scared yet, human?

g

We asked GPT-3, OpenAl's powerful new language generator, to
write an essay for us from scratch. The assignment? To




Organisation

o Guest Lecture on 6t December will be remote:
https://uva-live.zoom.us/j/6466222109

o Please be there in-person for lecture on the 13™" December

o Assignment 3 will be released today; deadline: 13" December 23:59
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https://uva-live.zoom.us/j/6466222109

Lecture overview

o Implicit density models: Motivation
o Generative adversarial networks

o Challenges

o GAN models

o Primer on diffusion models
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A map of generative models

A

' Direct

can compute p(x) /

Explicit density

/ \approximate p(x) \

Maximum Likelihood
\ GAN Today!

Implicit density

can only sample from p(x)

Tractable density

Approximate density

Markov Chain

-Fully visible belief nets

-NADE
-MADE
-PixelRNN

-Change of variables
models (nonlinear T({A

GSN
\

Variational

Markov Chain

Tuesda

Variational autoencod®r Boltzmann machine
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Last time

o All of the ELBO, amortization, reparametrization for:
o Sampling from what-is-almost-an autoencoder (Encoder-Decoder)

> Arriving at a (probabilistic) explicit density generative model

mean vector

sampled
latent vector
A0S
Encoder Decoder
- Network O Network =
N Pl
(conv) (deconv)
standard deviation
vector
Z=U+00¢

where € ~ Normal(0,1)
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Today

o—All-ot-the EEBOamertization, reparametrizationfor:
() A - 1 ave ANaa A ] aavAa A AYARa A
@ W, - \J vV A A U A (A U/ \J )

o Well, now we will have something that will look like Decoder-Encoder

e e L] L]
Q. /\ aYa NT O a a a alata adasav¥a a¥h aaV¥a
v C] C CARVIVION W, v, C v Ol vV O

o But we’ll still be able to sample from it

Sample

Real images > \
/ Discriminator
Generator »| Sample

y

SSO|
Jojeulwiasiq

sSO|
Jojelauan

Random input
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Explicit density vs implicit density

With p*(x) being the real distribution:

e The model py assigns high density to samples taken from the true distribution p*:

x ~p(xr) = pe(x)is "high".

Explicit density

e Samples taken from the model pg behave similarly to real samples from p*:

x ~ pg(x) = p*(x) is "high".

Implicit density
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Learning an implicit density function

o Generally, learning this pg(x) is hard (you’ve survived Tuesday!)

o Instead, learn evaluate directly if the generations are plausible
> And return gradients when not

o What is a plausible generation?
o Especially in an unsupervised setting with no guidance

o lIdea: use another “adversarial” network that tries to distinguish between
generated and real data.

o Combined, these are called Generative Adversarial Networks (GANSs)
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Generations of high quality, various potential applications

Synthetic Data Generation for Fraud Detection
using GANs

Generative Adversarial Networks recover features in

Charitos Charits . . . .
Deparment of computer scic. @Strophysical images of galaxies beyond the deconvolution

City, University of Londor 12 °
London, UK llmlt

charitos.charitou @city.ac.ul

Kevin Schawinski,'* Ce Zhang,?t Hantian Zhang,? Lucas Fowler,! and Gokula Kr-

ishnan Santhanam?

1 Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093, Ziirich, Switzerland
2Systems Group, Department of Computer Science, ETH Zurich, Universititstrasse 6, CH-8006, Ziirich, Switzerland

Labels to Facade BW to Color

Zebras {_ Horses Summer T Winter

input ) out input output
Day to Night Edges to Photo

inpt output input output

horse —» zebra

Van Gogh
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D tries to make
D(G(z)) near 0,

. D(x) tries to be G tries to make
Generative near 1 D(G(z) ) near 1

Adversarial
NetWOI'kS leferentlable

function D

% sa.mpled from % sampled from
data model

leferentlable
function G

f

( Input noise z )
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https://arxiv.org/pdf/1701.00160

What is a GAN?

o adversarial
O Generative / adva'se:rial/

° You Can Sample novel input Samples inv?l\r/ingiorcharacteri?ed b)i conflict or opp(?sition.
o “create” images that never existed

o Adversarial
o OQur generative model G learns adversarially
o by trying to fool an discriminative model D

o Network
o Implemented typically as deep neural networks
o Easy to incorporate new modules
o Basy to learn via backpropagation
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GAN: Intuition: arms race

o Police: wants to detect fake money as reliably as
possible

o Counterfeiter: wants to make as realistic fake
money as possible

o At beginning: both have no clue

o The police forces the counterfeiter to get better
as it compares it to real money
> and vice versa

o Convergent solution ~ Nash equilibrium (game
theory)
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GAN architecture

o The GAN comprises two neural networks
o Generator network x = G(z; 0¢)
+1,if x is predicted ‘real’

o Discriminator network y = D(x; Op) = { 0,if x is predicted 'fake’

