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Lecture 2: Deep Feedforward Networks

Deep Learning 1 @ UvA
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Lecture Overview

o Modularity in deep learning
o Deep learning nonlinearities
o Gradient-based learning

o Chain rule

o Backpropagation
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Last time

o We went from here:

A

n
if 2 w.x;>0
= 1k

o= = i
-1 otherwise

o To here: 4

o So how do deep neural networks do it?
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From linear functions to nonlinear = from shallow to deep

o Consider linear function f=ReLU(Ax), A in R™™ x in R™*!, ReLU(x) = max(0, x)

A s 4 new . B
; | po
~ RelLU ReLU eLlU ) E .
new E N
< ® e e———p
U ReLU
0 ReLU (_31) - (3) but we want something non-linear!
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From linear functions to nonlinear = from shallow to deep

o Consider linear function f=ReLU(Ax), A in R™™ x in R™*! ReLU(x) = max(0, x)

o What about y = ReLU(Bf) = ReLU(B ReLU(AXx)) ?

Inputs that end up non-zero

B
eLU
Original x space Original x space
f = ReLU(Ax) y = ReLU(B ReLU(Ax))
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We've learned XOR.

v
Input dim 1

L. ‘ Input dim
Original x space

In practice: (5 layer MLP)

https://arxiv.org/abs/1906.00904
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Deep feedforward networks

o Feedforward neural networks
o Also called multi-layer perceptrons (MLPs)
- The goal is to approximate some function £
> A feedforward network defines a mapping

y = f(x;0)

- Learns the value of the parameters 0 that result in the best function
approximation.

o No feedback connections
> When including feedback connections, we obtain recurrent neural networks.
o Nb: brains have many feedback connections
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Deep feedforward networks

o In aformula of a composite of functions:

y = f(x;0) = a, (x; 91,...,L) =hy (hp—1(...(h1(x,09),...),0,-1),0)

where 0, is the parameter in the /-th layer

o We can simplify the notation by
ap =f(x;0) =hyoh,_qo--ohyox

where each functions h; is parameterized by the parameter 0,
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Neural networks in blocks

o We can visualize a; = hy o h;_q o ---0o hy o x as a cascade of blocks

Forward connections (Feedforward architecture)

Input — h1 hZ h3 h4

— Output

v
~
Ul

hidden layers
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What is a module?

o Module & Building block & Transformation < Function

o A module receives as input either data x or another module’s output
o A module returns an output a based on its activation function h(...)
o A module may or may not have trainable parameters w

o Examples: f = Ax, f= exp(x)
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Requirements

(1) The activation functions must be 1%t-order differentiable (almost) everywhere

(2) Take special care when there are cycles in the architecture of blocks

o No other requirements

o We can build as complex hierarchies as we want
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Feedforward model

o The vast majority of models
o Almost all CNNs/Transformers

o Assimple as it gets

Feedforward architecture

Input — hy h; h3 hy

4
=
Ul

— QOutput
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Non-linear feature learning perspective

o Linear models
o Jogistic regression, linear regression
o convex, with closed-form solution
> can be fit efficiently and reliably
> limited capacity

o Extend to nonlinear models

o apply the linear model not to x itself but to a transformed input ¢(x), where
@ is a nonlinear transformation

o kernel trick, e.g., RBF kernel
o nonlinear dimension reduction
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Non-linear feature learning perspective

o The strategy of deep learning is to learn ¢: y = f(x; 6, w) = p(x; 0)'w
> @ defines a hidden layer

o find the 0 that corresponds to a good* representation.
c no longer a convex training problem

o We design families ¢@(x; 0) rather than the right function

- Encode human knowledge to help generalization

* good = linearly separable (in the case of classification)
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Non-linear feature learning perspective

o Learning XOR

Original @& space

1F

2

I

1

oFrFr ©

I

h2

Learned h space

1

I

h1

XOR Gate
OR gate

AND gate

output

NOT AND gate
Numbers in nodes = thresholds

o In the transformed space represented by the features extracted by a neural
network, a linear model can now solve the problem.
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Directed acyclic graph models

o We can mix up our hierarchies
o Makes sense when we have good knowledge of problem domain

o Makes sense when combining multiple inputs & modalities
c E.¢., RGB & LIDAR

Interweaved & skip connections

Eg combining images + text

Masked Language Modeling  Masked Rol Classification
with Visual Clues with Linguistic Clues
h Appearance
o
A Geometry
[ Visual-Linguistic BERT } Embedding

