𝑛 is exactly equal to the integral

𝔼 𝐹𝑛 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

(task for the interested reader)

More generally
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oEstimate density of a function

𝑃𝑟 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑝𝑋 𝑥 𝑑𝑥

oEstimate some quantities of interests, e.g., means or variances

𝜇 𝑥 = න
𝑎

𝑏

𝑥 𝑝 𝑥 𝑑𝑥

oOptimize a function, e.g., locate that sample that minimizes or maximizes 
our objective, e.g., ELBO

Why sampling? 
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oHow is it done algorithmically?

oWhat is our F 𝑥 , 𝑓 𝑥 and 𝑝 𝑥 ?

Estimating π with Monte Carlo: Revisiting



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEP GENERATIVE MODELS - 29

o How is it done algorithmically?

o What is our 𝐹, 𝑓 𝑥 and 𝑝 𝑥 ?

o We know that the area of the circle is Ec = 𝜋𝜌2

o We define an inscribing unit square
with an area Es = 2𝜌 2 = 4𝜌2

o Their ratio is therefore 
Ec

Es
=

𝜋

4

o We set our pdf to be the uniform distribution
in the unit square and sample points from it

o By theory we know that the ideal value of the 
integral is 𝐹 =

π

4

o We set 𝑓 𝑥 = 1 if the point is in the circle (distance from center smaller than radius), 
otherwise 0, and then count 

π

4
=

𝑛𝑖𝑛

𝑛

Estimating π with Monte Carlo: Revisiting
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o In the “simulation view” everything is a sample. Also your training data are 
samples. Not deterministic data points, random samples

oSo, no point in *optimizing* for these samples. Only makes sense to optimize 
for the process the generates these samples.

oBut how can we optimize something that we don’t know yet, something that 
we in fact try to learn in the first place?

Sampling == Simulation
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oBy simulation: we simulate the function we attempt to learn using the existing 
samples, and then generate new samples to see if they make sense

o In typical optimization we make a call to (deterministic) function value. In 
stochastic optimization we call random variable and call for an estimate of 
function value

oEstimate of loss, estimate of gradient, estimate of Hessian

oDoubly stochastic optimization, if combined with mini-batching

Sampling == Simulation
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oDirect sampling
◦Sample directly from the pdf

o Importance sampling
◦ Instead of sampling directly from the target pdf, use another simpler pdf to sample 
from.
◦Then, reweight the results according to the ratio between the simpler sampling pdf 
and the target pdf

oRejection sampling
◦Sample from a broader distribution
◦Reject samples that are outside a predefined region

Types of Monte Carlo Sampling
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oHigh-energy Physics

oFinance

oMachine Learning

oAll sort of simulations

Applications
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oWe have a general probabilistic objective we want to compute
ℱ 𝜃 =  𝑝 𝑥; 𝜃 𝑓 𝑥; 𝜑 𝑑𝑥

◦The pdf 𝑝 𝑥; 𝜃 is also known as the measure with distributional parameters 𝜃

◦The structured function 𝑓 𝑥; 𝜑 is called the cost with structural parameters 𝜑

◦We assume a pdf that is continuous in its domain and differentiable wrt 𝜃

oThen we want to learn 
𝜂 = 𝛻𝜃ℱ 𝜃 = 𝛻𝜃𝔼[𝑓(𝑥; 𝜑)]

oThis gradient of expectation is called sensitivity analysis

Monte Carlo in Learning (aka stochastic gradient estimation)
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𝜂 = 𝛻𝜃ℱ 𝜃 = 𝛻𝜃𝔼[𝑓(𝑥; 𝜑)]

Challenges with sensitivity analysis
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𝜂 = 𝛻𝜃ℱ 𝜃 = 𝛻𝜃𝔼[𝑓(𝑥; 𝜑)]

o𝑥 typically high dimensional

o In high dimensions quadrature is not reliable and numerical integration is 
hard

oOften the parameters 𝜃 are too many in the order of thousands

oOften the cost function is not differentiable or even not known (black box)

o In short the integral (expectation) is often intractable

Challenges with sensitivity analysis
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oConsistency
◦With larger samples should the estimate should converge to the true value of the integral

oUnbiasedness 𝔼𝑝 𝑥;𝜃
መ𝑓𝑛 = 𝔼𝑝 𝑥;𝜃 [𝑓]