Training set V Discriminator

N\ Real
s

o
K | E_[Fake

Fake image

T N
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GAN has no “encoder” — it’s a discriminator

o The “encoder” simply learns features for discriminating between real/fake
o It’s still an “image-in, features/predictions-out” network

o We cannot compute a likelihood of a specific data point (different to VAEs)

o At test time we can only generate new data points

L Discriminator
Ll rReal
Random IE:3 T Fake
z~N(0,1) or Gowe X (/|- |
z ~ Uniform(0,1) O — |f
Generator mel Fake image
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1) Generator network x = G(z; 0;)

o Any differentiable neural network
o No invertibility requirement — More flexible modelling

o Starts with some random, typically lower dimensional input z @—»@

o Various density functions for the noise variable z

------------------------------------- Example architecture

...........................................................................................

z~N(0,1) or ,
Z ~ Uniform(0,1)

1 Rai
i Noise B - g — ®

1024x4x4

512x8x8

256x16x16 128x32x32

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 16 VISLab



2) Discriminator network y = D(x; Op)

o Any differentiable neural network

o Receives as inputs
o either real images from the training set

o or generated images from the generator
> usually a mix of both in mini-batches

o D must recognize the real from the fake inputs

o The discriminator loss

Binary Cross Entropy loss:

Jp(8p,8) =~ BCE(Data, 1) + -~ BCE(fake, 0) by = it [gn - log 2 + (1 — ) - log(1 — )],

=~ Expiaallog D] =1, [log (1= D(6())]
B 108 DCO] — LBy g1~ DGO
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Generator & Discriminator: Implementation

o The discriminator is just a standard neural network

o The generator looks like an inverse discriminator (or like a decoder)

T := G(z,¢(t))

P R v | |sersssss -
” 0 1 - . ] e o ‘G‘.
& T ’ e : ' . 1 e
g —peem—t | ' ra
X et . o~

(4 -

& e

SN

=5

Generator Network Discriminator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding (%) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Network Architecture
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I Quiz: The starting point of the GAN is the random noise z. I

What is true?

1) The noise acts as a regulariser for the Generator

2) Noise models the random variations due to augmentations

3) Even if trained perfectly, not every z that gets samples will
produce realistic images

4) A fixed grid of (say) one million points would also work
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How do we train the generator?

o Given some generated image, it’s not like we have “the equivalent” image in
our batch.

o Generator generates some random images independent of comparison batch

o How can we get meaningful gradients?
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1) Minimax Loss

o Simplest case: Generator is negative discriminator loss (“zero-sum game”)

Je = —Jp

- The lower the generator loss, the higher the discriminator loss
o Symmetric definitions

o Our learning objective then becomes
V = _]D (ODJ BG)
o D(x) =1 - The discriminator believes that x is a true image

o D(G(z)) = 1 - The discriminator believes that G (z) is a true image

o So overall loss:
Minimizeg Maximizep Jp
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1) Minimax Loss

o Learning stops after a while

.. : : e : d
o As training iterations increase the discriminator improves: # - 0
D

o Then, the generator, preceding the discriminator, vanish

o Equilibrium is a saddle point of the discriminator loss

o This allows for easier theoretical analysis

NeurlIPS 2016 Tutorial: Generative Adversarial Networks
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https://arxiv.org/pdf/1701.00160

2) Heuristic non-saturating loss

o DISCHRINAIOH Loss

1 1
Jp =— EEx~pdata logD(x) — 2 E,p, log(1 —D(G(2)))

o Generator loss

1
Jg = =5 Esp, 10g(D(G (@)

o Equilibrium not any more describable by single loss

o _ maximizes the log-likelihood of correctly discovering real log D (x) and fake
log(1 — D(G(2))) samples

> The generator G (z) maximizes the log-likelihood of the discriminator log(D (G (z)) being wrong.

o Heuristically motivated; generator learns even when discriminator is too good on real images
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3) Moditying GANs for max-likelihood

o The discriminator remains the same

o Generator loss

1
J¢ = =5 Ezlog(e™(D(G(2)))

o The generator is activated by an inverse sigmoid

> When discriminator is optimal &b _,
dép

> the generator gradient matches that of maximum likelihood

On distinguishability criteria for estimating generative models
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Comparison of Generator Losses

