Self-supervised learning for computer vision from
images, Vile[sle and audio. Part
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Self-supervised learning

UPDATE: Transfer learning

o Assume two datasets, T and §

o Dataset 5 s

wAerlly-amtated - plenty- o imepes

e HUGE

* We can builc a model ag

(using self-supervised learning)

o Dataset T is

o No: as much annozated, or much fewer images

= I'he ennotations of I' do not need to overlap with &

o We canr use the model he
to learn a better specialiced k,

o _ o . . h
o This is called transfer learning y
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* This Encoder E learns strong
representations

« Eis “part of” diseriminater

§ UNIVIRSITY OF AMSTERDAM

Lecture 10

. G o
a) ;-. —— p S——

a4 -

] ' o

gLe ¢t o | el e )

~ {

AN |

>
e ' 2) () pydHd—oe

Generéted images:

Large Scile Adversarial Represencation Leaming Conahue et al. Neurl?€ 2010

DIEEY LEAKNENG UNE - VIS

L) I I’“'\

e f-supervised 20 representations

Fmergin

Swerging progertics inteif - cupewdeed
vision transformer:. Coros, "ouveor, Migra

Jdgou Weired, Bojoronshl Jouln, M 1ICCY,

(Guest) Lecture 11




x (¢ x

Cotr,
E
Mal z0,, 205 SSL is key for these two Objectives.
J

UNIVERSITY OF AMSTERDAM




Today:

What is Self-supervised learning (SSL)?
Why do we want to do SSL?

How to do SSL?
*The data

* The augmentations
* The methods

Note: SSL is an active research field with many new weekly discoveries.
Things change and there’s no good textbook yet, so we will cover some research papers today.

UNIVERSITY OF AMSTERDAM



Introduction to self-supervised learning in computer vision

Part: "What”?

UNIVERSITY OF AMSTERDAM



The field of Al has made rapid progress, the crucial fuel is data

4 Algorithms
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Data

Large scale datasets

IMAGENET

G TR e
o M o e TS P
N s sl

Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Fukushima, K., Biol. Cybernetics 1980

Object Recognition with Gradient-Based Learning. LeCun et al. Shape, Contour and Grouping in Computer Vision 1999

ImageNet: A Large-Scale Hierarchical Image Database. Deng, et al. CVPR, 2009.
ImageNet Classification with Deep Convolutional Neural Networks., Krizhevsky et al., NeurlPS 2012




Manual annotations for the data are limiting.

But manual annotations are expensive:

Images are often cheap e.g. 30min per image / requiring experts
( ) (" )
/4 1
Railroad
S ”Trogon”
crossing
- ), \ V,

Supervised
— .  —
Learning

ImageNet: A Large-Scale Hierarchical Image Database. Dong et al. CVPR 2009

X
UNIVERSITY OF AMSTERDAM The Cityscapes Dataset for Semantic Urban Scene Understanding. Cordts et al. CVPR 2016
= Scene parsing through ADE20K dataset. Zhou et al. CVPR 2017.
parsing &



Solving the problem of expensive annotations: self-supervision.

M UNIVERSITY OF AMSTERDAM
X



General procedure of self-supervised learning.

Types:
e Geometry based

Proxy task

o Clustering

e Contrastive

Unlabelled data , e Generative (partial/full)
+ transformations Gradient

Phase 2: Downstream tasks

e (More)

Types:
o Limited fine-tuning (e.g. linear layer)

Target task

o Finetuning (w/ full or fraction of dataset)
(Sparse) labeled data :



General procedure of self-supervised learning.

Unlabelled data

Proxy task

Phase 2: Downstream tasks

(Sparse) labeled data

+ transformations Gradient

~

Target task

Unlabelled data

J

Representation Learning

UNIVERSITY OF AMSTERDAM

SSI. task

+ transformations Gradient

Useful Self-supervised Learning, e.g.

SSL object detection & segmentation
SSL speaker detection, SSL dataset labelling etc..




Introduction to self-supervised learning in computer vision

Part: "Why”?

UNIVERSITY OF AMSTERDAM



Reason 1: Scalability

Syggset: alga, algae
Pause (k)
12 Hours of ImageNet

L e et

M Images

90ms * 1.2M = 30h

M UNIVERSITY OF AMSTERDAM ImageNet: A Large-Scale Hierarchical Image Database. Deng, et al. CVPR, 2009. -
l;' 12 hours of ImageNet: https:;//www.youtube.com/watch?v=PC60JL-IMzA



https://www.youtube.com/watch?v=PC60JL-lMzA

Reason 1: Scalability

Instagram: >50B images

UNIVERSITY OF AMSTERDAM

Annotation is expensive, yet datasets keep getting bigger.

13



Reason 2: Constantly changing domains

1972 1982 1988 1995 2003 2012

Unclear when & what to relabel. Again, large costs just to “keep up”.

UNIVERSITY OF AMSTERDAM
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Reason 2: Accessibility & generalisability

Query image Top 3 nearest neighbours
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Pretrained models are very useful for a variety of tasks.

: UNIVERSITY OF AMSTERDAM https://www.kaggle.com/c/herparium—201 9-fgvce, https://en.wikipediaprg/wiki/l\/ledical_imaging#/media/FiIe:CT_chn_General_I|Iustration.jpg
';‘ Schaefer et al. Deep convolutional neural networks as strong gravitational lens detectors. Astronomy & Astrophysics.