Fast(er) R-CNN

A 4

SSO

Input—’ hl hz 7 h3 h4_

_Token [ icis) || kitten || drink || from || maski|| [sep1 || omal || imal || tenp) |
+ + + + + + + + +

e 0 B0 B B B0 B0 L P [ s

Embe dd ng | ] - A i<

Segmen

EmbdngAlAlAlAAIAICICIC\%@:

Sequence i
|1|\2\|3|\4H5\|6|\7\|7|\8\ ‘

h6 h7 Er:b ;d ng W—/ il

Captiol Image Regiol Image

Figure 1. Architecture for Pre-training VL-BERT
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Hierarchies of modules

o Data efficient modules and hierarchies
> Trade-off between model complexity and etficiency

> Often, more training iterations with a “weaker” model better than fewer with a
“stronger” one*

0 FQLUS are basically half-linear functions, but give SoTA (also) because they train
aster

o Not too complex modules, better complex hierarchies
> Again, ReLUs are basically half-linear functions, but give SoTA

o Use parameters smartly
o Often, the real constraint is GPU memory.

o Compute modules in the right order to feed next modules

* Not for extremely large models
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Loopy connections

o Module’s past output is module’s future input
o We must take care of cycles, i.e., unfold the graph (“Recurrent Neural Networks”)

o Mostly not used (anymore)

Loopy connections (must be unfolded)

Input h4 h h h h Output
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How to get w? gradient-based learning

o The nonlinearity causes the loss function to be nonconvex
° no linear equation solution

o We need to train the network with iterative, gradient based
optimizers
o Stochastic gradient descent

o No convergence guarantee and sensitive to the initialization of the
parameters
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How to get w? gradient-based learning

To use the gradient to ajust weights,
we need some measuring stick (a “loss” or “cost” function)
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Cost function

o Usually, maximum likelihood on the training set

w" = arg max lpmodel(y x5 w)
%
° Pmodel(¥]x) is the output from the last layer

° The idea of maximum likelihood Estimation is to find the parameters of the
model that can best explain the data.

o Taking the logarithm, the maximum likelihood is to minimizing
the negative log-likelihood:
L(w) = —Exy~p,,:q 108 Pmoder(V]X; w)

> which is equivalently described as the cross-entropy between training data
and model distribution; p44¢q 1s the empirical data distribution
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Cost functions

o If we specity the model as

Pmodel(Y | ) =N (y; f(x;0),T)

o We can recover the mean squared error cost

1
J(0) = SExyias |1y — f (@3 0| + const

o The constant is based on the variance of the Gaussian distribution, which is
not parameterized, and therefore can be discarded.

o The equivalence holds regardless of the function used to predict
the mean of the Gaussian.
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Cost functions

o Euclidean loss

h(x,y) = 0.5 ||y — x|

o Suitable for regression problems

o Sensitive to outliers
- Magnifies errors quadratically

o Other cost functions: cross-entropy, KL-divergence (see also ML 1)
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Cost functions

o Main point: cost functions describe what the model should do

o The gradient of the cost function must be large and predictable enough to serve as a
good guide for learning algorithms

o Functions that saturate (become very flat) undermine this objective.

o In many cases, this is due to the activation functions saturation.

o The negative log-likelihood help to avoid this problem for many models because it
can undo the exponentiation of the output (eg see softmax definition later)
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Activation functions

- Inputs
- Weights

o Defined how the weighted sum of the input is transformed into '  ctiatin
an output from a node or nodes in a layer of the network. e s

o If output range limited, then called a “squashing function.”

Output

o The choice of activation function has a large impact on the
capability and performance of the neural network.

o Different activation functions may be combined, but rare e o ormcion sorous
!
| | IS
o All hidden layers typically use the same activation function ¢
Y = Fonhn (x) i “ e PR
o Need to be differentiable at most points sor Log o ignoi
& E)
A
Chrery o=t )
swish Sinc Leaky ReLU Mish

® @

Y= max(otx,x) 7 =X (tounla (s0Ftplus ()
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Linear Units

50 Linear
x € RPM w e RVM — ActFn
(G w) =x-w +b ~ R
i ’ 1.0
a =W 0.5
0.0
—-0.5
o Identity activation function _1.0
o No activation saturation ~1.5

o Hence, strong & stable gradients
> Reliable learning with linear modules

EEI UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 27 VISLab



Rectified Linear Unit (ReLU)

RelU

2.0
- ActFn
1.5 —— Gradient

RelLU 1.0

h(x) = max(0, x) 0.5 l/
oh _ {1whenx >0 0.0
ow |0, whenx <0 —0.5
~1.0
~1.5
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Rectified Linear Unit (ReLU)

o Advantages
o Sparse activation: In randomly initialized network, ~50% active

> Better gradient propagation: Fewer vanishing gradient problems
compared to sigmoidal activation functions that saturate in both

directions.

o Eg for sin(x), x<<1: (small number) * (small number) *.... -->0

o Efficient computation: Only comparison, addition and
multiplication.

o Scale-invariant
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Rectified Linear Unit (ReLU)

o Potential problems

- Non-differentiable at zero; however, it is differentiable anywhere
else, and the value of the derivative at zero can be arbitrarily chosen
tobe O or 1.

o Not zero-centered.
o Unbounded.