The heuristic loss yields good generator

1
Je =—3 ]Ez~pz log(D(G(2))

gradients when the discriminator is too __ 2
good. And smaller gradients as the TR | | | |
discriminator gets more confused. B \’\
/V(::P:_: — ~ =
//A -5}
When the discriminator detects fake ~
samples accurately (low D(G(z))) the —10H — Minimax
generator has a flat loss curve with both N ) h ..
the minimax and the ML losses —15 | on-saturating heuristic
— no gradients in early steps —— Maximum likelihood cost
—20 ' '
0.0 0.2 0.4

D(G(2))

The ML cost variant generates gradients mostly from the “good generations”
— all gradients from few samples
— high variance gradients
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Optimal discriminator

Model distribution Data

Discriminator / /
E N N et

v

L] . ‘
L]
AR T [

.
'
L] oy
) '0 1L
A\l N A} ']
s, e

T 70 T T

o Optimal D(x) for any pgarq(x) and pmoger (x) is:
Paata(X)
Pdata(X) + Pmoder (X)

D(x) =
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Why is this the optimal discriminator?

o L(D,g) = / Paaa () log (D (@) dz + / p=(2)log(1 — D(g(2)))d=

~ [ posa(@) 1g(D(@)) + py () log(1 - D(@))d

o Minimize L(D, G) w.r.t. D — g—; = 0 and ignore the integral

o The function x = alogx + blog(1 — x) attains max in [0, 1] at %

o The optimal discriminator
Pdata(X)

Ddata(X) + Pg (x)
> And at optimality p,(x) — pgata(x), thus

D*(x) =

1
D*(.X') = E
L(G*,D*) = —2log2

Great blog: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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GANSs and Jensen-Shannon divergence

pr(X)
pr(x)+p g (x)

o Expanding the JS divergence for the optimal discriminator D*(x) =

r+pg
5 )

Pg(x)
dx +log?2 + jx'pg(x) log Pr(X)g+ ey dx)

1 PrtD 1 P
Dys(prlpg) = 5 Dre(prll =) + 5 Dke (g

B l pr(x)
2 (log o L”’”(x) 08, G 1 Dy (x)

1
= > (log4 + L(G,D™))

o So, L(G,D*) = 2D;s(pr l pg) — 2log 2
> And we just found out that L(G*,D*) = —2log 2
> > for L(G",D*) = —2log 2 = Djs(pr|lpg) =0

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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Is the divergence important?

o Does the divergence make a difference?

o Is there a difference between KL- divergence, Jensen-Shannon divergence, ...

Dk, (prl |Pg) j Pr log— dx

Pg
1 pr+D 1 prt+p
Dys(PrlIpg) =5 D (0rl| ——2) + 5 D (g 1 2—52)
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KL vs ]S

0.4 0.4

— D E
0.3 - «(Pllq) :
) ° 0.3' — DKL(qnp :
o JSis symmetric 02
0.2 1 074
o KL 1isnot 0.1- s T S y
Dl i : :
-4 -2 0 2 4
—— Duc(plim) 0.031 — Djs(pllq) E
010 — Duglim |
0.05 - 0.02 - 5
0.00 - !
0.01 -
—0.05 -
0.00 + : m—— — B

Fig. 1. Given two Gaussian distribution, p with mean=0 and std=1 and q with mean=1 and std=1. The
average of two distributions is labelled as m = (p + q) /2. KL divergence Dy, is asymmetric but JS
divergence D jg is symmetric.

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Is the divergence important?

o Dgi(p(x)]|g*(x)) = high probability everywhere that the data occurs

o Dk (g (x)||p(x)) = low probability wherever the data does not occur

7

o Backward KL is ‘zero forcing’ the learned model - makes model “conservative’
q" = argmin, Dk1.(p||q) q" = argmin, Dkw(q|[p)

° D1 (q"(0)|lp(x)) = fq*(x)logi(—%) — =
* - P\ I\ - P
o q*(x) —» 0 where C; ((xx)) cannot be good % ol | - IR e )
a a Iy
> Avoid areas where p(x) — 0 z A0
> “mode seeking” 2 -~ AR \
ol _ s ~ - ol / \
_ A / \
Reverse KL

Maximum likelihood
py is what we get from our data and cannot change

Dg is what we learn with our model

VISLab
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General observations

o GANSs are designed to deliver good generations

o With GANs we do not write down the densities explicitly
> We can do generations

- But cannot easily do inferences, compute conditionals or marginals
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Training procedure

o Use SGD-like algorithm of choice
- Adam optimizer is a good choice

o Use two mini-batches simultaneously
o The first mini-batch contains real examples from the training set

> The second mini-batch contains fake generated examples from the generator

o Optional: run k-steps of one network (e.g. discriminator) for every step of the
other one (e.g. generator), many heuristics exist here.
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How research gets done part 8

Previous parts:

[fundamental understanding/read papers, how-to-read-papers, implement & tinker with code, realise and seek funny moments,
MVP/principles/benchmarks/baselines, when to (not) give up/impact-vs-work]

Today:
« Ok, so you didn’t give up and you're on to something non-trivial.
* Next: How do you show/ analyze what’s happening or why your method is better?
* Answer: Ablations
* The key idea is to “only vary one thing at a time”
* (Same principle behind when designing experiments in the investigation phase!)
* Never change two things at the same time, you won’t know if it was A or B that helped
* Some examples: ——
* Show simple, easy to understand [sirmmvetmmbm s

net-depth-features

. epochs on the VGG-Sound dataset. ResNet-50-C4 S‘_’ﬁ' na;
cases (sometimes toy examples) [ ERCCTTIIyeywRT ResNet 101-C4 sigmo!
. (a)SeLa v - - - 64 23 206 ResNet.101-FPN
* One idea per paper! & Conet 78 32 247 ResNeX IO EPN

X
X
v 26.6 18.5 50.9
v 262 173 51.5
X
v

(a) Backbone Architecture: Better back- (b) Multinomial vs. Independent Masks
bones bring expected gains: deeper networks ~ (ResNet-50-C4):  Decoupling via per-
do better, FPN outperforms C4 features, and  class binary masks (sigmoid) gives large
ResNeXt improves on ResNet. gains over multinomial masks (softmax).

X
X
(d) SeLaVi X
(e) SeLaVi X
(f) SeLaVi X

(g) SeLaVi X

239 14.7 499
26.6 17.7 51.1
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Challenges
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Challenge 1: Vanishing Gradients

Gradient of the generator with the original cost

— After 1 epoch

o If the discriminator is quite bad — ter 10 oechs

——  After 25 epochs

— the generator gets confused
— no reasonable generator gradients

2

o If the discriminator is near perfect
— gradients go to 0, no learning anymore

10!
102
10

10t
10~
104
107
10-%

1000 1500 3000 300 1000

) 2000 2000
Training iterations
Fig. 5. First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the generator fixed, a discriminator

O B ad if early in the tr ainin g is trained from scratch and measure the gradients with the original cost function. We see the gradient

norms decay quickly (in log scale), in the best case 5 orders of magnitude after 4000 discriminator

o Easier to train the discriminator than generator s amesesource oty endsoron 2017
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Challenge 2: Low dimensional supports

o Data lie in low-dim manifolds
o However, the manifold is not known

o During training p, is not perfect either,
especially at the start

o So, the support of p;, and p, is non-
overlapping and disjoint
— not good for KL/JS divergences

o Easy to find a discriminating line
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Challenge 3: Batch Normalization

o Batch-normalization causes strong intra-batch correlation
o Activations depend on other inputs

- = Generations depend on other inputs

o Generations look smooth but awkward
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Reference batch normalization

Standard Reference

o Training with two mini-batches mini-batch  mini-batch

o Fixed reference mini-batch to compute ,ubnf, o ;,if

Iteration 1

o Second mini-batch xp4¢cp for training

n )
Iteration 2

o Problem: Overfitting to the reference mini-batch

.. ref _ref :
o Same training, only use u, ', 0, ° to normalize Xp4¢ch .
(3)

[teration 3

do
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Virtual batch normalization

o Append the reference batch to regular mini-batch

. .o Standard  Reference
o GPU memory is a potential issue mini-batch  mini-batch

Iteration 1

Iteration 2

_ée g. StyleGAN uses InstanceNorm

o Adaptive InstanceNorm /v - og2=t@
)

) + 1(y)
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Challenge 4: Convergence

o Optimization is tricky and unstable
o finding a saddle point does not imply a global minimum

> A saddle point is also sensitive to disturbances

o An equilibrium might not even be reached (models can train for weeks)

o Mode-collapse is the most severe form of non-convergence
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Challenge: mode collapse

o Discriminator converges to the correct distribution
o Generator however places all mass in the most likely point

o All other modes are ignored
- Underestimating variance

o Low diversity in generating samples

Target
- -

- - - - Imperfect ImaGANation: Implications of GANs
Exacerbating Biases on Facial Data Augmentation
and Snapchat Face Lenses

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Niharika Jain**, Alberto Olmo*", Sailik , Lydia

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 42 VISLab



Potential solution regularize for diversity

o Classify each sample by comparing to other examples in the mini-batch

o If samples are too similar, the model is penalized
Sample

Mini-batch I I I I I I I

Penalized Not Penalized
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Mode-collapse vs over-generalisation

Over-generalisation Mode-dropping

Region covered by

the model

| | the data
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Challenge: how to evaluate?