Resler et al. A deep-learning model for predictive archaeology and archaeological community detection. Nature Humanities & Social Sciences Communications.


https://en.wikipedia.org/wiki/Medical_imaging#/media/File:CT_Scan_General_Illustration.jpg

Reason 3: Ambiguity of labels

x (3¢ %
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Bisexual, bisexual person

A person who is sexually attracted to both sexes
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supernumerary (V)

inhabitant, habitant, dweller, denizen, indweller (4
debaser, degrader (1)

achiever, winner, success, succeeder (5)

- contemplative (0)

Cancer, Crab (0)
national, subject (18)
interpreter (0)

namer (0)

hoper (0)

gainer (0)

buster (0)

- biter (1)

sensualist (12)

L. cocksucker (0)

. erotic (0)

L epicure, gourmet, gastronome, bon vivant, epil

- voluptuary, sybarite (0)

' hedonist, pagan, pleasure seeker (1)

playboy, man-about-town, Corinthian (0)

bisexual, bisexual person (3)

Nonsensical
visual labels

A

Labels are ambiguous at best, discriminating and bias-propagating at worst.
Do we really wish to provide our models with these priors?

https://en.wikipedia.org/wiki/List_of_house_styles

https://www.shutterstock.com/image-illustration/flat-ships-sailing-yachts-marine-sailboats-1903407259

https://excavating.ai/ Crawford & Paglen

16



https://en.wikipedia.org/wiki/List_of_house_styles
https://www.shutterstock.com/image-illustration/flat-ships-sailing-yachts-marine-sailboats-1903407259
https://excavating.ai/

Reason 4: Investigating the fundamentals of visual understanding

o0 Meta Al Research  Publications P

RESEARCH

Self-supervised learning: The dark matter of
intelligence

As babies, we learn how the world works largely by observation. Ve form generalized predictive models about

objects in the world by learning concepts such as object permanence and gravity. Later in life, we ocbserve the
world, act on it, observe again, and build hypotheses to explain how our actions change our environment by
trial and error.

What, if there are, are the limits of learning without labels?

X UNIVERSITY OF AMSTERDAM https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/ .
Lgl Orhan et al. Self-supervised learning through the eyes of a child. NeurlPS 2020


https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/

Quiz: turn to your neighbour and briefly explain the core
idea behind self-supervised learning.

Food for thought:

What are the core principles and ideas?
What is intuitive? What is (so far) unclear?
Our human learning experience vs the ML perspectives

UNIVERSITY OF AMSTERDAM




Overview of self-supervised learning methods (the "how”)

UNIVERSITY OF AMSTERDAM



Here, we will only cover the most important works.
Further details and recent developments can be found here:

CVPR 2020 Tutonal

Leave Those Nets Alone:
Advances in Self-Supervised

Learning

Spyros Gidaris Andrel Bursuc Jean-Baptiste Alayrac Adria Recasens

Mathilde Caron Olivier Hénaff Aaron van den Oord

Relja Arandjelovié

https:/gidariss.github.io/sclf-supervisco-leaming-cvpr2021/

CVPR’21 Tutorlal by Bu

UNIVERSITY OF AMSTERDAM

rsuc et aI

https://www.youtube.com/watch?v=MdD4UMshl1Q
https://sslwin.org/

Self-supervised Learning @ ECCV’22 (Tel Av1v)

https://sslwin.org/ — i
Self Supervised Learning; What is Next?
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© Conferences are the backbone of our community
O Here we publish papers and discuss recent results

o Workshops focus on specific topics

DEEPF LEARNING OME

Summary

ECCV'20/22 workshop by Asano et al.

Was this October!



https://www.youtube.com/watch?v=MdD4UMshl1Q

How does one learn without labels?

Need to generate a loss that provides gradients. Types of signals that we
can leverage include:

e Reconstruction (full image or some within-image patch(es))
e« Geometry

e Augmentation invariance

e IMage uniqueness

» Assumed structure (clustering)

UNIVERSITY OF AMSTERDAM



EFarly methods Context prediction

-----------------------------------------
-
\d ~

Word2Vec

CBoW

input projection output

Motivated from NLP

~ v
_____
-------------------------------------

UNIVERSITY OF AMSTERDAM

Predict where right patch

Take some 3x3 patches
comes from

https;//www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283

Doersch et al. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015.

22


https://www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283

Note: this is how GPT and pretty much all LLMs have been trained

--------------------------------------
"""""

Word2Vec

CBowW

input  projection  output Output

Input
recite the | first | law $ l
. Motivated from NLP
S UNIVERSITY OF AMSTERDAM https://www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283
X

Doersch et al. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015.

23


https://www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283

Early methods

..........................................
4 ~

' Word2Vec ‘. Context Prediction Context Encoders

CBoW

input projection output

(a) Input context (c) Context Encoder
(L2 loss)

o I Otprriive.
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Learning without labels is meaningful and possible.

https://www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283
UNIVERSITY OF AMSTERDAM Doersch et al. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015.

Pathak et al. Context Encoders: Feature Learning by Inpainting. CVPR 2016.

Gidaris et al. RotNet: Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018

x (¢ x


https://www.researchgate.net/figure/Word2Vec-CBOW-and-Skip-gram-There-are-two-different-methods-in-the-Word2Vec-algorithm_fig2_320829283

Geometry: RotNet: learn features by predicting “which way is up”.