◦ Important for gradient estimation  guarantees convergence of stochastic optimization

oMinimum variance
◦Learning more efficient (updates in more consistent direcitons)

◦More accurate gradient estimates

oComputational efficiency
◦The fewer samples the better, even 1 sample if possible

Desired properties of Monte Carlo estimators
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Stochastic gradients: A pipeline

Credit: Monte Carlo Gradient Estimation in Machine Learning 

https://arxiv.org/abs/1906.10652
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oVariational inference: 𝜂 = 𝛻𝜃𝔼𝑞𝜃(𝑧|𝑥)[log 𝑝 𝑥 𝑧 − log
𝑞𝜃(𝑧|𝑥)

𝑝(𝑧)
]

oReinforcement learning: 𝜂 = 𝛻𝜃𝔼𝑝𝜃(𝜏)[σ𝑡 𝛾𝑡 𝑟(𝑠𝑡, 𝑎𝑡)]

oSensitivity analysis 

oDiscrete event systems and queuing theory

oExperimental design

Applications of stochastic gradients
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oScore-function estimator

oPathwise gradient estimators

oMeasure-valued gradient estimators

Families of MC gradient estimators
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oThis estimator revolves around the following derivative
𝑑 log 𝑓(𝑥)

𝑑𝑥
=

1

𝑓 𝑥
⋅
𝑑𝑓(𝑥)

𝑑𝑥

oOr with pdfs

𝛻𝜃 log 𝑝 𝑥; 𝜃 =
1

𝑝(𝑥; 𝜃)
𝛻𝜃𝑝(𝑥; 𝜃)

o𝛻𝜃 log 𝑝 𝑥; 𝜃 is more generally called the score-function

Score-function estimator (aka REINFORCE)
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Deriving the score-function estimator
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o Any type of function 𝑓(𝑥) can be used, so simulators or black box functions 
(Reinforcement Learning) go well with it

o The measure (pdf) must be differentiable wrt to its parameters

o It must be easy to sample from the measure 

o Even with 1 sample you get something

o But, very high variance in general  not always working as desired  variance 
reduction methods are usually needed

Score-function estimator properties
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o Instead of sampling directly from a complex pdf
◦ sometimes it is possible to rewrite as a simpler pdf

◦Then deterministically (backprop possible ;) ) transform the sample

oAt the heart of this method is the change of variables formula

Pathwise gradient estimator (aka reparameterization trick)
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Deriving pathwise gradients
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oLet’s say we want to take samples from

𝑧~𝑁(𝜇, 𝜎2)

oWe can instead first sample from
𝜀~𝑁(0, 1)

and then transform our random 𝜀 sample like
𝑧 = 𝜇 + 𝜀 ⋅ 𝜎

oCan be seen also as standardization

An example: The Gaussian distribution

http://blog.shakirm.com/2015/10/machine-learning-

trick-of-the-day-4-reparameterisation-tricks/

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
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oOnly differentiable cost functions
◦Unlike score-function estimators that work with any cost function

oWe do not need to know the measure explicitly. Only the deterministic 
transformation and the base sampling distribution

oVery efficient. Even a single sample suffices no matter dimensionality

oLow variance in general, lower than the score-function estimator

Pathwise gradient estimator properties
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Qualitative comparison between estimators (1)
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Qualitative comparison between estimators (1)
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oTo make estimated gradients more usable, it is often important to reduce 
their variance  variance reduction

oA popular method is by control variates

o If we have a function ℎ 𝑥 for which we know the expectation
◦Control variate

oThen we can estimate the gradient like

o In expectation the effect of ℎ 𝑥 vanishes, but during sampling variance is 
reduced