- Dead neurons problem: neurons can sometimes be pushed into
states in which they become inactive for essentially all inputs.
Higher learning rates might help

o Nowadays ReLU is the default non-linearity

QEI UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 30 VISLab




Leaky RelLU

LeakyRelLU

2.0

——  ActFn
15 Gradient
1.0

h(x) = x,whenx >0
ax,whenx <0 0.5
oh  {1,whenx >0 0.0
dx |a,whenx<0
—-0.5
~-1.0
-1.5

o Leaky ReLUs allow a small, positive gradient when the unit is not active.

o Parametric ReLUs, or PReLU, treat a as learnable parameter
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Exponential Linear Unit (ELU)

ELU

2.0
— ActFn
15 Gradient
ELU
1.0

| x,whenx >0 0.5
h(x)_{exp(x)—l,XSO 00 _J

oh {1, whenx >0 o
ox (exp(x),x<0 |
~1.0
1.5

o ELU is a smooth approximation to the rectifier.
o It has a non-monotonic “bump” when x < 0.
o It serves as the default activation for models such as BERT.
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https://en.wikipedia.org/wiki/BERT_(language_model)

(Gaussian Error Linear Unit

31 — GELWU
—— RelLU
GELU — ELU
2 .
GELU(z) =zP(X <z) =2®(x) =z - % [1 + erf(a:/\/i)] .
We can approximate the GELU with 11

0.5z(1 + tanh[\/2/7(z + 0.044715z%)])

0 .
or
zo(1.702z),

o Similar to ELU, but non-monotonic (change in gradient sign)
o Default for Vision Transformers & state of the art (see Lect 4)

https://arxiv.org/pdf/1710.05941
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Sigmoid
2.0 9

Sigmoid and Tanh . — actrn

—  Gradient

1.0
o tanh(x) has better output range [—1, +1] 0.5 _A

- Data centered around 0 (not 0.5) — stronger g 0.
o Less “positive” bias for next layers (mean 0, n =0>

-1.0
o Both saturate at the extreme — 0 gradients Tanh
o Easily become “overconfident” (0 or 1 decisio #° N
- Undesirable for middle layers 1.5 —— Gradient
> Gradients « 1 with chain multiplication +O
0.5
o tanh(x) better for middle layers 0.0

o Sigmoids for outputs to emulate probabilities %

o Still tend to be overcofident -1.0
-1.5

& UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 34 VISLab



2.0

Sigmoid and Tanh s

1.0
Sigmoid Tanh 0.5

— € 0.0
ex +e—X —0.5

h(x) = 1+ ox h(x) =

oh oh

3y = WA || o

= 1—tanh?(x) —1.0

2.0
1.5
o Quite similar: tanh(x) = 20(2x) — 1 1.0

0.5

0.0
-0.5
-1.0

-1.5

Sigmoid

w——  ActFn

—  Gradient
Tanh

w— AcCtFnN

— Gradient
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Softmax

10

Softmax

08|
Xi

Zj eXi oer

04}

h(x;) =

o Outputs probability distribution, (why?)
o Yi i h(x;) = 1 for K classes or simply normalizes in a non-linear manner.

o Avoid exponentianting too large/small numbers for better stability

exi exi_“
h(xi) - 2] eXj _ Z] eXji—H

, U = MaX; X;

QEI UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 36

VISLab




How to Choose an Activation Function

o Hidden layers

o [n modern neural networks, the default recommendation is to use the
rectified linear unit (ReLU) or GELU

o (Recurrent Neural Networks: Tanh and/or Sigmoid activation function.)

o Output layer

- Regression: One node, linear activation.

o Binary Classification: One node, sigmoid activation.

- Multiclass Classification: One node per class, softmax activation.
- Multilabel Classification: One node per class, sigmoid activation.

o There is a difference between inference and training!
(eg. don’t use softmax at training)
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New modules

o Any function that is differentiable (almost everywhere), that is

M and &
0x ow

o Also, modules of modules are just as easy

One module Two modules

h, = tanh(ReLU(x)) hy = ReLU(x)
h, = tanh(h,)

o Better write them as cascades of simple modules, easier to debug
& UNIVERSITY OF AMSTERDAM
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Architecture Design

o The overall structure of the network
- how many units should it should have

o how those units should be connected to each other

o Neural networks are organized into groups of units, called layers
in a chain structure
o The first layer is given by

pD — 4O (Waww n b<1>)

> And the the second layer is
B = 2 (W@)T R o b<2>)
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You build a very deep neural network but forgot to put the non-linearities in.
What statement is true?

