
DEEP LEARNING ONE - 1

Lecture 2: Deep Feedforward Networks
Deep Learning 1 @ UvA
Yuki M. Asano

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 2

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 2 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 2 VISLabDEEP LEARNING ONE - 2 VISLab

o Modularity in deep learning

o Deep learning nonlinearities

o Gradient-based learning

o Chain rule

o Backpropagation

Lecture Overview

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 3

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabDEEP LEARNING ONE - 3 VISLab

o We went from here:

o To here:

o So how do deep neural networks do it?

Last time

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 4

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 4 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 4 VISLabDEEP LEARNING ONE - 4 VISLab

o Consider linear function f = ReLU(Ax), A in ℝ!×#, x in ℝ#×$, ReLU(x) = max(0, x)

o but we want something non-linear!

From linear functions to nonlinear = from shallow to deep

ReLU ReLUReLU

ReLUReLU

new

𝑅𝑒𝐿𝑈 −1
3 = 0

3

𝑅𝑒𝐿𝑈 3
−1 = 3

0

new

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 5

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 5 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 5 VISLabDEEP LEARNING ONE - 5 VISLab

o Consider linear function f = ReLU(Ax), A in ℝ!×#, x in ℝ#×$, ReLU(x) = max(0, x)

o What about y = ReLU(Bf) = ReLU(B ReLU(Ax)) ?

From linear functions to nonlinear = from shallow to deep

f = ReLU(Ax) y = ReLU(B ReLU(Ax))

Original x spaceOriginal x space
ReLU

A

B

ReLU

Inputs that end up non-zero

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 6

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 6 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 6 VISLabDEEP LEARNING ONE - 6 VISLab

We’ve learned XOR.

Original x space
In practice: (5 layer MLP)

https://arxiv.org/abs/1906.00904

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 7

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 7 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 7 VISLabDEEP LEARNING ONE - 7 VISLab

o Feedforward neural networks
◦ Also called multi-layer perceptrons (MLPs)
◦ The goal is to approximate some function f
◦ A feedforward network defines a mapping

◦ Learns the value of the parameters θ that result in the best function
approximation.

o No feedback connections
◦ When including feedback connections, we obtain recurrent neural networks.
◦ Nb: brains have many feedback connections

Deep feedforward networks

Chapter 6

Deep Feedforward Networks

Deep feedforward networks, also often called feedforward neural networks,
or multilayer perceptrons (MLPs), are the quintessential deep learning models.
The goal of a feedforward network is to approximate some function f∗. For example,
for a classifier, y = f∗(x) maps an input x to a category y. A feedforward network

defines a mapping y = f (x; θ) and learns the value of the parameters θ that result
in the best function approximation.

These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural
networks, presented in chapter .10

Feedforward networks are of extreme importance to machine learning practi-
tioners. They form the basis of many important commercial applications. For
example, the convolutional networks used for object recognition from photos are a

specialized kind of feedforward network. Feedforward networks are a conceptual
stepping stone on the path to recurrent networks, which power many natural
language applications.

Feedforward neural networks are called networks because they are typically
represented by composing together many different functions. The model is asso-
ciated with a directed acyclic graph describing how the functions are composed
together. For example, we might have three functions f(1), f (2), and f(3) connected
in a chain, to form f(x) = f(3)(f (2)(f(1)(x))). These chain structures are the most
commonly used structures of neural networks. In this case, f (1) is called the first
layer of the network, f (2) is called the second layer, and so on. The overall

168

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 8

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 8 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 8 VISLabDEEP LEARNING ONE - 8 VISLab

o In a formula of a composite of functions:

y = 𝑓 𝑥; 𝜃 = 𝑎. 𝑥; 𝜃$,…,1 = ℎ. (ℎ.2$ …(ℎ$ 𝑥, θ$, …), θ.2$, θ.)

where 𝜃3 is the parameter in the l-th layer

o We can simplify the notation by
𝑎. = 𝑓 𝑥; 𝜃 = ℎ. ∘ ℎ.2$ ∘ ⋯ ∘ ℎ$ ∘ 𝑥

where each functions ℎ3 is parameterized by the parameter 𝜃3

Deep feedforward networks

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 9

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 9 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 9 VISLabDEEP LEARNING ONE - 9 VISLab

o We can visualize 𝑎. = ℎ. ∘ ℎ.2$ ∘ ⋯ ∘ ℎ$ ∘ 𝑥 as a cascade of blocks

Neural networks in blocks

ℎ! OutputInput

Forward connections (Feedforward architecture)

ℎ" ℎ# ℎ$ ℎ%

hidden layers

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 10

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 10 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 10 VISLabDEEP LEARNING ONE - 10 VISLab

o Module ⇔ Building block ⇔ Transformation ⇔ Function

o A module receives as input either data 𝑥 or another module’s output

o A module returns an output 𝑎 based on its activation function ℎ …

o A module may or may not have trainable parameters 𝑤

o Examples: f = Ax, f= exp(x)

What is a module?