Variance reduction
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Revisiting VAE learning
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oBackpropagation  compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑍|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑍|𝑥 ||pλ(Z))

Gradients w.r.t. the generator parameters 𝜃
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oBackpropagation  compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

with respect to 𝜃 and 𝜑

o𝛻𝜃ℒ = 𝔼𝑧~𝑞𝜑 𝑧|𝑥 𝛻𝜃 log 𝑝𝜃(𝑥|𝑧)

oThe expectation and sampling in 𝔼𝑧~𝑞𝜑 𝑧|𝑥 do not depend on 𝜃

oAlso, the KL does not depend on 𝜃, so no gradient from over there!

oSo, no problem  Just Monte-Carlo integration using samples 𝑧 drawn 
from 𝑞𝜑 𝑧|𝑥

Gradients w.r.t. the generator parameters 𝜃
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oBackpropagation  compute the gradients of
ℒ 𝜃, 𝜑 = 𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) − KL(𝑞𝜑 𝑧|𝑥 ||pλ(z))

oOur latent variable 𝑧 is a Gaussian (in standard VAE) represented by 𝜇𝑧, 𝜎𝑧

oSo, we can train by sampling randomly from that Gaussian 𝑧~𝑁(𝜇𝑍, 𝜎𝑍)

oProblem?

oSampling 𝑧~𝑞𝜑 𝑧|𝑥 is not differentiable
◦And after sampling 𝑧, it’s a fixed value (not a function), so we cannot backprop

oNot differentiable  no gradients

oNo gradients  No backprop  No training!

Gradients w.r.t. the recognition parameters 𝜑
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o𝛻𝜑𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) = 𝛻𝜑 𝑧 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

= න
𝑧

𝛻𝜑[𝑞𝜑 𝑧|𝑥 ] log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

oProblem: Monte Carlo integration not possible anymore
◦No density function inside the integral

◦Only the gradient of a density function

oSimilar to Monte Carlo integration, we want to have an expression where 
there is a density function inside the summation

oThat way we can express it again as Monte Carlo integration

Solution: Monte Carlo Differentiation?
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o𝛻𝜑𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) = 𝛻𝜑 𝑧 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

= න
𝑧

𝛻𝜑[𝑞𝜑 𝑧|𝑥 ] log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

o 𝑧𝛻𝜑[𝑞𝜑 𝑧|𝑥 ] log 𝑝𝜃 𝑥 𝑧 𝑑𝑧 =

= න
𝑧

𝑞𝜑 𝑧|𝑥

𝑞𝜑 𝑧|𝑥
𝛻𝜑 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

NOTE: 𝛻𝑥log 𝑓 𝑥 =
1

𝑓 𝑥
𝛻𝑥𝑓 𝑥

= න
𝑧

𝑞𝜑 𝑧|𝑥 𝛻𝜑 log 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

= 𝔼𝑧~𝑞𝜑 𝑧|𝑥 [𝛻𝜑 log 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 ]

Solution: Monte Carlo Differentiation?
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o𝛻𝜑𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) = 𝔼𝑧~𝑞𝜑 𝑧|𝑥 𝛻𝜑 log 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧

=

𝑖

𝛻𝜑 log 𝑞𝜑 𝑧𝑖|𝑥 log 𝑝𝜃 𝑥 𝑧𝑖 , 𝑧𝑖~𝑞𝜑 𝑧|𝑥

oAlso known as REINFORCE or score-function estimator
◦ log 𝑝𝜃 𝑥 𝑧 is called score function

◦Used to approximate gradients of non-differentiable function

◦Highly popular in Reinforcement Learning, where we also sample from policies

oProblem: Typically high-variance gradients 

o Slow and not very effective learning

Solution: Monte Carlo Differentiation == REINFORCE
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oRemember, we have a Gaussian output 𝑧~𝑁(𝜇𝑍, 𝜎𝑍)

oFor certain pdfs, including the Gaussian, we can rewrite their random 
variable 𝑧 as deterministic transformations of an auxiliary and simpler 
random variable 𝜀