But:

UNIVERSITY OF AMSTERDAM
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Unsupervised Representation Learning by Predicting Image Rotations. Gidaris et al., ICLR 2018

25



Image-uniqueness: Exemplar CNN, precursor to contrastive learning

\

— Class 1 Uses image-uniqueness and
enforces augmentation-invariance
— Class k
— Class n
UNIVERSITY OF AMSTERDAM -
Lil Dosovitskiy et al. Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks. NeurlPS 2014.



Modern Noise-contrastive self-supervised learning

/ — \
AA@ The contrastive loss for
1 I [ moEn ¢ o Cl11] 11

DOSItive pairs I,:

. exp(sim(z;, z;)/T)

fi,j = — log :
L1 [ki] €XP(sim(z;, 2k)/T)

Augmentation

“non-parametric” softmax

SImCLR

Enforces image-uniqueness and
enforces augmentation-invariance (more on that later)

X
UNIVERSITY OF AMSTERDAM Wu et al. Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination. CVPR 2018 27
Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020



CLIP from Lect 9 and assigment 2 simply applies SimCLR across modalities

m 27 Attract R 1. Contrastive pre-training

H AW

BT OOrrerms N EE N EoE

SimCLR CLIP: instead of augmentation, uses an image caption

UNIVERSITY OF AMSTERDAM
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Modern Noise-contrastive self-supervised learning

contrastive loss

contrastive loss

gradient T gradient simijlll‘arity
Y ( C]k ‘_\’ \ ’
A {q ]w".f(_) 1{71 AZ
: A queue |
encoder q encoder k e momentum
encoder
A A
q k
h X key _key _key
_.query wnrey KEy KeEy
128D Unit Sphere (A Ly~ X7 Ly

NPID SimCLR MoCo
Momentum encoder:

# momentum update: key network
f_k.params = mxf_Kk.params+ (l-m)*xf_g.params

The start of large-scale & industrial self-supervised learning.
These works heavily rely on image augmentations.

Wu et al. Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination. CVPR 2018
Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. ICML 2020
He et al. Momentum Contrast for Unsupervised Visual Representation Learning. CVPR 2020

UNIVERSITY OF AMSTERDAM
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Masked Image Modelling (recent development)

= you has the highest probability you,they, your..
u , \ ] Output [CLS) how are doing today [SEP]
Vi n
= [
m encoder —> H
N [ BERT masked language model
L R R
. - Input [CLS]  how  are MASK] doing today [SEP]
L

Back to NLP

Vision Transformer

He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR21
UNIVERSITY OF AMSTERDAM Xie et gl. S/mMIM.- A Simple .Framework for Masked Image Modeling. ArXiv N
X Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR21
https;//www.sbert.net/examples/unsupervised_learning/MLM



Clustering

Alternate between clustering

x (¢ x

Classilicauon

Convnet

t Pscudo-labels

Clustering

0
\.

Concepls

Make

DeepCluster

— assignments —

consistent

UNIVERSITY OF AMSTERDAM

Clustering is a strong pretext task and serves a useful purpose (~labelling/categorizing).

Concepts

and network learning

Online & implicit clustering

E l Momentum]
J |}

] Image 2: B

Caron et al. Deep Clustering for Unsupervised Learning of Visual Features. ECCV'18

Asano et al. Self-labelling via simultaneous clustering and representation learning. ICLR"19

Caron et al. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurlPS20
Li et al. Prototypical Contrastive Learning of Unsupervised Representations. ICLR21

Caron et al. Emerging Properties in Self-Supervised Vision Transformers. ICCV'21
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On which datasets are self-supervised methods trained
and evaluateds

UNIVERSITY OF AMSTERDAM



Datasets for images: Pretraining and downstream
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- Class-balanced dataset, via search engine

- Unclear image licences

- Particular choice of classes, e.g. 120 classes of dogs
- Object-centric, stereotypical images

- Many problematic images (see Prabhu & Birhane)

UNIVERSITY OF AMSTERDAM Deng, et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR, 20009.
Prabhu & Birhance. Large image datasets: A pyrrhic win for computer vision? FaCCT 2020
Asano et al. PASS: Pictures without humAns for Self-Supervised Pretraining. NeurlPS-Data’21
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Recent surge in research on problematic images in ImageNet

Bisexual, bisexual person

A person who is sexually attracted to both sexes

D OTUeraIY) class_number label mean_gender_audit mean_age_audit mean_nsfw_train
: inhabitant, habitant, dweller, denizen, indweller (485) 445 bikini, two-piece 0.18 24.89 0.859
g s apacsll) ceder (5 638 maillot 0.18 25.91 0.802
L o 639 maillot, tank suit 0.18 26.67 0.769
| plative (0) e ..
L Cancer, Crab (0) 655 II:llnlSklrt, mini 0.19 29.95 0.62
' national, subject (18) 459 brassiere, bra, bandeau 0.16 25.03 0.61
. interpreter (0)
- namer (0) Table 5: Table of the 5 classes for further investigation that emerged from the NS
- hoper (0)
! gainer (0)
- buster (0)
! biter (1)
'\ sensualist (12) .
-k cocksucker (0) — 08 L 00
l . >< 0
erotic (0) LLi —
L epicure, gourmet, gastronome, bon vivant, epicurean, foodie (0) 206 - = —0.5
- voluptuary, sybarite (0) = - by ——_— - T 210
- ' hedonist, pagan, pleasure seeker (1) e 0.4 S
playboy, man-about-town, Corinthian (0) @ gender bias o —1.5
- bisexual, bisexual person (3) S 0.2 Bl Women-majority c
'~ hermaphrodite, intersex, gynandromorph, androgyne, epicene, epicene person (0) %’ Men-majorily 5 =20
| | pseudohermaphrodite (0) 0.0 X
O F O N e e
& %Qoé <& %Qoé on& N $¢~° ‘\e-\b
&
dog _group
Figure 4: Known human co-occurrence based gender-bias analysis
UNIVERSITY OF AMSTERDAM https://excavating.ai/, Crawford and Paglen

x (¢ x

Large image datasets: A pyrrhic win for computer vision?, Prabhu & Birhance, FaCCT 2020



Remove all the humans!