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. In this style, we draw a node in the graph for(Right)
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrixW describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an

affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x�

W:,i+ ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al. et al., ; , ;2009 Nair and Hinton 2010 Glorot ,) defined by the activation2011a
function depicted in figure .g z , z() = max 0{ } 6.3

We can now specify our complete network as

f , , , b(;x W c w) = w� max 0{ ,W �
x c+ } + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =

�
1 1
1 1

�
, (6.4)

c =

�
0

−1

�
, (6.5)

174

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. In this style, we draw a node in the graph for(Right)
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrixW describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an

affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x�

W:,i+ ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al. et al., ; , ;2009 Nair and Hinton 2010 Glorot ,) defined by the activation2011a
function depicted in figure .g z , z() = max 0{ } 6.3

We can now specify our complete network as

f , , , b(;x W c w) = w� max 0{ ,W �
x c+ } + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =

�
1 1
1 1

�
, (6.4)

c =

�
0

−1

�
, (6.5)

174

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 11

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 11 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 11 VISLabDEEP LEARNING ONE - 11 VISLab

(1) The activation functions must be 1st-order differentiable (almost) everywhere

(2) Take special care when there are cycles in the architecture of blocks

o No other requirements

o We can build as complex hierarchies as we want

Requirements

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 12

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 12 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 12 VISLabDEEP LEARNING ONE - 12 VISLab

o The vast majority of models

o Almost all CNNs/Transformers

o As simple as it gets

Feedforward model

ℎ!Input

Feedforward architecture

ℎ" ℎ# ℎ$ ℎ% Output

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 13

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 13 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 13 VISLabDEEP LEARNING ONE - 13 VISLab

o Linear models
◦ logistic regression, linear regression
◦ convex, with closed-form solution
◦ can be fit efficiently and reliably
◦ limited capacity

o Extend to nonlinear models
◦ apply the linear model not to x itself but to a transformed input φ(x), where

φ is a nonlinear transformation
◦ kernel trick, e.g., RBF kernel
◦ nonlinear dimension reduction

Non-linear feature learning perspective

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 14

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 14 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 14 VISLabDEEP LEARNING ONE - 14 VISLab

o The strategy of deep learning is to learn φ: y = f(x; θ, w) = φ(x; θ)Tw

◦ φ defines a hidden layer
◦ find the θ that corresponds to a good* representation.
◦ no longer a convex training problem

o We design families φ(x; θ) rather than the right function

◦ Encode human knowledge to help generalization

* good = linearly separable (in the case of classification)

Non-linear feature learning perspective

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 15

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 15 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 15 VISLabDEEP LEARNING ONE - 15 VISLab

o Learning XOR

o In the transformed space represented by the features extracted by a neural
network, a linear model can now solve the problem.

Non-linear feature learning perspective

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original spacex

0 1 2

h1

0

1

h
2

Learned spaceh

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left)A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right)In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output have been1
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]� and x = [0,1]� to a single point in feature space, h = [1 ,0]�.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

Numbers in nodes = thresholds

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 16

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 16 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 16 VISLabDEEP LEARNING ONE - 16 VISLab

o We can mix up our hierarchies

o Makes sense when we have good knowledge of problem domain

o Makes sense when combining multiple inputs & modalities
◦ E.g., RGB & LIDAR

Directed acyclic graph models

Interweaved & skip connections

ℎ!

LossInput ℎ" ℎ# ℎ$ ℎ%

ℎ& ℎ'

Eg combining images + text

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 17

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 17 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 17 VISLabDEEP LEARNING ONE - 17 VISLab

o Data efficient modules and hierarchies
◦ Trade-off between model complexity and efficiency
◦ Often, more training iterations with a “weaker” model better than fewer with a

“stronger” one*
◦ ReLUs are basically half-linear functions, but give SoTA (also) because they train

faster

o Not too complex modules, better complex hierarchies
◦ Again, ReLUs are basically half-linear functions, but give SoTA

o Use parameters smartly
◦ Often, the real constraint is GPU memory.

o Compute modules in the right order to feed next modules

* Not for extremely large models

Hierarchies of modules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 18

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 18 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 18 VISLabDEEP LEARNING ONE - 18 VISLab

o Module’s past output is module’s future input

o We must take care of cycles, i.e., unfold the graph (“Recurrent Neural Networks”)

o Mostly not used (anymore)

Loopy connections

Loopy connections (must be unfolded)

ℎ!Input ℎ" ℎ# ℎ$ ℎ% Output

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 19

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 19 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 19 VISLabDEEP LEARNING ONE - 19 VISLab

o The nonlinearity causes the loss function to be nonconvex
◦ no linear equation solution

o We need to train the network with iterative, gradient based
optimizers
◦ Stochastic gradient descent

o No convergence guarantee and sensitive to the initialization of the
parameters

How to get w? gradient-based learning

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 20

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 20 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 20 VISLabDEEP LEARNING ONE - 20 VISLab

How to get w? gradient-based learning

To use the gradient to adjust weights,
we need some measuring stick (a “loss” or “cost” function)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 21

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 21 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 21 VISLabDEEP LEARNING ONE - 21 VISLab

o Usually, maximum likelihood on the training set

w∗ = arg max
;

8
<,=

𝑝#>?@3(𝑦|𝑥; 𝑤)

◦ 𝑝#>?@3(𝑦|𝑥) is the output from the last layer
◦ The idea of maximum likelihood Estimation is to find the parameters of the

model that can best explain the data.

o Taking the logarithm, the maximum likelihood is to minimizing
the negative log-likelihood:

ℒ 𝑤 = −𝔼<,=~ BC!"#" log 𝑝#>?@3(𝑦|𝑥; 𝑤)
◦ which is equivalently described as the cross-entropy between training data

and model distribution; A𝑝?DED is the empirical data distribution

Cost function

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 22

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 22 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 22 VISLabDEEP LEARNING ONE - 22 VISLab

o If we specify the model as

o We can recover the mean squared error cost

◦ The constant is based on the variance of the Gaussian distribution, which is
not parameterized, and therefore can be discarded.

o The equivalence holds regardless of the function used to predict
the mean of the Gaussian.