1) You could’ve just learned a single layer

2) If you add a non-linearity at the end it will still perform decently
3) It will not even train properly, worse than a single layer

4) You write a paper about it

https:// arxiv.org}abs/2103.1()427
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Width and Depth

o Universal approximation theorem (recap: ML1)

- Feedforward networks with hidden layers provide a universal approximation
framework.

° A large MLP with even a single hidden layer is able to represent any
function

provided that the network is given enough hidden units.

o However, no guarantee that the training algorithm will be able to
learn that function

- May not be able to find the value of the parameters that corresponds to the
desired function.

> Might choose the wrong function due to overfitting.

o How many hidden units?
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Width and Depth

o In the worse case, an exponential number of hidden units

> a deep rectifier net can require an exponential number of hidden units with
a shallow (one hidden layer) network.

o Deeper models
> can reduce the number of units required to represent the desired function
o can reduce the amount of generalization error.

965 | | | | 1 | |
o deeper networks often generalize better Zgg
95.0
94.5
94.0
93.5
93.0
92.5

92.0 I | | | ] ! ]
3 4 5 6 7 8 9 10 11

number of 1azers
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Deeper networks: hierarchical pattern recognition

Raw data Low-level features Mid-level features

sl ST A AL el = BLE
L] LN --L" SN -

High-level features

.“Cl' "0
A LEAN DN q A= d‘H
1T\ = VEmA Bl 3 B

o “Division of labor” between layers

o Bottom-up understanding of input
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Width and Depth

o Increasing the number of parameters in layers of convolutional
networks without increasing their depth is not nearly as effective
at increasing test set performance.

97 | | | ! |
= 06 e—e 3 convolutional
= B i
3 +—+ 3, fully connected
—
ioﬂ/ 95 |- V¥ 11, convolutional [
& oal -
—
=
S o3l — . i
&5} ™ !
S 92 -
91 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x108

o How units are connected between layers also matters
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A neural network jungle

A mostly complete chart of

omweca  Neural Networks ..o
. Input Cell ©2016 Fjodor van Veen - asimovinstitute.org N
o Perceptrons, MLPs B temrenc

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hidden Cell
o \WAW/
© Probablistic Hidden Cell - g>. g>. -
O RNNS, LS l l V I : ;, G I z [ ] :S @ spiking Hidden Cell Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
%' 2N e A

@ output cell

TN S TSN
o Vanilla, Variational, Denoising Autoencoders oo TEER

@ oifferent Memory Cell
Kernel -
o Hopfield Nets, Restricted Boltzmann Machines ® craneone @
Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

o Convolutional Nets, Deconvolutional Nets To ow/ewaw

o Generative Adversarial Nets _H ot e
. . . o8 & 5322@2532

o Deep Residual Nets, Neural Turing Machines < I L

Generative Adversarial Network (GAN) Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM) Echo State Network (ESN)

Tr n Y. 9.9.9. 9
& WAV WA 7 7 7

o They all rely on modules

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)

st & S ke

VISLab
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A neural network jungle

o Most important:
o MLPs, Variational Autoencoders, Convolutional Nets, Transformers, LSTM
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Chain Rule

Intermezzo:

Chain rule ad_x [F(a)] = Fg))g')

Find dy Differentiation: The Chain Rule
N¢ A 2 T
y=(x+20 3 o

1)y = VX + 20 i(x 22 (1 =)

X
LB
2)y = 2(3 + x2)5 :_»:ﬁ: ]Otga—x) (oEy)

= 26x(3% ")’
1

DY =5y




Chain Rule of Calculus

o The chain rule of calculus is used to compute the derivatives of functions
formed by composing other functions whose derivatives are known.

o Let x be a real number and let f and ¢ both be functions mapping from a real
number to a real number.

o Suppose that y = g(x) and z = f(y) = f(¢(x)). Then the chain rule states that

dz  dz dy
dr  dydx
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Computational graph

o Each node in the graph to indicate a variable.

o An operation is a simple function of one or more variables.

& UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 49 VISLab




0.141

o dL/dx1="? But is it true?
Check with definition of

= dL /dyl * dy1 /dx1 derivative:
flx+h)- 1 (x)
h

O

O

O

now L=yl +y2

i
sodL/dyl =1
— 1* dy1/dX1 z ?Eﬁ@@o@@@@@@@@@m
now yl =x1%*x2
SO dy1/dX1 = x2 g éféégggg%gwsmzz e

=1"x2 =

lgl UNIVERSITY OF AMSTERDAM
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Example

a la Rosenblatt
o :0?/0 dM / dx1 =2
@ o — dM/dL1 * dL1/dx1
(+) ® now M=L>0
@ @ O so dM/dL =0
CON o @ we cannot learn.

@ @ o Differentiability & gradients are key.
-1 3
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Chain Rule of Calculus

o Letw €R be the input.

o We use the same function f: R — R as the operation that we apply at every
step of a chain: x = f(w), y = f(x), z = f(y).

o To compute 0z , we apply the chain rule and obtain:

0z
ow
0z 0y Ox
— Oy Or Ow suggests an implementation in which we compute
Y / the value of f (w) only once and store it in the variable x.

=) f (x)f (w)
=f'(f(f () f'(f(w)) f(w) ~_| subexpression f(w) appears more than once;

and is useful when memory is limited
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Chain Rule of Calculus

o We have the input as a row vector, that is x € R?*M

o The gradient is a vector containing all partial derivatives
dh oh oh

—=V.h=|—...,
dx Ox, " Oxy

o Generalization of the derivative, defined on a univariate function (M = 1)
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Jacobian

o Generalization of the gradient for vector-valued functions h(x)
> all input dimensions contribute to all output dimensions

dhq dhq
dh 6x1 6xM
] = Vxh = — = : :
ax |{an, dhy
| 04 dxy,-

o Single input, single output - i

o Multiple input, single output — |l
o Single input, multiple output — [
o Multiple input, multiple output — |
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Taking gradients with index notation for matrices/vectors...

o Often, output is a vector/matrix/tensor that depends on matrix/vector/tensor
o We still want to see what is the effect of the output w.r.t. the input. How?

o "Vectorize” matrix/tensors:
mxn —
°Say M € R™", Vec (M) = [m1, M12. M43, ..., M1pn, M31, M22, ..., My ]
o Just remember the order (here: row-wise)
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Jacobians, gradients, intuitively

o The Jacobians, gradients and the likes (%) qualitatively capture the same thing

- Change in the output with respect to change in the input

| J | J

|
dh dx

o That is, the final Jacobian/gradient/... is simply a tensor V with the shape
o dim(V) = shape,tXshapej,
o If our “in’ is a vector, then we append that shape to the tensor gradient

 The Einstein notation can be useful (np.einsum, torch.einsum) for the
computations
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https://rockt.github.io/2018/04/30/einsum
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pytorch.org/docs/stable/generated/torch.einsum.html

Jacobian, geometrically

o The Jacobian represents the best local approximation of how the space changes
under a (non-linear) transformation

> Not unlike derivative being the best linear approximation of a curve (tangent)

o The Jacobian determinant (for square matrices) measures the ratio of areas
o Similar to what the “absolute slope’ measures in the 1d case (derivative)

o “Taylor expansion” of loss

tangent line

slope= f'(x)
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Basic rules of partial differentiation

o Product rule
o aix(f(x) - 9(0) = f(x) -a%g(x) +9(x) -;—xf(x)

o Sum rule
oL (F() + g(0)) = = f (%) + = g (%)
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Computing gradients in complex functions: Chain rule

o Assume a composite function, h = hy, (hL—l ( (h1 (x)))), or
h=hypohy_q0-0hy(x)

o To compute the derivative/gradient, we can use the chain rule
o Intuitively, similar to matrix multiplications

dh dh dh dh,
dx dh; dh;_; = dx

dh;

o Each
dhi_q

is a Jacobian/gradient/... vector/matrix/tensor

o Make sure each component matches dimensions
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Chain rule and tensors, intuitively

o What does the chain rule stand for with high-dimensional tensors

/ T  Gh _ dh dg
o Let’s keep it simple: — = 2 ax
> h(g) has M inputs, N outputs

o g(x) has K inputs (because of x), M outputs

o We can think of the chain rule as
- summing over all possible changes

> caused to h by each element in x via all possible g’s

o For high-dim tensors, h, g, x, we apply the same logic
- Replace shape of the vector with shape of tensor
> Do the summations keeping those shapes fixed
o Think it in terms of indices, again Einstein notation
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https://en.wikipedia.org/wiki/Einstein_notation

Example

o For h = f o y(x), here £, and y’s denote functions
0y, 0y1 0Y1
dh df dy adf df1|ox; 0x, Ox;
dx dydx loy, oy, l|oy, ay, dy,
dx; 0x, 0x3.

