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Overview

• Intro to Fifth Paradigm 

• PDE surrogates

• Molecules
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Deep Learning has been transforming AI

Source: Kartik Audhkhasi blog; https://minghsiehece.usc.edu/2017/04/the-machines-are-coming/

Speech Recognition Natural Language Models

(Source: Angshuman Gosh | DLDC 2021)

Text to Image Generative ModelsImage Understanding

Imagen Video (research.google)

https://www.linkedin.com/in/drangshu/
https://imagen.research.google/video/


Deep learning will be transforming the natural sciences

Protein Folding

Molecule Generation

Plasma Control



The main tool: equivariant GNNs
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Further Reading

Generalized SE(3) Equivariant GNNs using higher 
order irreducible representations. 



Symmetries & Equivariance

• Lead to Special Relativity: electric field = magnetic field.

• Lead to General Relativity: gravity = acceleration.

• Led to Standard Model of elementary particles!

Gravity = Acceleration 
Electricity = Magnetism



Equivariance

• Equivariance is good for:
• Data efficiency
• Disentangling pose and presence
• Creates easy patterns for next layer

• First appearance in ML: Group CNNs
Cohen & W. ’16, Dieleman et al, ‘16

Picture created by Maurice Weiler

Equivariance on manifold Gauge symmetries are needed
to define proper convolutions
on manifolds



Molecules

Fluid Mechanics

Geophysics

Astrophysics
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AI4Science: A Multi-Scale Scientific World

Quantum Classical
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A New Paradigm of Scientific Discovery COMPUTATIONAL 
COMPLEXITY

TIME

Era 1: Trial-and-error

Era 3: In-silico design

OAD ADS

Era 2: Data-driven modelling

NASA



Sören von Bülow, Mateusz 
Sikora, Gerhard Hummer. 
MPI of Biophysics

A New Paradigm for Materials Design

data

COMPUTATIONAL 
COMPLEXITY

TIME

Era 3: In-silico design

Era 2: Data-driven modelling

Era 1: Trial-and-error



Can we build a new kind of microscope?

LHC: The microscope of the particle physicists SKA: The telescope of the astronomers



The new microscope is computational

Large scale, self-learning simulations 
on modern supercomputers



Amortization

• The usual paradigm is to ”solve” the physics equation through numerical methods
• Data is thrown then away!
• Fifth paradigm is recycling data and storing information in model parameters
• ML surrogate can shortcut expensive computation when pattern is seen before

slow

fast

train

test



Generalization

slow

fast

train

test

• When should we use the slow similar versus the fast emulator?
• Simulator solves physics equations: generalizes well
• Emulator is neural network model: may generalize poorly

• Know when you don’t know: uncertainty quantification is key



PDEs



Partial Differential Equations

• PDEs are used throughout the sciences.
• We want to either replace or augment numerical schemes. 

Earthquakes Heart dynamics Weather prediction Galaxy collisions

Plasma physics Airplane design Electronic structure Tumor growth



Numerical Solvers

• Requirements:
• Accuracy 
• Stability over long rollouts
• Speed
• Computational cost
• Easy to use
• Uncertainty quantification
• Generalize across:

• Initial conditions
• Boundary conditions
• PDE parameters
• Integration grid resolution
• Integration grid regularity
• Geometry
• Topology
• Dimensionality

• … 



PDEs

• Formulation of a (time-dependent) PDE:

• Can ML be used to solve PDEs faster?
• Think of solver as a differentiable iterative program: optimize its (hyper)parameters from data
• Use either real data and/or simulated data to train ML models
• Key question: how do ML PDE surrogates generalize across ICs, BCs, parameter perturbations, dimensions? 

Data from numerical solver Improve surrogate ML model to solve PDE faster next time



Generalization, Inductive Bias & Data

Fast, 
No error guarantees, 
Lots of parameters (e.g. deep NN)
Little inductive bias
Lots of data
Generalization?

Slow,
Error guarantees, 
Few parameters (e.g. RK)
Large inductive bias
No data
Generalization?

Numeric solver                     hybrid solver                        ML solver 

Best of both worlds?



First attempts: Learning Stencils



Solution approximators

• PINN-like approaches (implicit function approximators):

• Inverse problems (learn PDE parameters)

• Good for high-dimensional problems

PINNs:
Raissi et al.