O

lgl UNIVERSITY OF AMSTERDAM

It would be nice to quantitatively evaluate the model

FID, but some problems remain
Training images
(train-res H x W)

Generated images
(train-res H x W)

For GANs it is hard to estimate the likelihood

Resize to
299x299
(¥rip)

4 )

Resize to
299x299

(yrin)

Fréchet Inception Distance (FID)

Fréchet
Distance

In the absence of a precise evaluation metric, do GANs do truly good generations or

generations that appeal/fool to the human eye?

> Can we trust the generations for critical applications, like medical tasks?

° ‘Are humans a good discriminator for the converged generator?’
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Challenge: beyond images

o The generator must be differentiable

o Tasks with discrete outputs (like text) are ruled out
- modifications are necessary to flow gradients through discrete variables

o Similarly for other types of structured data like graphs
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Some open challenges for GANs

o What are the trade-offs between GANs and other generative models?
> Speed vs accurate generation etc.

o What sorts of distributions can GANs model?

o What can we say about the global convergence of the training dynamics?
o How should we evaluate GANs and when should we use them?

o GAN scaling: dataset size and model size

o GANSs and adversarial examples?
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One-sided label smoothing

o Default discriminator cost:

cross_entropy(1l., discriminator(data))
+ cross_entropy(@0., discriminator(faked))

o One-sided label smoothing:

cross_entropy(0.9, discriminator(data))
+ cross_entropy(0., discriminator(faked))

o Do not smooth negative labels:

cross_entropy(1l.-alpha, discriminator(data))
+ cross_entropy(beta, discriminator(faked))

lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 48 VISLab



Benetfits of label smoothing

o Mitigate overconfidence

o Does not reduce classification accuracy, only

confidence

o Specifically for GANs

> Prevents too high gradients to Generator
- Prevents extrapolating to encourage extreme

samples

o General strategy for improving models (e.g.

because there’s noise in annotations and it ensures

a more smooth embedding space)

lgl UNIVERSITY OF AMSTERDAM
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Table 2: Ingredients and hyper-parameters used for ResNet-50 training in different papers. We

compare existing training procedures with ours.

| Previous approaches Ours

\
Procedure — ResNet PyTorch  FixRes DeiT FAMS (x4) Al A2 A3
Reference [3] [l [48] [45] [10]
Train Res 224 224 224 224 224 224 224 160
Test Res 224 224 224 224 224 224 224 224
Epochs 90 90 120 300 400 600 300 100
# of forward pass 450k 450k 300k 375k 500k 375k 188k 63k
Batch size 256 256 512 1024 1024 2048 2048 2048
Optimizer SGD-M SGD-M SGD-M AdamW SGD-M LAMB LAMB LAMB
LR 0.1 0.1 02  1x107° 2.0 5x107% 5x107° 8x107°
LR decay step step step cosine step cosine cosine cosine
decay rate 0.1 0.1 0.1 - 0.02¢/400
decay epochs 30 30 30 - 1 - - -
Weight decay 10-4 1074 1074 0.05 104 0.01 0.02 0.02
Warmup epochs 5 5 5 5 5
Label smoothing ¢ 0.1 0.1 0.1
Dropout
Stoch. Depth 0.1 0.05 0.05
Repeated Aug v v v v
Gradient Clip.
H. flip 4 4 4 v v v 4 v
RRC v v v v v v v
Rand Augment 9/0.5 7/0.5 7/0.5 6/0.5
Auto Augment v
Mixup alpha 08 02 02 0.1 01
Cutmix alpha 1.0 1.0 1.0 1.0
Erasing prob. 0.25
ColorJitter v v
PCA lighting v
SWA v
EMA
Test crop ratio | 0875 0.875 0.875 0.875 0875 | 095 0.95 0.95
CE loss v v v 4 v
BCE loss v v v
Mixed precision | v/ 4 | v v v
Top-1 acc. | 75.3% 76.1% 77.0% 78.4% 795% | 804% 79.8% 78.1%

Generally often used
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GANs sometimes explode

Imagenet 128 IS Imagenet 128 FID

.
60 - [ ACGAN 100 - [ ACGAN
— GAN oo [ —GAN
— — MHGAN
< 50 = - — MHGAN
= 60 -
g 40 - < 50-
o
" —
3] ~ — 40 -
= 30 )
=] o
P 30 -
§ 20 -
c L > L A
10 - o
0 . 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
D steps leb D steps le6

(a)

Actually: often
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GAN models
and applications
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DCGAN

o One of the first scaling ups of GANs
o Architectural improvements

1024 f \

4 8
100z - L=~
.::3

Code Project and D '
h econv
rasnape Deconv 2

W\

W

Stride 2

Deconv 4
Image

Radford, Metz, Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016
VISLab
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Examples
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Even vector space arithmetics ...