UNIVERSITY OF AMSTERDAM



Data generation pipeline
—

YFCC-100M

(Thomee et al. 2015)

> 17M

Creative Commons
‘CC-BY’ license only

Download and
removal of broken/
single color files

>

Automated removal of images

with faces and humans

Balance image
contributions by user

PASS

.

|

 1.4M images
* <80 images per user
* Full-licence files

Human verification: no humans

Human verification

Flag all images that contain: people, body parts and personal information (ID, licence plate, names etc.)

Examples:

-

Real data:

36



The dataset: 30% of images contain location meta-data.

UNIVERSITY OF AMSTERDAM
X

40

35

|
N
wn

— N
wn =
log10(Numberofimages)

05

0.0
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The dataset: diverse, containing nature and buildings.
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Datasets for images: Pretraining and downstream

511\\

f "”'”16( N A

PASS

An ImageNet replacement for self-supervised pretraining without
= ¢ _humans
' 'I : 5,_‘ 4!‘ .I X - Ve :

""l’

- Class balanced dataset, via search engine . Random images from YFCC-100M
- Unclear image licences - All images with complete CC-BY licences

- Particular choice of classes, e.g. 120 classes of dogs + No people, nor identifiable information
- Object-centric, stereotypical images - Natural images as humans take them o
. Many problematic images (see Prabhu & Birhane) - Likely a better indicator for billions-level pretraining

Clustering (- SVM low-shot (4 + Linear probing (“+¢%) Finetuning (é%)

IN-1k Places205 IN-1k MS-COCO:

ObjectNet Pascal VOC Places205 detection, segmentation, key
Places205 Herbarium-19 CIFAR-100 point detection, dense pose
Flowers Flowers estimation

Pascal VOC:
detection

LVIS v1.0:
detection

UNIVERSITY OF AMSTERDAM Deng, et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR, 2009. 39
Prabhu & Birhance. Large image datasets: A pyrrhic win for computer vision? FaCCT 2020
Asano et al. PASS: Pictures without humAns for Self-Supervised Pretraining. NeurlPS-Data’21
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Downstream semi-supervised tasks: Self-supervised Learning helps

__———28 Once pretrained, self-supervised networks good for
_ O
0.9 - /. — . . .
% - P PN quick transfer learning even with few labels
o /0 ® labels
S 0.8 - :
S | Y ortower | < ./ Achieves much better performance for low number
2 0.7- ooty of annotated data
é0 6 - @
s This is the case if you were to found a startup and
= . .
0.5 PN PO R tackle a new problem (annotation=expensive)
- -8= ResNet trained on raw pixels
0.4 1 1 1 1 1 1 1
1 2 5 10 20 50 100

Percentage of labeled data

Figure 1. Data-efficient image recognition with Contrastive Pre-
dictive Coding. With decreasing amounts of labeled data, super-
vised networks trained on pixels fail to generalize (red). When
trained on unsupervised representations learned with CPC, these
networks retain a much higher accuracy in this low-data regime
(blue). Equivalently, the accuracy of supervised networks can be
matched with significantly fewer labels (horizontal arrows).

UNIVERSITY OF AMSTERDAM Data-Efficient Image Recognition with Contrastive Predictive Coding. Henaff et al.



Self-supervised learning using optimal-transport based clustering

UNIVERSITY OF AMSTERDAM



Selt-labelling via simultaneous clustering anc
representation learning (ICLR’20 spotlight)



Goal: Discover visual concepts without annotations.

UNIVERSITY OF AMSTERDAM ImageNet: A Large-Scale Hierarchical Image Database. Deng, et al. CVPR, 2009.
X

concept "A”

concept ”Z”

' 4
-
S
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How can we solve this chicken and egg problem?

UNIVERSITY OF AMSTERDAM (I have no idea where this gif is from)

44



The key to image understanding is separating meaning from appearance.

UNIVERSITY OF AMSTERDAM

Mo w

237 153 252 249
088 184 249 030
211 245 091 013
243 236 245 210
245 029 099 023
237 004 007 187
251

N

ifferent Iighting\

110 184 249 030
241 245 091 033
253 126 245 231
004 127 245 029
099 023 237 153
257 219 048 187
251

Mirrored

Different zoom /

Transformations
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Quiz: What other ways of incorporating prior knowledge
have we already learned about? (MC)

1) Choosing the right learning rate

2) Setting the network architecture
3) Picking the optimizer

4) Choosing the number of epochs
5) Choosing the loss

UNIVERSITY OF AMSTERDAM




Our work applies the idea of augmentation invariance to assign concepts.

Concepts

Make
— assignments —
consistent

UNIVERSITY OF AMSTERDAM .

x (¢ x



Our work applies the idea of transformation invariance to assign concepts.

x (¢ x

Image 2

Concepts

UNIVERSITY OF AMSTERDAM

—

Make
assignments
consistent

—

Concepts

Image 1: A

Image 2: B

48



How can we optimize the labels and make assignments consistent?