𝑧~𝑁 𝜇, 𝜎 ⇔ 𝑧 = 𝜇 + 𝜀 ⋅ 𝜎, 𝜀~𝑁 0, 1

o𝜇, 𝜎 are deterministic (not random) values

oLong story short:

oWe can model 𝜇, 𝜎 by our NN encoder/recognition

oAnd 𝜀 comes externally

Solution: Reparameterization trick
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o Change of variables
𝑧 = 𝑔(𝜀)
p 𝑧 𝑑𝑧 = 𝑝 𝜀 𝑑𝜀

◦ Intuitively, think that the probability mass must be invariant after the transformation

o In our case
𝜀~𝑞 𝜀 = Ν(0, 1), 𝑧 = 𝑔𝜑 𝜀 = 𝜇𝜑 + 𝜀 ⋅ 𝜎𝜑

o 𝛻𝜑𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) = 𝛻𝜑 𝑧 𝑞𝜑 𝑧|𝑥 log 𝑝𝜃 𝑥 𝑧 𝑑𝑧

= 𝛻𝜑න
𝜀

𝑞(𝜀) log 𝑝𝜃 𝑥 𝜇𝜑, 𝜎𝜑, 𝜀 𝑑𝜀

= න
𝜀

𝑞 𝜀 𝛻𝜑 log 𝑝𝜃 𝑥 𝜇𝜑, 𝜎𝜑, 𝜀 𝑑𝜀

o 𝛻𝜑𝔼𝑧~𝑞𝜑 𝑧|𝑥 log 𝑝𝜃(𝑥|𝑧) ≈ σ𝑖 𝛻𝜑 log 𝑝𝜃 𝑥 𝜇𝜑, 𝜎𝜑, 𝜀𝑖 , 𝜀𝑖~𝑁(0, 1)
◦ The Monte Carlo integration does not depend on the parameter of interest 𝜑 anymore

What do we gain?
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oSampling directly from 𝜀~𝑁 0,1 leads to low-variance estimates 
compared to sampling directly from 𝑧~𝑁 𝜇𝑍, 𝜎𝑍
◦Why low variance? Exercise for the interested reader

oRemember: since we are sampling for 𝑧, we are also sampling gradients
◦Stochastic gradient estimator

oMore distributions beyond Gaussian possible: Laplace, Student-t, Logistic, 
Cauchy, Rayleight, Pareto

Solution: Reparameterization trick

High-variance 
gradient

Low-variance 
gradient

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
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oAgain, the latent variable is 𝑧 = 𝜇𝜑 + 𝜀 ⋅ 𝜎𝜑

o𝜇𝜑 and 𝜎𝜑 are deterministic functions (via the neural network encoder)

o𝜀 is a random variable, which comes externally

oThe 𝑧 as a result is itself a random variable, because of 𝜀

oHowever, now the randomness is not associated with the neural network 
and its parameters that we have to learn
◦The randomness instead comes from the external 𝜀

◦The gradients flow through 𝜇𝜑 and 𝜎𝜑

Once more: what is random in the reparameterization trick?
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Reparameterization Trick (graphically)
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oSo, our latent variable 𝑧 is a Gaussian (in the standard VAE) represented by 
the mean and variance 𝜇𝑧, 𝜎𝑧, which are the output of a neural net

oSo, we can train by sampling randomly from that Gaussian
𝑧~𝑁(𝜇𝑍, 𝜎𝑍)

oOnce we have that 𝑧, however, it’s a fixed value (not a function), so we 
cannot backprop

oBetter not use REINFORCE algorithm to approximate gradients
◦High-variance gradients  slow and not very effective learning

o Instead the reparameterization trick (pathwise gradients) assuming a 
differentiable cost function

To sum up on VAEs
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Summary

oHow to train a VAE

oA bit of Monte Carlo Simulation

oHow to sample from a stochastic computation 
graph

oHow to estimate gradients when analytic 
computations are not possible

oVariance reduction