Cost functions

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

as the cross-entropy between the training data and the model distribution. This
cost function is given by

J() = θ −Ex y, ∼p̂data log pmodel()y x| . (6.12)

The specific form of the cost function changes from model to model, depending

on the specific form of log pmodel. The expansion of the above equation typically
yields some terms that do not depend on the model parameters and may be dis-
carded. For example, as we saw in section , if5.5.1 pmodel(y x|) = N (y ; f(x; θ), I),
then we recover the mean squared error cost,

J θ() =
1

2
Ex y, ∼p̂data || − ||y f(;)x θ

2 + const, (6.13)

up to a scaling factor of 12 and a term that does not depend on . The discardedθ

constant is based on the variance of the Gaussian distribution, which in this case
we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of

mean squared error holds for a linear model, but in fact, the equivalence holds
regardless of the used to predict the mean of the Gaussian.f(;)x θ

An advantage of this approach of deriving the cost function from maximum
likelihood is that it removes the burden of designing cost functions for each model.
Specifying a model p(y x|) automatically determines a cost function log p(y x|).

One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good guide
for the learning algorithm. Functions that saturate (become very flat) undermine
this objective because they make the gradient become very small. In many cases
this happens because the activation functions used to produce the output of the
hidden units or the output units saturate. The negative log-likelihood helps to

avoid this problem for many models. Many output units involve an exp function
that can saturate when its argument is very negative. The log function in the
negative log-likelihood cost function undoes the exp of some output units. We will
discuss the interaction between the cost function and the choice of output unit in
section .6.2.2

One unusual property of the cross-entropy cost used to perform maximum
likelihood estimation is that it usually does not have a minimum value when applied
to the models commonly used in practice. For discrete output variables, most
models are parametrized in such a way that they cannot represent a probability
of zero or one, but can come arbitrarily close to doing so. Logistic regression
is an example of such a model. For real-valued output variables, if the model

179

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

as the cross-entropy between the training data and the model distribution. This
cost function is given by

J() = θ −Ex y, ∼p̂data log pmodel()y x| . (6.12)

The specific form of the cost function changes from model to model, depending

on the specific form of log pmodel. The expansion of the above equation typically
yields some terms that do not depend on the model parameters and may be dis-
carded. For example, as we saw in section , if5.5.1 pmodel(y x|) = N (y ; f(x; θ), I),
then we recover the mean squared error cost,

J θ() =
1

2
Ex y, ∼p̂data || − ||y f(;)x θ

2 + const, (6.13)

up to a scaling factor of 12 and a term that does not depend on . The discardedθ

constant is based on the variance of the Gaussian distribution, which in this case
we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of

mean squared error holds for a linear model, but in fact, the equivalence holds
regardless of the used to predict the mean of the Gaussian.f(;)x θ

An advantage of this approach of deriving the cost function from maximum
likelihood is that it removes the burden of designing cost functions for each model.
Specifying a model p(y x|) automatically determines a cost function log p(y x|).

One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good guide
for the learning algorithm. Functions that saturate (become very flat) undermine
this objective because they make the gradient become very small. In many cases
this happens because the activation functions used to produce the output of the
hidden units or the output units saturate. The negative log-likelihood helps to

avoid this problem for many models. Many output units involve an exp function
that can saturate when its argument is very negative. The log function in the
negative log-likelihood cost function undoes the exp of some output units. We will
discuss the interaction between the cost function and the choice of output unit in
section .6.2.2

One unusual property of the cross-entropy cost used to perform maximum
likelihood estimation is that it usually does not have a minimum value when applied
to the models commonly used in practice. For discrete output variables, most
models are parametrized in such a way that they cannot represent a probability
of zero or one, but can come arbitrarily close to doing so. Logistic regression
is an example of such a model. For real-valued output variables, if the model

179

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 23

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 23 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 23 VISLabDEEP LEARNING ONE - 23 VISLab

o Euclidean loss

o Suitable for regression problems

o Sensitive to outliers
◦ Magnifies errors quadratically

o Other cost functions: cross-entropy, KL-divergence (see also ML 1)

Cost functions

ℎ 𝑥, 𝑦 = 0.5 𝑦 − 𝑥 F

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 24

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 24 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 24 VISLabDEEP LEARNING ONE - 24 VISLab

o Main point: cost functions describe what the model should do

o The gradient of the cost function must be large and predictable enough to serve as a
good guide for learning algorithms

o Functions that saturate (become very flat) undermine this objective.

o In many cases, this is due to the activation functions saturation.

o The negative log-likelihood help to avoid this problem for many models because it
can undo the exponentiation of the output (eg see softmax definition later)

Cost functions

DEEP LEARNING ONE – 25

Deep learning
modules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 26

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 26 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 26 VISLabDEEP LEARNING ONE - 26 VISLab

o Defined how the weighted sum of the input is transformed into
an output from a node or nodes in a layer of the network.

o If output range limited, then called a “squashing function.”

o The choice of activation function has a large impact on the
capability and performance of the neural network.