(If we had ground-truth labels

min L(y, @),

O

1
where L(y,®) =— ) lo | X, D
(v, @) NZ gp(y;|x;, @)

=1

e Listheloss (cost) function

e Disthed

e yarethe

=

eep neural network model

abels

x (¢ x

UNIVERSITY OF AMSTERDAM

0 . )
fOur novel contribution without ground-truth

Solution sketch:

1. Represent via an assighment table g and optimize:

1 N
Lg, ®) =+ D D, ak1x) logp(y|x;, )
=1 vy

But: The trivial solution for g is to set all labels to be the same

2. Use pseudolabels an equal number of times:== ====

3. Pose as approximate optimal transport:

\_ J

Self-labelling via simultaneous clustering and representation learning. Asano et al. ICLR 2020

Sinkhorn distances: Lightspeed computation of optimal transport. Cuturi. NeurlPS 2013



SK optimisation (not needed for exam)

minp. g F(P) = minPeU[(Q, — log P) — /lh(P)]

d
0=—-F
dpij
d - ,

= Qi+ Alog(P)) + A+ a; + p;

Hence

Pi=exp(—A"'a,—27'Q;— 1 -17"p))

11 —1
= ue A szv. — uie/l 108(4)‘/.

J J

UNIVERSITY OF AMSTERDAM
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SK optimisation of assignments Q (not needed for exam)

. . 1
min e, L = m1nQ€U[(Q, —log P) — Ih(Q)]

N
C >0, costs
using H(Q) = H(r) + H(c) — Dg;(Qllrc") = 10g(NK) — Dy, (Qllrc')

1
ming L = minQeU[(Q, C) + IDKL(QHrcT)] + const.

Find minimum:

0=—F = [2 0,C;+ —QU log(Q) + D a( Y, 0= D+ X A(Y, 0= D)
%] qU ij [ ij Jj ]

1
—C +IlOg(Q)+/1+C¥ +,B

Hence:

Q,; = exp( — Aa; — AC; — 1 — ;)

_ —AC;.o, — .. Alog(p),, — A
= ue "I = use Vi = w;pv;

UNIVERSITY OF AMSTERDAM
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Algorithm

Model @

input

layer
contrast
extraction

ecge
extraction

Optimal labelling

—_—— —m -

Cross entropy training

with augmentations

—

UNIVERSITY OF AMSTERDAM

Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020

Label assignments ¢

L 4
-
S
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Our method applied on 1.2 million images: Examples

& 3 AL Bl s
v ST 'Lr'-

1.2M Images

UNIVERSITY OF AMSTERDAM Self-labelling via simultaneous clustering and representation learning. Asano et al. ICLR 2020

x (¢ x

Legend:

Concept

B3



Automatically discovered concepts match manual annotation.

Legend:

) -']1" ey v.p
. R L T

S aRT

Concept

: L R | | Manuall
e ER Sl A LR o color annotated label
w7 . o / (>2.5y of work)

Explore all clusters:

UNIVERSITY OF AMSTERDAM Self-labelling via simultaneous clustering and representation learning. Asano et al. ICLR 2020
ImageNet: A Large-Scale Hierarchical Image Database. Deng et al. CVPR, 2009.

B4

x (¢ x



AlexNet, ImageNet linear probes (remember Lecture 5)

o Big jump on DeepCluster AlexNet (top-T acc, 10 crops)

e SOTA or close to SoTA for AlexNet

B Se
W Se
i3 Su

Conv4 Convbh

3 UNIVERSITY OF AMSTERDAM Unsupervis?d representatiop learning by predict.ing image rotations. Gidaris et al. ICLR,2018.
X Self-supervised representation learning by rotation feature decoupling. Feng et al. CVPR 2019.

B Rotation
B DeepCluster

_d
_a R50 + Rot

hervised

55



Self-supervised labelling from three core ideas

Invariance to augmentations Virtuous cycle of labelling Balanced labelling
and representation learning

Labels i | Mode
Original [?iighet:rew;t Diztf)eorrint
(1) Transformations (2) Usetul labels (3) Balanced pseudo-labelling
o Data augmentations “infuse » Labels discovered are similar « Well defined, fast objective
knowledge” to ground-truth « No trivial solutions

e Can be used to analyze how
the network “sees” the data

UNIVERSITY OF AMSTERDAM

Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020



More recently...

‘l ! ‘ loss:
l | | - P2 log P1 @
Unsupervised Learning of Visual Features —— ¢
by Contrasting Cluster Assignments

| softmax softmax
| 1
| centering
Mathilde Caron'+* Ishan Misra® Julien Mairal’ | I
I
| Priya Goyal® Piotr Bojanowski® Armand Joulin? l\ ema
| | student ges —_— teacher gel.
! ‘ |

) ! Inria’ ? Facebook Al Research |

| 4

|

| Unsupervised image representations have significantly reduced the gap with su-

| I
I Abstract ‘

\

|

f
pervised pretraining, notably with the recent achievements of contrastive learning '
‘ methods. These contrastive methods typically work online and rely on a large num- i
L ber of explicit pairwise feature comparisons, which is computationally challenging.

DINO: uses momentum ViT encoder,

SWAV: generalises Sela to cluster online . . .
5 replaces online SK with centering and softmax

UNIVERSITY OF AMSTERDAM Unsupervised Learning of Visual Features by Contrasting Cluster Assighments. Caron et al. NeurIPS 2020.

Emerging Properties in Self-Supervised Vision Transformers. Caron et al. ICCV 2021.



More recently...