o Focusing on one of the partial derivatives: 4

dxq
dh _ df dy: df dy,
dx1 dyl dx1 dyz dx1

o The partial derivative depends on all paths from f to x;
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Example

o For h = f o y(x), here £, and y’s denote functions

0y, 0y1 0y1] e
dh df dy adf df1|ox; 0x, Ox;
dx dydx loy, oy, l|oy, ay, dy,

_axl axZ aX3_ @ @
-,
o Focusing on one of the partial derivatives: an ) \/ &

d
dh _ df dy, _df dy; B ONONS

dXz d)’l dXz dyz dXz

o The partial derivative depends on all paths from f to x;
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How research gets done part 11

Step 2 of deep learning research

[Recap: step 1: understand fundamentals, read papers.]

How to read papers?
Quick advice: think in terms of “passes”:
1%t pass: Title -> abstract -> figures/tables -> conclusion -> Introduction
2nd pass: Intro->...->Conclusion, but skip details/don’t try to understand maths
34 pass: Try to recap what you didn’t understand, reread those parts, be critical.
.... Dive into the code

After every pass you can drop out. Which is good. No need to detail-read every paper.
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Training in

Backpropagation progress. .
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ackprop: even former head of Tesla Al thinks it's importan

karpathy.ai
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P—v—3 in-house data labeling, neural network training, the science of making it work, and deployment in production
' running on our custom inference chip. Today, the Autopilot increases the safety and convenience of driving, Jhts
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| was a research scientist and a founding member at OpenAl.

My PhD was focused on neural and their icati in vision,
natural ing and their i ion. My adviser was Fei-Fei Li at the Stanford Vision Lab and
| also had the pleasure to work with Daphne Koller, Andrew Ng, Sebastian Thrun and Vladlen Koltun along
the way during the first year rotation program.

| designed and was the primary instructor for the first deep learning class Stanford - CS 231n: Convolutional
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Backpropagation < Chain rule

o The neural network loss is a composite function of modules

o We want the gradient w.r.t. to the parameters of the [ layer

d.  dL dhy dh, _ de  dL dhy
dw, dh; dh;_; = dw, dw, dh; dw;

N\

Gradient of loss w.r.t. the module output Gradient of a module w.r.t. its parameters

o Back-propagation is an algorithm that computes the chain rule, with a specific
order of operations that is highly efficient.

QEI UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 66 VISLab




Backpropagation < Chain rule!!!

o Backpropagating gradients means repeating computation of 2 quantities

df dL dhy
dw, dh; dw
o For % just compute the Jacobian of the [-th module w.r.t. to its parameters w;
l

o Very local rule —» “every module looks for its own”

o Since computations can be very local, this means that
o graphs can be complex

- modules can be complex if differentiable
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Backpropagation < Chain rule but as an algorithm

o Backpropagating gradients means repeating computation of 2 quantities

AL dL dh
dw, dh; dw
For = ly chain rule again t ivel tati
O Ior dn, we apply chain rule again to recursively reuse computations
AL dL  dhy,
dh!  dh,., dh
Recursive rule —» computation-friendly Gradient of module w.r.t. its module input

o Remember, the output of a module is the input for the next one: a;=x;4
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But you know this already from ML 1

... right?
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But why do we actually use Backprop?

Quiz: what are the advantages of backprop?
1) it’s the most accurate way of training neural networks

2) it’'s how the brain also learns

)
3) it implicitly models recurrent structures in neural networks
)

4) otherwise you cannot even train a 3x3x3 neuron MLP

Lgl UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 70 VISLab



Regarding point 4:

o Remember we were able to find the gradients for x1 without any backprop magic

o This works easily for a 3x3x3 MLP.

(+)

() E)
(")

()

& UNIVERSITY OF AMSTERDAM
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Re: point 2: Random synaptic feedback weights support error
The Backprop in us: different! backpropagation for deep learning

Timothy P. Lillicrap &, Daniel Cownden, Douglas B. Tweed & Colin J. Akerman

a . B v Nature Communications 7, Article number: 13276 (2016) | Cite this article
O O /O“i 43k Accesses | 254 Citations | 138 Altmetric | Metrics
E0—@—<
L& Abstract
Feedback e
b The brain processes information through multiple layers of neurons. This deep architecture
) S e
@) Ol w ' @) is representationally powerful, but complicates learning because it is difficult to identify the
O——|0 O
O pt = O responsible neurons when a mistake is made. In machine learning, the backpropagation
— — — algorithm assigns blame by multiplying error signals with all the synaptic weights on each
£ 6 6 6 neuron’s axon and further downstream. However, this involves a precise, symmetric
w
O e O o O backward connectivity pattern, which is thought to be impossible in the brain. Here we
%
O O - O demonstrate that this strong architectural constraint is not required for effective error
~— ~— ~—

propagation. We present a surprisingly simple mechanism that assigns blame by multiplying
errors by even random synaptic weights. This mechanism can transmit teaching signals
across multiple layers of neurons and performs as effectively as backpropagation on a variety

of tasks. Our results help reopen questions about how the brain could use error signals and

dispel long-held assumptions about algorithmic constraints on learning.