o Different activation functions may be combined, but rare

o All hidden layers typically use the same activation function

o Need to be differentiable at most points

Activation functions

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 27

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 27 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 27 VISLabDEEP LEARNING ONE - 27 VISLab

o Identity activation function

o No activation saturation

o Hence, strong & stable gradients
◦ Reliable learning with linear modules

Linear Units

𝒙 ∈ ℝ!×+ , 𝒘 ∈ ℝ,×+
ℎ 𝑥;𝑤 = 𝒙 ⋅ 𝒘- + 𝑏
𝑑ℎ
𝑑𝒙

= 𝒘

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 28

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 28 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 28 VISLabDEEP LEARNING ONE - 28 VISLab

Rectified Linear Unit (ReLU)

ℎ 𝑥 = max 0, 𝑥
𝜕ℎ
𝜕𝑤

= F1 when 𝑥 > 0
0,when 𝑥 ≤ 0

ReLU

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 29

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 29 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 29 VISLabDEEP LEARNING ONE - 29 VISLab

o Advantages
◦ Sparse activation: In randomly initialized network, ~50% active
◦ Better gradient propagation: Fewer vanishing gradient problems

compared to sigmoidal activation functions that saturate in both
directions.
◦ Eg for sin(x), x<<1: (small number) * (small number) * …. --> 0
◦ Efficient computation: Only comparison, addition and

multiplication.
◦ Scale-invariant

Rectified Linear Unit (ReLU)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 30

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 30 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 30 VISLabDEEP LEARNING ONE - 30 VISLab

o Potential problems
◦ Non-differentiable at zero; however, it is differentiable anywhere

else, and the value of the derivative at zero can be arbitrarily chosen
to be 0 or 1.

◦ Not zero-centered.
◦ Unbounded.
◦ Dead neurons problem: neurons can sometimes be pushed into

states in which they become inactive for essentially all inputs.
Higher learning rates might help

o Nowadays ReLU is the default non-linearity

Rectified Linear Unit (ReLU)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 31

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 31 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 31 VISLabDEEP LEARNING ONE - 31 VISLab

Leaky ReLU

ℎ 𝑥 = F 𝑥,when 𝑥 > 0
𝑎𝑥,when x ≤ 0

𝜕ℎ
𝜕𝑥 = F1,when 𝑥 > 0

𝑎,when x ≤ 0

o Leaky ReLUs allow a small, positive gradient when the unit is not active.
o Parametric ReLUs, or PReLU, treat 𝑎 as learnable parameter

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 32

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 32 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 32 VISLabDEEP LEARNING ONE - 32 VISLab

Exponential Linear Unit (ELU)

ℎ 𝑥 = F 𝑥,when 𝑥 > 0
exp 𝑥 − 1 , x ≤ 0

𝜕ℎ
𝜕𝑥

= F1,when 𝑥 > 0
exp(𝑥) , x ≤ 0

o ELU is a smooth approximation to the rectifier.
o It has a non-monotonic “bump” when x < 0.
o It serves as the default activation for models such as BERT.

ELU

https://en.wikipedia.org/wiki/BERT_(language_model)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 33

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 33 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 33 VISLabDEEP LEARNING ONE - 33 VISLab

Gaussian Error Linear Unit

o Similar to ELU, but non-monotonic (change in gradient sign)
o Default for Vision Transformers & state of the art (see Lect 4)

GELU

https://arxiv.org/pdf/1710.05941

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 34

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 34 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 34 VISLabDEEP LEARNING ONE - 34 VISLab

o 𝑡𝑎𝑛ℎ 𝑥 has better output range [−1,+1]
◦ Data centered around 0 (not 0.5) → stronger gradients
◦ Less “positive” bias for next layers (mean 0, not 0.5)

o Both saturate at the extreme → 0 gradients
◦ Easily become “overconfident” (0 or 1 decisions)
◦ Undesirable for middle layers
◦ Gradients ≪ 1 with chain multiplication

o 𝑡𝑎𝑛ℎ 𝑥 better for middle layers

o Sigmoids for outputs to emulate probabilities
◦ Still tend to be overcofident

Sigmoid and Tanh

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 35

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 35 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 35 VISLabDEEP LEARNING ONE - 35 VISLab

o Quite similar: 𝑡𝑎𝑛ℎ 𝑥 = 2𝜎 2𝑥 − 1

Sigmoid and Tanh

ℎ 𝑥 =
1

1 + 𝑒2<
𝜕ℎ
𝜕𝑥

= G(<)($2G(<))

Sigmoid

ℎ 𝑥 =
𝑒< − 𝑒2<

𝑒< + 𝑒2<
𝜕ℎ
𝜕𝑥

= $2ED!J$(<)

Tanh

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 36

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 36 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 36 VISLabDEEP LEARNING ONE - 36 VISLab

o Outputs probability distribution, (why?)

o ∑KL$M ℎ(𝑥K) = 1 for 𝐾 classes or simply normalizes in a non-linear manner.
o Avoid exponentianting too large/small numbers for better stability

ℎ 𝑥K =
𝑒<%
∑N 𝑒

<& =
𝑒<%2O

∑N 𝑒
<&2O , 𝜇 = maxK 𝑥K

Softmax

ℎ 𝑥K =
𝑒<%
∑N 𝑒

<&

Softmax

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 37

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 37 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 37 VISLabDEEP LEARNING ONE - 37 VISLab

o Hidden layers
◦ In modern neural networks, the default recommendation is to use the

rectified linear unit (ReLU) or GELU
◦ (Recurrent Neural Networks: Tanh and/or Sigmoid activation function.)

o Output layer
◦ Regression: One node, linear activation.
◦ Binary Classification: One node, sigmoid activation.
◦ Multiclass Classification: One node per class, softmax activation.
◦ Multilabel Classification: One node per class, sigmoid activation.
◦ There is a difference between inference and training!