o Similar to word2vec

Man with
glasses

Woman with glasses
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Can generate new views

Aligned GAN Synthesized Generative Views

o Now GANs good enough to Input__ Reconstructon. Style-mix Fine | Stye-mix Coarse

create fake data that can be ¢
used for training k

Figure 2: Synthesizing deep generative views. We first align (Aligned Input) and reconstruct an image by finding the corresponding latent
code in StyleGAN?2 [31] (GAN Reconstruction). We then investigate different approaches to produce image variations using the GAN, such
as style-mixing on fine layers (Style-mix Fine), which predominantly changes color, or coarse layers (Style-mix Coarse), which changes
nnce We chaw additional nerturhatione in cnnnlpmﬁnfary material.

(a) Original (b) Gaussian Views (c) Steered Views (d) SimCLR Views (e) Gaussian + SimCLR Views (f) Steer + SimCLR Views

N 3 "'
. ) *
' ’
] 1\
1

Figure 4: Examples of different transformation methods for unconditional IGM data. Top row shows samples
of BigBiGAN trained on ImageNet1000, and the bottom row shows samples from the StyleGAN2 LSUN CAR.

Generative models as a data source for multiview representation learning. Jahanian et al. ICLR 2022
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Wasserstein GAN

o Instead of KL/JS, use Wasserstein (Earth Mover’s) Distance

Wip., = inf  Eqo)ov|x —
(pr pg) y~Ti(Prpg) xy)~ylX = VI

o Even for non-overlapping supports, the distance is meaningful

1-0 T T T T
0.8 \

Density of real
Density of fake |
GAN Discriminator

WGAN Critic
0.6
0.4}
0.2}
0.0 e o e
Linear gradients =,
ina\W [ & " .
-0.2; ina WGAN Vanishing gradients
in regular GAN
_0_4 L 1 I L L 1 L
-8 -6 -4 -2 0 2 4 6 8

Arjovsky, Chintala, Bottou, Wasserstein GAN
I —————————EZI—————_————
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Differences in GANs

Dataset = MNIST Dataset = FASHION-MNIST Dataset = CIFAR10 Dataset = CELEBA

<R IHBNED, } )
’ 100 & N =
; 5 ia : 150 .
jz I 7 100 ‘
T T [ &
S N o

(=)
o

P wn

o o

o o
e ow we e
* o e e

w
o

FID Score

o

N
o

-
o

- 50

NI I S I R 2 SR N NI I - S R NI I - I R
AR &£ 9 ® N &9 ® N &9 e N © & K 0
Model Model Model Model

Figure 4: A wide range hyperparameter search (100 hyperparameter samples per model). Black stars indicate
the performance of suggested hyperparameter settings. We observe that GAN training is extremely sensitive to
hyperparameter settings and there is no model which is significantly more stable than others.

[“Are all GANs Created Equal?”, Lucic*, Kurach*, et al. 2018]
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BigBiGAN

data
x~ P, %~G(z) discriminator D scores

® O @Ho—+5

| 4
v I

DO
O @ &P—0O

z~E(x) z~P, h g
latents

I9podud
generator G

additional

* Discriminator works on (x,z)

* Therefore we need an encoder
that maps real x to z: E(x)=z

* For the fake data, we just use the
sampled z

« This Encoder E learns strong
representations

* Eis “part of” discriminator

Large Scale Adversarial Representation Learning. Donahue et al. NeurIPS 2019
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So what changed? More data? -- No

ACGAN [Odena et al. 2016] BigGAN [Brock et al. 2018]

Both trained on Imagenet
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So what changed? Architectures and compute: yes

Architectures
DCGAN StyleGAN
[Radford, Metz, Chintala 2016] [Karras, Laine, Aila 2019]
Latent z € Z Noise

Synthesis network g
Normalize
Mapping [B]
S
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Conditional GAN

o Conditioning on labels

o Appending label/annotation vector to noise vector

G D

minmax Ey_, . [logD(x|y)] + E, ;)

Gscriminator D(xly) @

00000

Q[....']

\
©0000)

N T YY)
00000

- 00000 00000

o

~

/

log(1 — D(G(z]y)))]

User tags + annotations

Generated tags

montanha, trem, inverno,

~" | frio, people, male, plant

life, tree, structures, trans-
port, car

food, raspberry, delicious,
homemade

water, river

people, portrait, female,
baby, indoor

taxi, passenger, line,
transportation,  railway
station, passengers,
railways, signals, rail,
rails

chicken, fattening,
cooked, peanut, cream,
cookie, house made,
bread, biscuit, bakes

creek, lake, along, near,
river, rocky, treeline, val-
ley, woods, waters

love, people, posing, girl,
young, strangers, pretty,
women, happy, life

Table 2: Samples of generated tags

Mirza and Osindero, Conditional Generative Adversarial Nets
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Image to image translation

o Conditioning GAN on other images (like edges)

Input Ground truth L1 cGAN L1 +cGAN
' < .