Journal of Computational physics 2017



Neural operators

• Operator learning:
• Map one solution to another solution
• Method approximately independent from grid
• Ideally generalizes to different grids, initial & boundary conditions, ...

DeepONet:
Lu et al.

Nature Machine Intelligence 2019

Fourier Neural Operator(FNO):
Li et al.

ICLR2021



Training a Neural PDE solver

• Train model by minimizing Loss function: 

with

• We train to predict the right answer
from a noisy input.

• Noise is given by numerical integration 
errors

• Generate ”data” from classical solver.



Encode – Process - Decode

<latexit sha1_base64="o1Od7Lv4VeC/jPn8f6PINYSh5GI="></latexit>

xi location

uk
i field variable at xi at time k

fm
i GNN feature at xi at layer m

✓PDE other properties such as boundary conditions, PDE parameters etc.



Encoder

• Embed node information on graph: 



Processor: GNN Message Passing on Irregular Grid

• Create irregular integration grid with the following information on nodes:

• Use GNN to process information:

<latexit sha1_base64="o1Od7Lv4VeC/jPn8f6PINYSh5GI="></latexit>

xi location

uk
i field variable at xi at time k

fm
i GNN feature at xi at layer m

✓PDE other properties such as boundary conditions, PDE parameters etc.



Decode

<latexit sha1_base64="fJMw9bbKcPhSS41kIAcKzQsACUY=">AAACG3icbZDLSgMxFIYz9VbrbdSlm2ARKpRhphR1IxS6cdNSwV6kHUsmzbShmQtJRihD38ONr+LGhSKuBBe+jZlpEW09kPDx/+eQnN8JGRXSNL+0zMrq2vpGdjO3tb2zu6fvH7REEHFMmjhgAe84SBBGfdKUVDLSCTlBnsNI2xlXE799T7iggX8jJyGxPTT0qUsxkkrq66VBn95ZxeQuFQ3DSKkGL2G1Xi+4qef+eAnVTvt63jTMtOAyWHPIg3k1+vpHbxDgyCO+xAwJ0bXMUNox4pJiRqa5XiRIiPAYDUlXoY88Iuw43W0KT5QygG7A1fElTNXfEzHyhJh4jur0kByJRS8R//O6kXQv7Jj6YSSJj2cPuRGDMoBJUHBAOcGSTRQgzKn6K8QjxBGWKs6cCsFaXHkZWiXDOjPK1+V85XYeRxYcgWNQABY4BxVwBRqgCTB4AE/gBbxqj9qz9qa9z1oz2nzmEPwp7fMbEk2dKg==</latexit>
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Handling Data Sparsity Symmetries: Korteweg-de Vries Eqn.

Periodic BCs

Brandstetter et al, 2022



PDEs can be solved many times faster with NNs



Conclusions PDEs

• Will ML play an important role in PDE solving?

• Important challenges:
• Error guaranteesà trust
• Data sparsity
• Generalization
• Stability 
• Multi-scale modeling
• Non-regular grids
• …

• Spectrum of methods: from traditional numerical solvers to completely data-driven surrogates
• Where should we be on that spectrum?



Molecules



Molecules

Tribology and lubricants

Whole cell modellingCatalyst design (e.g., fuel cells)

Drug discovery Photovoltaics

Nitrogen fixation

Everything material is made of molecules*

Molecules are at the root of solving many of the health, environmental and climate challenges we are facing today.

Markus Reiher et al. PNAS 2017;114:29:7555-7560

Shaher Bano Mirza et al. Journal of Molecular Graphics and Modelling 2016

James Ewen, Tribology Group, Imperial College London

Lowik Chanussot et al. ACS Catal. 2021, 11, 10, 6059–6072
Michael Feig et al. Mol Graph Model. 2015 May ; 58: 1–9

S.Y Reddy et al. Synthetic Metals 162, 23, 2012, 2117-2124

* Except 4 fundamental forces (electromagnetic force, gravity and strong & weak nuclear forces), and unless you break them up (plasma, quarks/leptons)



Scale of Molecular Simulations is Huge

• Gordon Bell 2020 COVID-19 prize
• UCSD-led team of 35 researchers
• MD simulation of coronavirus
• 305M atoms
• 27,648 GPUs

U (x)
• Gordon Bell 2020 main prize
• Berkeley/Princeton/Peking collaboration
• MD simulation of metals
• 127M atoms
• 27,360 GPUs