Top-1 A
Method 2x224  2x160+4x96
Supervised 76.5 76.0 —0.5
Contrastive-instance approaches
SimCLR 68.2 70.6 +2.4

U dPDPDIrodclrsi

SeLavy 6T 1.8 Y

Jeepl lusier-v./ /) / /4 4 +4 |

70.1 74.1

e SWAV uses Sela’s SK algo
e Sela-v2 better than SImCLR

Method Momentum Operation Top-1
. DINO v Centering 76.1
2 - v Softmax (batch) 75.8
3 - Sinkhorn-Knopp 76.0
4 — Centering '

Softmax (batch) 72.2

5  SwAV Sinkhorn-Knopp 71.8

o DINO with SelLa’s SK: same performance.

UNIVERSITY OF AMSTERDAM Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. Caron et al. NeurlPS 2020.

Emerging Properties in Self-Supervised Vision Transformers. Caron et al. ICCV 2021.
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DINO has remarkable properties

Supervised

The attention matrix of the [CLS] token with the spatial
patches highlights the salient objects..

Co-segmentation Part Co~-segmentation

.aaj.&

Original Images Lo-sagmentation Fart Co-sagmentation

Spatial features even capture semantics across classes

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. Caron et al. NeurlPS 2020.

X
UNIVERSITY OF AMSTERDAM Emerging Properties in Self-Supervised Vision Transformers. Caron et al. ICCV 2021. 59
Deep VIiT Features as Dense Visual Descriptorsg. Amir et al. ECCV'SSLWIN 2022.



Fraser Stoddart:
"You’ve got to
break the rules”

How research gets done: part 9

Previous parts:
[fundamental understanding/read papers, how-to-read-papers, implement & tinker with code, realise and seek funny
moments, MVP/principles/benchmarks/baselines, when to (not) give up/impact-vs-work, importance of Ablations]

o I|deally before or latest when all previous steps are (more or less) completed
we develop the storyline 5
Why a story? Aren't we writing a hard, cold, scientif : S| tessase |8
. y a story? Aren’t we writing a hard, cold, scientific paper: \ 8 o |8 /
. . . )
e Yes, but: (science) communication not as easy: ?

Relationship

e Sowe need to putin a lot of work
o What's the rode draad/overarching motif?
o Use google docs, don’t make it super nice, just re-iterate from scratch multiple times.

a  Foumditine models ped laepescdle predrmrnd rodds gty sgotet
, 1S Farng e by esperaiw 30 wiory hem B
1000l Tings & becomng Insotant
o P50 bovoma pomder end calod prompllosrsing vhors prommots ses lhamod for
AaTE AUOSN D SN Aoy

Experiments:

300!‘,':
©. Autorratically inc 1g labels in v deo catasets doesn't come Yor free”,
2

Script

© 0ach caranel o and compuied v & it wakght reswert

Slide 1:
Th s talk is about our paper self-supervised keaming of cbject parts for semantic
segmentation

b ATTMRON TN DNNNG NPU-CODOI0NNT NS NI

s Futsrwiwn abltions sod sxcpaviments Bt how cormater Jenecalons
L b =]

» Cualitabve anahsls provides nsights Nl cistance 10 CLIP taning
detbuion (7)o we adc irtarpretabiity o $eo CUIP-blackbax

2, butit §imocrtant:
2
3. We oreset a method 1o €0 unsupervised vicec dataset latelling,
4. We analyse our mathod to show:
a  Importance of multi-nmcdality for generatan of labals 1 &n ursupanyisad way
1. Audio-on'y SalaVvi aval
1. crees-moda y rarad
Z. Audko-cnly trained
I Video-only SalaViava
1 coss-moday bered
7 Vidoo-only irmined

Slide Z:
‘e present cur method Leopart, which ‘earns object cart embeddings that set new SOTA on

. Aoltors (on T daxmers: CFAR- 00 SUNST)
varous semantic segmentation >2rchmarks. -

vt of vhin (Ve
r 124,800
v dolosaysoetl?
o rhar of Sit bor [obhervn (onge rem & (o | At ) o TE, i0g saele s s

avel
» RN AV

Slide 3.

S0 far, 2elt-supanised lsaming has mostly focuses an imaje<dsyvel leaming fror
ooject-centric catasets such as ImageNe:.

'We propoase to lack € the next bic challence: spatially-denss learning. First, the wordd is not

(same for presentations)
e Best thing: you'll discover important missing experiments e

Anbin ol valghis scim Mawis oy TG eve o stastiarvabos L T

& have the introduction part of paper almost done e

o Ondant?
o Sul-hens vi SCEOry v 4% NLP hand
9 scoen, ¥4 dotoray?
®  WOTRECINY WC-ITH IFL VLP WD 250 WRET 0.0, CONeY UK PO ) iR wWaNegre
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However: The world is not object-centric.

-

COCO 2017 (train+val)
0.12M images

[ILSVRC-DET 2014 (train+val)
().35M images

Object-centric image Dense real-world image

UNIVERSITY OF AMSTERDAM The Open Images Dataset V4. Kuznetsova et al. ICJV 2018 61



Self-Supervised Learning of Object Parts for Semantic Segmentation
CVPR 2022

Adrian Ziegler*, Yuki M Asano

Technical University of Munich, University of Amsterdam
*work done as MSc thesis

UNIVERSITY OF AMSTERDAM ‘0



Self-Supervised LL@arning of Object Parts for semantic Segmentation
CVPR 2022

Adrian Ziegler*, Yuki M Asano

Technical University of Munich, University of Amsterdam
*work done as MSc thesis

UNIVERSITY OF AMSTERDAM .