Ehty

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

Isola, Zhu, Zhou, Efros, Image-to-Image Translation with Conditional Adversarial Networks
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Adversarial AutoEncoders: and adversarial network in latent space

o q(zlx)
a(al%) . o Deterministic
X z ~ q(2) . . . .
/ o Gaussian (via reparametrization)
o Compared to VAE:
onn > VAE uses KL to give p(zIx)
Draw samples Adversarial cost
from p(z) |4 for distinguishing structure
] positive samples p(z) .
from negative samples g(z) o AAE uses an adversarial network
- U for this
Figure 1: Architecture of an adversarial autoencoder. The top row is a standard autoencoder that
reconstructs an image x from a latent code z. The bottom row diagrams a second network trained to ° Can toggle between AE and AAE
discriminatively predict whether a sample arises from the hidden code of the autoencoder or from a
sampled distribution specified by the user. o Can be extended for conditional
modelling

Adversarial Autoencoders. Makhzani et al. 2016
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CycleGAN: “img2img” models

¢ ¥ Falle
D D R A 1T N[
G . F . F
X /—\ Y X Y X R Y cycle-consistency
\—/ . cycle-consistency __,‘.S\ “.}..---"‘ loss
F R e o

(a) | (b) | (¢)

Figure 3: (a) Our model contains two mapping functions G : X — Y and F : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x — G(z) — F(G(x)) = x, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y

apple — orange

orange — apple

Zhu, Park, Isola, Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
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StyleGAN and StyleGANv2

o Architectural innovations (tinkering)

o Scaling

Latent z € Z

Fully-connected

Latent z € Z

Conv 3x3
PixelNorm

4x4

| UEsamEle |

Synthesis network ¢

| Conv3x3 |

1
1
1
1
1
1
1
1
1
Y |
1
1
1
1
1
1
1
1

(a) Traditional
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(b) Style-based generator

Noise

> »> »>
Style block - Style block - Style block -

DEEP L

< —
b, > %<
Norm mean/std

Removed

®

The mean is not needed

The mean is not needed

@

style box

(b) StyleGAN '('(.ietailed)
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b,

>§F<

(c) Revised architecture

B

(B] . .
7 Move the noise module outside the

{B]
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Text-image

£ 2
. 2 2 3
generative 2 g S
models — | I ! ] i >
2016 2017 2018 2019 2020 2021

G
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Overview of methods

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

lgl UNIVERSITY OF AMSTERDAM

Discriminator

D(x)

Encoder

Generator

G(z)

:w

Flow

,wﬁ

Inverse

1 fx)

- - - - - - -

| (=)
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Basic idea of diffusion models: learning how to denoise

o Imagine we gradually add noise to an image, until it's Gaussian normally distributed.

o Now if we could simply learn how to reverse the process, we could generate images
o By starting from random noise

o +nice maths (diffusion models are explicit density models)

Use variational lower bound

..................................

e il

..................................
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Diffusion models turn generative learning into a sequence of supervised problems

z ~ N(0,1) X

Denoising >

argmin » L(f(x¢),X¢—1)
gm Z

i_

Converts generative modeling into a bunch
of supervised prediction problems
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The architecture: a modified U-Net that uses diffusion time t

o Denoising via U-Net

3 256

X,

&

Copy and concatenate each block output

256

| |.‘.|.|
512

64 x 64

|II!768

o

-

x

S
3

32x32

1024

1024

-

7

0 ©0
g 8 8 8 § 8 8 0 0 K
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€g(x¢, 1)
Zo(xt,t)

that also has time as input

Input features
—{_#in channels |
Group norm.

A 4

# in channels

Timestep Image embedding
t 512
Timestep emb.
256 Linear
Linear NA
[ 1024 | 1024 |
J s J, siL

64 x 64

512

o
-

x
o
-

I ResBlock
ResBlock + Self-
attention

8 BigGAN residual block
(downsample)

- BigGAN residual block
(upsample)

‘ 3x 3 Conv.

|»u »
i

32x32

-
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SiLU

\ 4

# in channels

\ 4

# out channels

3 x 3 Conv.

3 x 3 Conv.

v

Group norm.

# out channels
SiLU + Dropout

3 x 3 Conv.