https://www.nature.com/articles/ncomms13276
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Computational feasibility

o y=1Xx)
o Each x’s contribution to y is given by the Jacobian, X

df/dx

o Suppose x and y are some intermediate outputs
of size 32x32x512 —

o Then storing the Jacobian would take 1TB of memory.

X df/dx
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Chain rule visualized

df1/dxg e dfz/dx; x dfp_1/dxn_y * dfp/dxn_4 . o
How to adjust x; to minimize x,,?
“just multiply Jacobians”
But this is not possible.
e /
—~,
dx,/dx,
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What if the output is a scalar?

o With x of size 32x32x512 and y=1,
o df/dxis only 32*32*512=524K elements ~ 2MB X
o Of size D, x1

|[]
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Chain rule visualized

dfi/dxo  x  dfz/dx; x x Afp_1/dXn_p x  dfn/dxp_4

A simple matrix-vector product:
m D, %D, D,x1

Result again low size: D,,_1 X1

\ /'/' Compute this first!

Too large
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Chain rule visualized

df, /dx, x df,/dx; x x dfp_1/dXn_y x dfp/dxn_q df _dp-f)
- | d_x(x) — dx (X)

P

In other words, the vector-matrix

product in the left hand side can
\ /'/' Compute this first! be computed as the derivative of
Too large the scalar-valued projected

function p - £ to the right.

AutoDiff toolboxes allow you to write efficient derivatives of <p,f>, and take care of the rest.
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Chain rule visualized

dfz/dx; x x Afp_1/dXn_p x  dfn/dxp_4

Keep going

dx,/dx,
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Chain rule visualized

dfz/dx; x x Afp_1/dXn_p x  dfn/dxp_4

Keep going

dx,/dx,
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But we still need the Jacobian?

o Yes, but: the operations we use generally have a very sparse Jacobian

o Sometimes projected Jacobian is more efficient to compute

o ReLU /Sigmoid etc.. E.g. softmax:
(&0 .. 0
aaz
e Uy e J.(s) = diag(s) —s's
00 o
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Computational graphs: Forward graph

o Compute the activation of each module in the network h; = h;(w; x;)
o Then, set x;,1: = hy

o Store intermediate variables h;
- will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order
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Computational graphs: Forward graph

o Compute the activation of each module in the network h; = h;(w; x;)
o Then, set x;,1: = hy

o Store intermediate variables h;
- will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations

oh; L

ow; "onl-1

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
- Because the flow of computations is reverse to data flow

@ oh, 9, ) dhs dhg
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations
oh; Oh!
ow; "onl-1

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations

oh; L

ow; "onl-1

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
- Because the flow of computations is reverse to data flow

@ oh, 9, ) dhs dhg
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Computational graphs: Reverse graph

o Go backwards and use gradient functions instead of activations
oh; Ohy
an ’ ahl_l

> Must have the gradient functions w.r.t. to x; & w; implemented

o The gradients will need activations from forward propagation, better save them
> Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
- Because the flow of computations is reverse to data flow

A

QEI UNIVERSITY OF AMSTERDAM DEEP LEARNING ONE - 93 VISLab




Backpropagation in summary

o Step 1. Compute forward propagations for all layers recursively

hy = hi(x;) and x;4.1 = Ry

o Step 2. Once done with forward propagation, follow the reverse path.

o Start from the last layer and for each new layer compute the gradients, using smart implementations
o Cache computations, when possible, to avoid redundant operations

dc dL dh, 4L _ dL dhy,
dwl_dhl dw;, dh; dhyq  dhy

o Step 3. Use the gradlents — Wlth Stochastic Gradient Descend to train w

& UNIVERSITY OF AMSTERDAM
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Backpropagation visualization

Forward propagation
— hO =X
o(wihgy) — Store h; . Remember that d,0 = o - (1 — 0)
o(wyhq) — Store h,
L =05-|[l— hy?

g

Backward propagation

ar “_p
dh, (v 2)
dL _ dL dh, B dL
dw, dh,dw, dh,
dL_dehz_dL ( h)(l ( h))_dL ho(1—h
dh, _dhz dh, —thWZU Wahy oWy _thWZ 2( 2)
dL dL dhy dL

dL
G = iy dw, — di, o0 Wiho) (1 —o(wiho)) = - hohs (1 = hi)

dLl
h10(W2h1)(1 — U(W2h1)) = d_hz hih, (1 — hy)

DEEP LEARNING ONE - 95 VISLab

& UNIVERSITY OF AMSTERDAM




Backpropagation visualization

Forward propagation

hy = x

o(wihgy) — Store h; . Remember that d,0 = o - (1 — 0)
o(wyhq) — Store h,

L =05-|[l— hy?