(eg. don’t use softmax at training)

How to Choose an Activation Function

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 38

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 38 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 38 VISLabDEEP LEARNING ONE - 38 VISLab

o Any function that is differentiable (almost everywhere), that is

o Also, modules of modules are just as easy

o Better write them as cascades of simple modules, easier to debug

New modules

./

.0
and ./

.1

ℎ! = tanh(𝑅𝑒𝐿𝑈 𝑥) ℎ! = 𝑅𝑒𝐿𝑈 𝑥
ℎ" = tanh ℎ!

One module Two modules

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 39

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 39 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 39 VISLabDEEP LEARNING ONE - 39 VISLab

o The overall structure of the network
◦ how many units should it should have
◦ how those units should be connected to each other

o Neural networks are organized into groups of units, called layers
in a chain structure
◦ The first layer is given by

◦ And the the second layer is

Architecture Design

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

A few other reasonably common hidden unit types include:

• Radial basis function or RBF unit: hi = exp
�

− 1
σ 2i

||W:,i − ||x 2
�
. This

function becomes more active as x approaches a template W:,i. Because it
saturates to for most , it can be difficult to optimize.0 x

• Softplus: g(a) = ζ(a) = log(1+ea). This is a smooth version of the rectifier,
introduced by () for function approximation and byDugas et al. 2001 Nair
and Hinton 2010() for the conditional distributions of undirected probabilistic
models. () compared the softplus and rectifier and foundGlorot et al. 2011a
better results with the latter. The use of the softplus is generally discouraged.
The softplus demonstrates that the performance of hidden unit types can
be very counterintuitive—one might expect it to have an advantage over
the rectifier due to being differentiable everywhere or due to saturating less
completely, but empirically it does not.

• Hard tanh: this is shaped similarly to the tanh and the rectifier but unlike
the latter, it is bounded, g(a) = max(−1,min(1 , a)). It was introduced

by ().Collobert 2004

Hidden unit design remains an active area of research and many useful hidden
unit types remain to be discovered.

6.4 Architecture Design

Another key design consideration for neural networks is determining the architecture.
The word architecture refers to the overall structure of the network: how many
units it should have and how these units should be connected to each other.

Most neural networks are organized into groups of units called layers. Most
neural network architectures arrange these layers in a chain structure, with each

layer being a function of the layer that preceded it. In this structure, the first layer
is given by

h
(1) = g(1)

�
W

(1)�
x b+ (1)

�
, (6.40)

the second layer is given by

h
(2) = g(2)

�
W

(2)�
h
(1) + b(2)

�
, (6.41)

and so on.

197

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

A few other reasonably common hidden unit types include:

• Radial basis function or RBF unit: hi = exp
�

− 1
σ 2i

||W:,i − ||x 2
�
. This

function becomes more active as x approaches a template W:,i. Because it
saturates to for most , it can be difficult to optimize.0 x

• Softplus: g(a) = ζ(a) = log(1+ea). This is a smooth version of the rectifier,
introduced by () for function approximation and byDugas et al. 2001 Nair
and Hinton 2010() for the conditional distributions of undirected probabilistic
models. () compared the softplus and rectifier and foundGlorot et al. 2011a
better results with the latter. The use of the softplus is generally discouraged.
The softplus demonstrates that the performance of hidden unit types can
be very counterintuitive—one might expect it to have an advantage over
the rectifier due to being differentiable everywhere or due to saturating less
completely, but empirically it does not.

• Hard tanh: this is shaped similarly to the tanh and the rectifier but unlike
the latter, it is bounded, g(a) = max(−1,min(1 , a)). It was introduced

by ().Collobert 2004

Hidden unit design remains an active area of research and many useful hidden
unit types remain to be discovered.

6.4 Architecture Design

Another key design consideration for neural networks is determining the architecture.
The word architecture refers to the overall structure of the network: how many
units it should have and how these units should be connected to each other.

Most neural networks are organized into groups of units called layers. Most
neural network architectures arrange these layers in a chain structure, with each

layer being a function of the layer that preceded it. In this structure, the first layer
is given by

h
(1) = g(1)

�
W

(1)�
x b+ (1)

�
, (6.40)

the second layer is given by

h
(2) = g(2)

�
W

(2)�
h
(1) + b(2)

�
, (6.41)

and so on.

197

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 40

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 40 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 40 VISLabDEEP LEARNING ONE - 40 VISLab

Quiz

You build a very deep neural network but forgot to put the non-linearities in.
What statement is true?

1) You could’ve just learned a single layer
2) If you add a non-linearity at the end it will still perform decently
3) It will not even train properly, worse than a single layer
4) You write a paper about it

https://arxiv.org/abs/2103.10427

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 41

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 41 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 41 VISLabDEEP LEARNING ONE - 41 VISLab

o Universal approximation theorem (recap: ML1)
◦ Feedforward networks with hidden layers provide a universal approximation

framework.
◦ A large MLP with even a single hidden layer is able to represent any

function
provided that the network is given enough hidden units.

o However, no guarantee that the training algorithm will be able to
learn that function
◦ May not be able to find the value of the parameters that corresponds to the

desired function.
◦ Might choose the wrong function due to overfitting.

o How many hidden units?