Weile Jia, et alLorenzo Casalino (UCSD) et al



Simulating molecules

quantum 
mechanics



A Search Engine for Molecules

10180 Upper estimate of the number of possible molecules
1080 Estimated number of atoms in the observable universe

1060 An estimate of the number of possible small organic molecules

108 The number of organic and inorganic substances in the CAS database

ML emulator

Simulator

Molecular
properties

slow

fast

Inverse design: search space of molecules to find 
ones with prescribed properties 



Some Examples: ML Forcefields

Synthetic training data
Perfectly labelled
Quantity limited only by compute
No privacy, GDPR, etc.

Data generation and training expensive
Amortized over many fast predictionsDeep learning emulator

First principles simulator



Machine Learning Layer: 
(e.g. Equivariant Graph Neural Network)

GPU Cluster

Computational Chemistry Layer:
(e.g. Density Functional Theory)
HPC or Quantum Computer 

Experimental Layer
Human or Robot

Propose candidate molecules
for further evaluation

Provide labels
for learning
ML model

Bayesian Optimization /
Reinforcement Learning

Engine

Provide labels for RL/BO  

Datasets
(e.g. QM9, OC20)

Reasoning over resources



Equivariant Normalizing Flows



Diffusion Based Generative Models



Molecule generation



Holy Grail: Conditional (Equivariant) Generation

• Generate drug molecules with given properties (binds to disease, non-toxic, easy to synthesize)

• Generate material with prescribed properties (biodegradable, strong, binds to CO2, catalyzes a reaction)

• Accelerate MD simulation by generating proposal distributions



Generating Molecules and Materials

Materials Discovery

Molecule Generation
(e.g. for drug discovery)

Generative 
Model +
MD  finetuning

Data from e.g. 
Materials Project



Quantum DFT Calculations

Hamiltonian for multiparticle system:

3 dim

We don’t know FLL(n)àlearn from simulation data!

Quanta Magazine on DM21
3n dim



Approach: Conditional Equivariant Diffusion Model

45
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Arne Schneuing Ilia Igashov

(+B. Correira, M. Bronstein et al.)

L denotes ligand nodes, P denotes pocket nodes 



DiffLinker: Molecular Linker Design
46

GEOM Dataset

Input Fragments True Molecule Di!Linker Samples

ZINC Dataset

Input Fragments True Molecule Di!Linker Samples

CASF Dataset

Input Fragments True Molecule Di!Linker Samples

Input fragments Reference molecule Generated  molecule



Transition Path sampling

PIPS :  Path Integral Path Sampling
Given initial state !! and target state !"
find the series of intermediate states 
{!#, !$, … , !"%#} that describe the transition 
path of minimal energy. 

Sampling transition paths between molecular conformations

Source: https://www.e-cam2020.eu/rare-events-story/

Project Sisyphus

Controlled dynamics



Alanine Dipeptide

Collective Variables:
Dihedral angles ! and !

� Extensively studied molecule with known collective variables

With Lars Holdijk, Yuanqi Du, Ferry Hooft, 
Priyank Jaini, Bernd Ensing



Polyproline Helix

Collective Variables:

Trans vs. Cis helix

� Transition from left-handed to right-handed helix (trans vs. cis)



Chignolin

Collective Variables:

� Small artificial protein used for studying folding process

Unknown



AI4Science

Computational 
Chemistry 

Molecular 
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Quantum 
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Machine 
Learning

Sustainability

Health 
Application

Modeling 
Technology

Science

Energy 

Condensed 
Matter 
Physics 

Computational 
Science 

Molecules Represent a Huge Opportunity

• We have named the ages of human 
development after the materials they use: stone 
age, bronze age, iron age, steel, plastic, 
aluminium,…materials on demand?

• A convergence of science, modelling 
technology and applications!

• A  “golden age” of designing new 
materials/chemicals/catalysts/drugs?



Concluding Remarks

• Will ML change the way we will do science? 
Yes: building on the models in NLP and Computer Vision, ML will change the
way we will do science.

• Huge opportunities to contribute to societal goals:
• health (drug discovery, new antibiotics, vaccines)
• Sustainability (carbon capture, battery materials, hydrogen production,

synthetic fuels, nitrogen fixation,..)

• Huge economic opportunities:
pharma, catalysis, materials 