Backward propagation

dL

an, —(" —h2)

dL  dL dh, dL
dw, dh,dw, dh,

dL_dehz_dL ( h)(l ( h))_dL ho(1—h

dh, _dhz dh, —thWZU Wahy oWy _thWZ 2( 2)

dL dL dhy dL dL

— hOU(W1ho)(1 — 0(W1ho)) = Ehohﬂl — hy)
1

dLl
h10(W2h1)(1 — U(W2h1)) = d_hz hih, (1 — hy)

dw, dh,dw, dh,
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Backpropagation visualization

Forward propagation

ho =X
hy = a(wihg) — Store h; . Remember that d,0 = o - (1 — 0)
h, = o(w,hy) — Store h,

s L =05-||l— hyl?

Backward propagation

dL

an, —(" —h2)

dL  dL dh, dL
dw, dh,dw, dh,

AL _dbdhy _ L (1 —olwah) = E (1 b
dhl_dhz dh, —thWZU Wahy oWy _thWZ 2( 2)
dL _dldhy _dL, 1= otmng)) =L Aokt b
dWl_dhldwl_dhl 00 W1y 0 (W1 0))_dh1 0 1( — 1)

dLl
h10(W2h1)(1 — U(W2h1)) = d_hz hih, (1 — hy)
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Backpropagation visualization

Forward propagation

ho =X
hy = a(wihg) — Store h; . Remember that d,0 = o - (1 — 0)
h, = o(w,hy) — Store h,

L =05-||l— hyl?

Backward propagation

dL B _—
dhz_ (v 2)

df  dL dh, dL

v

dr
h10(W2h1)(1 — U(W2h1)) = ——h1hy(1 — hy)

dw, dh,dw, dh, dh,
AL _dtdh, _dc o A (1 — o h))_dL Y
dh, = dh, dh, = dh, W0 Wy o\Wwny)) = dh, wohy ( 2)

AL _dLdhy AL, o eehe) = -
dWl_dhldwl_dhl 00 W1y 0 (W1hy _dhl 01( 1)
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Backpropagation visualization

Forward propagation

ho =X
hy = a(wihg) — Store h; . Remember that d,0 = o - (1 — 0)
h, = o(w,hy) — Store h,

L =05-||l— hyl?

Backward propagation

dL

an, —(" —h2)

dC  dL dh, dL
“dw, dh,dw, dh,

dt _ dtdh, _dL =~ R (1 = o h))_dll ho(l—h
T T dhydhy - diy 22\ molweha)) = g waha (1= he)
dW1 B dh1 dW1 B dhl 071 e O)) B dhl ° 1( - 1)

dLl
h10(W2h1)(1 — U(W2h1)) = d_hz hih, (1 — hy)
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Backpropagation visualization

Forward propagation

ho =X
hy = a(wihg) — Store h; . Remember that d,0 = o - (1 — 0)
h, = o(w,hy) — Store h,

L =05-||l— hyl?

Backward propagation

dL B _—
dhz_ (v 2)

df  dL dh, dL

dr
h10(W2h1)(1 — U(W2h1)) = ——h1hy(1 — hy)

dw, dh,dw, dh, dh,
AL _dtdh, _dc o A (1 — o h))_dL Y
dh, = dh, dh, = dh, W0 Wy o\Wwny)) = dh, wohy ( 2)

AL _dLdhy AL, o eehe) = -
dWl_dhldwl_dhl 00 W1y 0 (W1hy _dhl 01( 1)
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What's the big deal?

o Backpropagation is as simple as it is complicated
o Mathematically, just the chain rule

o That simple, that we can even automate it (“reverse-mode differentiation”)

o However, algorithmically the devil is in the details to make it efficient

o And, theoretically, why does it even work given the strong non-convexity?
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Summary

o Deep Feedforward Networks
o Neural Network Modules
o Chain rule of Calculus

o Backpropagation

Reading material

o Deep Learning book, chapter 6

o Efficient Backprop, LeCun et al., 1998
o UDL chapter 7

o [Reading list is updated on canvas now!]
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