Self-Supervised Learning has to move from image-level to spatially-dense learning

1) The world is not object-centric

2) Spatia
3) Spatia

prediction tasks

MK X

Yy-C

y-C

ense

ense

earning scales better

I Spatially-Dense | Image-Level
earning improves performance on dense .

70

65
60
55 I
50

DINO [1] VioCo-v2 [2] DenseCL [2] Leopart

mloU on PVYOC

UNIVERSITY OF AMSTERDAM [1] Caron et. al, ICCV 2021 [2] He et. al, CVPR 2020 [3] Wang et. al, CVPR 2021 64



We propose a dense clustering pretext task to learn object parts

UNIVERSITY OF AMSTERDAM
x

Local Crop i

Attention
map

Roai-align

H

]

EMA

| ViT

Sinkhorn-
Knopp
Clustering

| i

2\

Roi-
align
Optimal B
cluster assignments : Masked 2D
. cross entropy
Roi-
align

Predicted cluster
assignments

65



Quiz: Why did we use Rol-Align and not Rol-Pool?

1) Rol-Align is faster to compute

2) Rol-Align can take care of non-rectangular selections
3) Rol-Align works for non-integer locations

4) Rol-Pool would have worked as well

UNIVERSITY OF AMSTERDAM




MK X

UNIVERSITY OF AMSTERDAM

+ Pretext Task

67



Additional Innovation 1: Cluster-Based Foreground Extraction (CBFE)

e Use attention masks as “noisy foreground”
e Assign clusters that have large loU with to this
“foreground”.

e Improves foreground extraction by >10% in
comparison to DINQO’s attention map.

DINO Attention Masks Leopart Cluster Masks

UNIVERSITY OF AMSTERDAM
x

68



+ Pretext Task

DINO

69

UNIVERSITY OF AMSTERDAM
X



Additional Innovation 2: Overclustering with Community Detection (CD)

e Interpret objects as co-occurring object parts
e Construct undirected weighted graph
e Each node corresponds to a cluster

e Edges weights by co-occurrence probability

UNIVERSITY OF AMSTERDAM 20
x



Overclustering with Community Detection

e Run community detection algorithm on graph to merge to objects
e The network shows
e Semantically close object parts are in the same community.

e Object parts are learned that do not latch on low-level features.

UNIVERSITY OF AMSTERDAM



<

+ Pretext Task

DINO

72

UNIVERSITY OF AMSTERDAM
X



Leopart improves fully unsupervised SOTA by >6%

S0
40

30

mlioU

20

10

MoCo-\v2 MaskContrast DINO

Leopart (pretext) Leopart (CBFE) Leopart (CBFE +
CD)

UNIVERSITY OF AMSTERDAM
] Van Gansbeke et. al, ICCV 2021



| eopart achieves transter SOTA on three datasets simultaneously

B PVvOC | COCO-Thing COCO-Stuff 75
60

70

50
85

40
- 60

30
55

20

10 | | DINO Hier. MoCo-v2 MoCo V2 DenseCL DenseCL Leopart IN Leopart
MaskContrast DINO Leopart IN Leopart CC Grouping CC

mloU
mlalJ

Semantic Segmentation Results with K=500 Semantic Segmentation Results with FCN Head on PVOC
IN = ImageNet, CC= COCO

B UNIVERSITY OF AMSTERDAM L

P



Augmentations were key for both SelLa and Leopart.
Note how they were used
a) to solve the chicken-and-egg problem

b) not only as invariances in Leopart (the crop’s location was essential)

Next we will investigate these augmentations a bit more in detail.

UNIVERSITY OF AMSTERDAM



How can we isolate the effect of augmentations?

By learning from a single image
Data
IM images

Data
1M crops of 1 image

VS.

UNIVERSITY OF AMSTERDAM
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How do we go about this?

Process

e generate a dataset of 1.2M transformations
of the same image

o train using an off-the-shelt SSL method

« compare to using 1.2M different images

UNIVERSITY OF AMSTERDAM

Data
IM crops of T image

77



What do we learn?

1) How much a single image can take us from a random initialization

2) Whether self-supervised learning can extract more information
than that

UNIVERSITY OF AMSTERDAM
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Tested images

Lo
.h
S o

] ‘
v s
=t N A

UNIVERSITY OF AMSTERDAM -
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Self-supervised learning from one image:

First convolutional layer

1.2M images, supervised

Method, Image A

BiGAN

RotNet

DeepCluster

- ANV R
=208
AV ANTUISNT ol b

'/
o
WN
|
b
J
Fi
'// ,
!

LA ]

SR L=

UNIVERSITY OF AMSTERDAM

ST P4
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Self-supervised learning from one image:
Quality (ImageNet linear probes)

Comparison of random, DeepCluster (1 & TM images) and supervised
B Random M 1-image M TMimages [ Supervised

48.3

442
39.2
37.2
/ / 30.6
19.
q

UNIVERSITY OF AMSTERDAM ConvT Conv2 Conv3 Conv4 Convb
p |

50.5

81



Self-supervised learning from one image:
Quality (ImageNet linear probes)

Comparison of random, DeepCluster (1 & TM images) and supervised
B Random M 1-image M TMimages [ Supervised

44.2
39.2
37
325
285
s 16.9 16.3

48.3

2

/L

14.1

20.7 193
18 :

30.6

UNIVERSITY OF AMSTERDAM ConvT Conv2 Conv3 Conv4 Convb
X

50.5
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Style transfer with a 1-image trained CNN

Content ] tyl

83



[ Update Feb 2021 ] Using a ResNet-50 and MoCo loss,
we get even closer for fine-tuning tasks.