# out channels

>0

# out channels

Output features
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Combining this with text as cond. inputs: DALL-E v2 / “unCLIP”

CLIP objective img
o encoder
“a corgi
playing a
flame N W |
throwing 5
" N — C
trumpet O0000 oo
o0~
O O Q O
---------------------------------------- O+ S, L) )
O O
prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

+ Don’t forget

about the 400M
sizes training
dataset and the 3B
parameters

VISLab
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Final note about deep fakes and ethics

o Pay attention in the FACT-AI course! ©

FOURCE: IJRLENSKYY

o Deep fakes are a problem

Deepfakes have numerous positive applications in entertainment,
education, medicine and other fields, particularly for modelling and
predicting behaviour. However, the possibilities for abuse are growing
exponentially as digital distribution platforms become more publicly
accessible and the tools to create deepfakes become relatively cheap,
user-friendly and mainstream.

Deepfakes have the potential to cause significant damage. They have
been used to create fake news, false pornographic videos and
malicious hoaxes, usually targeting well-known people such as
politicians and celebrities. Potentially, deepfakes can be used as a tool

for identity theft, extortion, sexual exploitation, reputational damage,
ridicule, intimidation and harassment.

o Arms-race between fakers and detectors.

https://www.esafety.gov.au/industry/tech-trends-and-challenges/deepfakes
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Recommended watch (just 34min)
e o ——

Unethical data sources =
Cultural appreciation vs appropriation B

Bias in generative models

L

Ethical Considerations
of Generative Al

Gene

o Emily Denton on Ethical
Considerations of
Generative Al

Prabhu, et al. (2019). Cov


https://www.youtube.com/watch?v=RUA4CKiKSic

I Quiz: what dimensions need to be considered when thinking about I

developing the next generative model?

1) Ethics of dataset used (bias, representation, consent)

2) Copyright of inputs and copyright of outputs

3) Malicious usecases of the trained model

4) Malicious usecases of adapting the trained model/method
5) Effect on surveillance/creative industry/art/fake news

6) All of the above and more

Not only images

See also “Broader Impacts” = RSt
P Al suggested 40,000 new possible

section In papers, e.g. chemical weapons in just six hours

'v & @l / ‘For me, the concern was just
how easy it was to do’

J1

AN Y

R o t»?-’ ’w::
‘ \\§§ J 2

' 61 fr o S
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https://medium.com/@GovAI/a-guide-to-writing-the-neurips-impact-statement-4293b723f832

More on that previous one..

o https://www.theverge.com/2022/
3/17/22983197/ai-new-possible-
chemical-weapons-generative-
models-vx

How easy is it for someone to replicate what you did? What would
they need?

I don’t want to sound very sensationalist about this, but it is fairly easy
for someone to replicate what we did.

If you were to Google generative models, you could find a number of
put-together one-liner generative models that people have released for
free. And then, if you were to search for toxicity datasets, there’s a large
number of open-source tox datasets. So if you just combine those two
things, and then you know how to code and build machine learning
models — all that requires really is an internet connection and a
computer — then, you could easily replicate what we did. And not just
for VX, but for pretty much whatever other open-source toxicity
datasets exist.
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Generative Adversarial Networks (GANs) are a type of deep learning model

Summary Of GANS that is used for unsupervised learning. GANs consist of two components: a

generative model, which is trained to generate samples that are similar to a

given dataset, and a discriminative model, which is trained to distinguish
between real samples from the dataset and fake samples generated by the

generative model.

o Actually have nothing to add

Here are some of the most important points to understand when learning
about GANs for the first time:

o https://chat.openai.com/chat

1. GANs are a type of unsupervised learning algorithm. Unlike supervised
learning algorithms, which require labeled training data, GANs are able to
learn from raw, unlabeled data. This makes them useful for tasks like
image generation and data augmentation.

GANs consist of two components: a generative model and a
discriminative model. The generative model is trained to generate
samples that are similar to the dataset, while the discriminative model is

trained to distinguish between real and fake samples.

3. GANSs use a minimax game to train the two components. The generative

model tries to generate samples that are as similar to the real data as
possible, while the discriminative model tries to accurately identify which
samples are real and which are fake.

GANs have been used to generate high-quality images that are difficult to
distinguish from real photographs. They have also been used for tasks
like data augmentation, inpainting (filling in missing parts of images), and
style transfer (applying the style of one image to another).

5. Despite their successes, GANs can be difficult to train and often suffer
from instability and mode collapse (where the generative model only
produces a limited number of samples). Researchers are continuing to
work on improving GANs and developing new techniques for training

them.
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https://chat.openai.com/chat

o Implicit density models: Motivation

o Generative adversarial networks

Summary o Challenges
o GAN models

Reading materials:
o Book [4]: Chapter 10.4

o Papers mentioned in the slides
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