Width and Depth

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 42

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 42 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 42 VISLabDEEP LEARNING ONE - 42 VISLab

o In the worse case, an exponential number of hidden units
◦ a deep rectifier net can require an exponential number of hidden units with

a shallow (one hidden layer) network.

o Deeper models
◦ can reduce the number of units required to represent the desired function
◦ can reduce the amount of generalization error.
◦ deeper networks often generalize better

Width and Depth

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

3 4 5 6 7 8 9 10 11

Number of hidden layers

92 0.

92 5.

93 0.

93 5.

94 0.

94 5.

95 0.

95 5.

96 0.

96 5.

T
es
t
a
cc
u
ra
cy
(p
er
ce
n
t)

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (). The test set accuracy consistently increases with increasing depth. See2014d
figure for a control experiment demonstrating that other increases to the model size6.7
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce

the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter , use specialized patterns of sparse connections9
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

202

number of layers

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 43

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 43 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 43 VISLabDEEP LEARNING ONE - 43 VISLab

Deeper networks: hierarchical pattern recognition

o “Division of labor” between layers

o Bottom-up understanding of input

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 44

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 44 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 44 VISLabDEEP LEARNING ONE - 44 VISLab

o Increasing the number of parameters in layers of convolutional
networks without increasing their depth is not nearly as effective
at increasing test set performance.

o How units are connected between layers also matters

Width and DepthCHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 0 0 2 0 4 0 6 0 8 1 0.

Number of parameters ×108

91

92

93

94

95

96

97

T
es
t
a
cc
u
ra
cy
(p
er
ce
n
t) 3, convolutional

3, fully connected

11, convolutional

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow 2014det al. () shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).

203

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 45

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 45 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 45 VISLabDEEP LEARNING ONE - 45 VISLab

o Perceptrons, MLPs
o RNNs, LSTMs, GRUs
o Vanilla, Variational, Denoising Autoencoders
o Hopfield Nets, Restricted Boltzmann Machines
o Convolutional Nets, Deconvolutional Nets
o Generative Adversarial Nets
o Deep Residual Nets, Neural Turing Machines
o Transformers
o They all rely on modules

A neural network jungle

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 46

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 46 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 46 VISLabDEEP LEARNING ONE - 46 VISLab

o Most important:
◦ MLPs, Variational Autoencoders, Convolutional Nets, Transformers, LSTM

A neural network jungle

Intermezzo:
Chain rule

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 48

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 48 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 48 VISLabDEEP LEARNING ONE - 48 VISLab

o The chain rule of calculus is used to compute the derivatives of functions
formed by composing other functions whose derivatives are known.

o Let x be a real number and let f and g both be functions mapping from a real
number to a real number.

o Suppose that y = g(x) and z = f(y) = f(g(x)). Then the chain rule states that

Chain Rule of Calculus

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

6.5.1 Computational Graphs

So far we have discussed neural networks with a relatively informal graph language.

To describe the back-propagation algorithm more precisely, it is helpful to have a
more precise language.computational graph

Many ways of formalizing computation as graphs are possible.

Here, we use each node in the graph to indicate a variable. The variable may
be a scalar, vector, matrix, tensor, or even a variable of another type.

To formalize our graphs, we also need to introduce the idea of an operation.
An operation is a simple function of one or more variables. Our graph language
is accompanied by a set of allowable operations. Functions more complicated
than the operations in this set may be described by composing many operations
together.

Without loss of generality, we define an operation to return only a single
output variable. This does not lose generality because the output variable can have
multiple entries, such as a vector. Software implementations of back-propagation
usually support operations with multiple outputs, but we avoid this case in our
description because it introduces many extra details that are not important to
conceptual understanding.

If a variable y is computed by applying an operation to a variable x, then
we draw a directed edge from x to y . We sometimes annotate the output node
with the name of the operation applied, and other times omit this label when the
operation is clear from context.

Examples of computational graphs are shown in figure .6.8

6.5.2 Chain Rule of Calculus

The chain rule of calculus (not to be confused with the chain rule of probability) is
used to compute the derivatives of functions formed by composing other functions
whose derivatives are known. Back-propagation is an algorithm that computes the
chain rule, with a specific order of operations that is highly efficient.

Let x be a real number, and let f and g both be functions mapping from a real
number to a real number. Suppose that y = g(x) and z = f(g(x)) = f (y). Then

the chain rule states that
dz

dx
=
dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x ∈ Rm, y ∈ Rn,

205

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 49

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 49 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 49 VISLabDEEP LEARNING ONE - 49 VISLab

o Each node in the graph to indicate a variable.

o An operation is a simple function of one or more variables.

Computational graph

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

×

xx ww

(b)

u(1)u(1)

dot

bb

u(2)u(2)

+

ŷ̂y

σ

(c)

XX WW

U
(1)

U
(1)

matmul

bb

U
(2)

U
(2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

λλ

u(1)u(1)

sqr

u(2)u(2)

sum

u(3)u(3)

×

Figure 6.8: Examples of computational graphs. The graph using the(a) × operation to
compute z = xy. The graph for the logistic regression prediction(b) ŷ = σ

�
x�w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u()i . The(c)
computational graph for the expression H = max{0,XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X . Examples a–c applied at most one operation to each variable, but it(d)
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty λ

�
iw
2
i .