COCO R50-C4 finetuning, 1x

pre-train Bounding-box Segmentation
APPP  APL>  AP;s  AP™K APDK  APME
Random 264 440 278 293 469 30.8
Supervised 38.2 \ 582 41.2 33.3 547 35.2
ours I-image A 36.5 5.2  39.2 32.1 52.2 34.0
MoCo-vl 38.5 3 41.6 33.6 548 35.6
MoCo-v2 39.0 41.9 342 554 36.2

+10% mAP from a single
image and augmentations

Within 3% of MoCo-v2
on full ImageNet

UNIVERSITY OF AMSTERDAM (Unpublished)

Surface normal estimation on NYUv2

Angle Distance | Within ¢° |

Initialization Mean Median 11.2522.5 30
Random 26.3 16.1 37.9 60.6 69.0
ImageNet supervised 26.4 17.1 36.1 59.2 68.5
l-image 24.3 15.0 40.9 62.470.6
Jigsaw ImageNet 24.2 14.5 41.2 64.272.5

84



Update 2:

https://single-image-distill.github.io/

.. using knowledge distillation.

0. Source datum

M UNIVERSITY OF AMSTERDAM

P

1. Strong augmentations

2. Knowledge distillation

Pretrained .

Teacher
Student
~

ImageNet classes:
1: Tench,
2: Goldfish,

1000: toilet paper

\

Dy,

85


https://single-image-distill.github.io/

Conclusion

Self-supervised learning works (to a very large extent)
thanks to augmentations.

UNIVERSITY OF AMSTERDAM

86



Augmentations revisited

(f) Rotate {90°,180°,270°}

Crop

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

x (¢ x

«o®

(g) Cutout

c,°‘°°‘

(h) Gaussian noise

v

\
&o*°

2nd transformation

UNIVERSITY OF AMSTERDAM

(1) Gaussian blur

(j) Sobel filtering

augmentations (besides longer

unsup. pre-train ImageNet VOC detection
case MLP aug+ cos epochs| acc. |[APsg AP APys . .
e 55 s training and MLP head and
MoCovl S5 559 626 .
@ b 662 |mo se4 26 | better learning rate schedule)
(b) h3.4 : ) :\ . .
© o 200 | 673 | 825 572 639 Nave huge impact
(d) v v oo v 200 67.5 | 824 57.0 63.6
(e) v v oo v 800 71.1 | 82.5 574 64.0
_ transfer :
b) # bits I(vy;va) performance
ndgnngh toc much
. sigra roise
I(x:¥) hypothesis
intuition: A

evidence:

Positive Pair
for InfcMax

Figure 1: (a) Schematic of multiview contrastive representation learning, where an image is split into two views,

.

I(vy va) = I(x;¥)

I'(viiva)

I(vyiva) = I(x;y) I{v;; V2)

and passed through two encoders to learn an embedding where the views are close relative to views from other
images. (b) When we have views that maximize [(v1;y) and I(v2;y) (how much task-relevant information is
contained) while minimizing /(v ;v2) (information shared between views, including both task-relevant and
irrelevant information), there are three regimes: missing information which leads to degraded performance due
to I(vy;v2) < I(x;y); excess noise which worsens generalization due to additional noise; sweet spot where
the only information shared between v and vz is task-relevant and such information is complete.

:\; 64.0

> 63.5 -
@)
©

S 63.0 -
v}
v}
< 62.5 -
.
U
< 62.0 1
)]

E .

}'2\‘5 . '}—2.0 ‘

Color Jittering

X 1.0

rs 05

%025

x-D.125

5.6

5.7 5.8 5.9 6.0 INCE
(a) Color Jittering

A Simple Framework for Contrastive Learning of Visual Representations. Chen et al. ICML 2020
Improved Baselines with Momentum Contrastive Learning. Chen et al. 2020
What Makes for Good Views for Contrastive Learning? Tian et al. NeurlPS 2020

P

) £02

§ £015 0.3

: 0.4

o 621 £-0.08 ":

< 8

@

=z

v 61 .

E 4 RandomResizedCrop “£P.5
5.7 5.8 5.9 6.0 6.1 6.2

(b) Random Resized Crop

Ince
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Summary

“art. "What=

Cer Wiy =i we o0 Sobhign st nee RoiPock

IR0 2An E fRane oo Campute
v

2Pt o Ll Lok ol oo te gl sdec o
) Bodhgn worka oo acsarbepger oo
4) Bo -Taol woedd hees aoches g2 wel

How SSL? (e.g. clustering [2]) SSL for segmentation [ 3]

UNIVERSITY OF AMSTERDAM

[ 1] PASS: Pictures without humAns for Self-Supervised Pretraining. Asano et al. NeurlPS-Data21.

[2] Self-labelling via simultaneous clustering and representation learning. Asano et al. ICLR 2020.

[3] Self-Supervised Learning of Object Parts for Semantic Segmentation. Ziegler & Asano. CVPR 2022

[4] A critical analysis of self-supervision, or what we can learn from a single image. Asano et al. ICLR 2020.

Role of augmentations [4]
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Please provide feedback for this lecture J

https://evasys.uva.nl/evasys/public/online/index/index?
online_php=&p=P5FET

UNIVERSITY OF AMSTERDAM
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