206

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

×

xx ww

(b)

u(1)u(1)

dot

bb

u(2)u(2)

+

ŷ̂y

σ

(c)

XX WW

U
(1)

U
(1)

matmul

bb

U
(2)

U
(2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

λλ

u(1)u(1)

sqr

u(2)u(2)

sum

u(3)u(3)

×

Figure 6.8: Examples of computational graphs. The graph using the(a) × operation to
compute z = xy. The graph for the logistic regression prediction(b) ŷ = σ

�
x�w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u()i . The(c)
computational graph for the expression H = max{0,XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X . Examples a–c applied at most one operation to each variable, but it(d)
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty λ

�
iw
2
i .

206

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 50

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 50 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 50 VISLabDEEP LEARNING ONE - 50 VISLab

o dL / dx1 = ?

o = dL/dy1 * dy1/dx1

o now L = y1 + y2

o so dL/dy1 = 1

o = 1* dy1/dx1

o now y1 = x1 * x2

o so dy1/dx1 = x2

o = 1*x2

Example

𝐿

𝑦! 𝑦"

𝑥! 𝑥"

(*)

(+)

-1 3

3.141

0.141

= 3

But is it true?
Check with definition of
derivative:

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 51

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 51 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 51 VISLabDEEP LEARNING ONE - 51 VISLab

o dM / dx1 = ?

o = dM/dL1 * dL1/dx1

o now M = L > 0

o so dM/dL = 0

o 😢we cannot learn.

o Differentiability & gradients are key.

Example

𝐿

𝑦! 𝑦"

𝑥! 𝑥"

(*)

(+)

-1 3

3.141

1M

> 0 ?

à la Rosenblatt

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 52

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 52 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 52 VISLabDEEP LEARNING ONE - 52 VISLab

o Let w ∈ R be the input.

o We use the same function f : R → R as the operation that we apply at every
step of a chain: x = f(w), y = f(x), z = f(y).

o To compute ∂z , we apply the chain rule and obtain:

Chain Rule of Calculus

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w ∈ R be the input to the graph. We use the same function f : R R→
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute ∂z

∂w
, we apply equation and obtain:6.44

∂z

∂w
(6.50)

=
∂z

∂y

∂y

∂x

∂x

∂w
(6.51)

=f �()y f �()x f �()w (6.52)

=f �((()))f f w f
�(())f w f

�()w (6.53)

Equation suggests an implementation in which we compute the value of6.52 f (w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation , where the subexpression6.53
f(w) appears more than once. In the alternative approach, f (w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation is clearly preferable because of its reduced6.52
runtime. However, equation is also a valid implementation of the chain rule, and is6.53
useful when memory is limited.

211

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w ∈ R be the input to the graph. We use the same function f : R R→
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute ∂z

∂w
, we apply equation and obtain:6.44

∂z

∂w
(6.50)

=
∂z

∂y

∂y

∂x

∂x

∂w
(6.51)

=f �()y f �()x f �()w (6.52)

=f �((()))f f w f
�(())f w f

�()w (6.53)

Equation suggests an implementation in which we compute the value of6.52 f (w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation , where the subexpression6.53
f(w) appears more than once. In the alternative approach, f (w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation is clearly preferable because of its reduced6.52
runtime. However, equation is also a valid implementation of the chain rule, and is6.53
useful when memory is limited.

211

suggests an implementation in which we compute
the value of f (w) only once and store it in the variable x.

subexpression f(w) appears more than once;
and is useful when memory is limited

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 53

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 53 VISLabDEEP LEARNING ONE - 53 VISLab

o We have the input as a row vector, that is 𝒙 ∈ ℝ$×T

o The gradient is a vector containing all partial derivatives
𝑑ℎ
𝑑𝒙 = 𝛻𝒙ℎ = [

𝜕ℎ
𝜕𝑥$

, … ,
𝜕ℎ
𝜕𝑥T

]

o Generalization of the derivative, defined on a univariate function (𝑀 = 1)

Chain Rule of Calculus

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 54

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 54 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 54 VISLabDEEP LEARNING ONE - 54 VISLab

o Generalization of the gradient for vector-valued functions 𝒉 𝒙
◦ all input dimensions contribute to all output dimensions

𝐽 = 𝛻𝒙𝒉 =
𝑑𝒉
𝑑𝒙

=

𝜕ℎ$
𝜕𝑥$

⋯
𝜕ℎ$
𝜕𝑥T

⋮ ⋱ ⋮
𝜕ℎV
𝜕𝑥$

⋯
𝜕ℎV
𝜕𝑥T

o Single input, single output →

o Multiple input, single output →

o Single input, multiple output →

o Multiple input, multiple output →

Jacobian

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 55

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 55 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 55 VISLabDEEP LEARNING ONE - 55 VISLab

o Often, output is a vector/matrix/tensor that depends on matrix/vector/tensor

o We still want to see what is the effect of the output w.r.t. the input. How?

o ”Vectorize” matrix/tensors:
◦ Say M ∈ ℝ#<!, Vec (M) = [𝑚$$, 𝑚$F. 𝑚$W, … ,𝑚$!, 𝑚F$, 𝑚FF, … ,𝑚#!]
◦ Just remember the order (here: row-wise)

Taking gradients with index notation for matrices/vectors…

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 56

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 56 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 56 VISLabDEEP LEARNING ONE - 56 VISLab

o The Jacobians, gradients and the likes (?JXY) qualitatively capture the same thing
◦ Change in the output with respect to change in the input

o That is, the final Jacobian/gradient/… is simply a tensor 𝛻 with the shape
◦ dim 𝛻 = shapeZ[\×shape]^
◦ If our ‘in’ is a vector, then we append that shape to the tensor gradient
◦ The Einstein notation can be useful (np.einsum, torch.einsum) for the

computations

Jacobians, gradients, intuitively

𝑑ℎ 𝑑𝑥

https://rockt.github.io/2018/04/30/einsum
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pytorch.org/docs/stable/generated/torch.einsum.html

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 57

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 57 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 57 VISLabDEEP LEARNING ONE - 57 VISLab

o The Jacobian represents the best local approximation of how the space changes
under a (non-linear) transformation
◦ Not unlike derivative being the best linear approximation of a curve (tangent)

o The Jacobian determinant (for square matrices) measures the ratio of areas
◦ Similar to what the ‘absolute slope’ measures in the 1d case (derivative)
◦ “Taylor expansion” of loss

Jacobian, geometrically

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 58

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 58 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 58 VISLabDEEP LEARNING ONE - 58 VISLab

o Product rule
◦ a
a𝒙 𝑓 𝒙 ⋅ 𝑔 𝒙 = 𝑓 𝒙 ⋅ aa𝒙𝑔 𝒙 + 𝑔 𝒙 ⋅ aa𝒙𝑓 𝒙

o Sum rule
◦ a
a𝒙

𝑓 𝒙 + 𝑔 𝒙 = a
a𝒙
𝑓 𝒙 + a

a𝒙
𝑔 𝒙

Basic rules of partial differentiation

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 59

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 59 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 59 VISLabDEEP LEARNING ONE - 59 VISLab

o Assume a composite function, ℎ = ℎ. ℎ.2$ … ℎ$ 𝒙 , or

ℎ = ℎ. ∘ ℎ.2$ ∘ ⋯ ∘ ℎ$ (𝒙)

o To compute the derivative/gradient, we can use the chain rule
◦ Intuitively, similar to matrix multiplications

𝑑ℎ
𝑑𝑥

=
𝑑ℎ
𝑑ℎ.

⋅
𝑑ℎ.
𝑑ℎ.2$

⋅ … ⋅
𝑑ℎ$
𝑑𝑥

o Each ?J!?J!"#
is a Jacobian/gradient/… vector/matrix/tensor

o Make sure each component matches dimensions

Computing gradients in complex functions: Chain rule

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 60

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 60 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 60 VISLabDEEP LEARNING ONE - 60 VISLab

o What does the chain rule stand for with high-dimensional tensors

o Let’s keep it simple: ?𝒉?𝒙 =
?𝒉
?𝒈 ⋅

?𝒈
?𝒙

◦ 𝒉 𝒈 has 𝑀 inputs, 𝑁 outputs
◦ 𝒈 𝒙 has 𝐾 inputs (because of 𝑥), 𝑀 outputs

o We can think of the chain rule as
◦ summing over all possible changes
◦ caused to 𝒉 by each element in 𝒙 via all possible 𝒈’s

o For high-dim tensors, 𝒉, 𝒈, 𝒙, we apply the same logic
◦ Replace shape of the vector with shape of tensor
◦ Do the summations keeping those shapes fixed
◦ Think it in terms of indices, again Einstein notation

Chain rule and tensors, intuitively

https://en.wikipedia.org/wiki/Einstein_notation

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 61

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 61 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 61 VISLabDEEP LEARNING ONE - 61 VISLab

o For h = 𝑓 ∘ 𝑦(𝑥), here f, and y’s denote functions

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑦

𝑑𝑦
𝑑𝑥

=
𝜕𝑓
𝜕𝑦$

𝜕𝑓
𝜕𝑦F

𝜕𝑦$
𝜕𝑥$

𝜕𝑦$
𝜕𝑥F

𝜕𝑦$
𝜕𝑥W

𝜕𝑦F
𝜕𝑥$

𝜕𝑦F
𝜕𝑥F

𝜕𝑦F
𝜕𝑥W

o Focusing on one of the partial derivatives: ?J?<#
𝑑ℎ
𝑑𝑥$

=
𝑑𝑓
𝑑𝑦$

𝑑𝑦$
𝑑𝑥$

+
𝑑𝑓
𝑑𝑦F

𝑑𝑦F
𝑑𝑥$

o The partial derivative depends on all paths from 𝑓 to 𝑥K

Example

𝑓

𝑦! 𝑦"

𝑥! 𝑥" 𝑥#

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 62

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 62 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 62 VISLabDEEP LEARNING ONE - 62 VISLab

o For h = 𝑓 ∘ 𝑦(𝑥), here f, and y’s denote functions

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑦

𝑑𝑦
𝑑𝑥

=
𝜕𝑓
𝜕𝑦$

𝜕𝑓
𝜕𝑦F

𝜕𝑦$
𝜕𝑥$

𝜕𝑦$
𝜕𝑥F

𝜕𝑦$
𝜕𝑥W

𝜕𝑦F
𝜕𝑥$

𝜕𝑦F
𝜕𝑥F

𝜕𝑦F
𝜕𝑥W

o Focusing on one of the partial derivatives: ?J?<$
𝑑ℎ
𝑑𝑥F

=
𝑑𝑓
𝑑𝑦$

𝑑𝑦$
𝑑𝑥F

+
𝑑𝑓
𝑑𝑦F

𝑑𝑦F
𝑑𝑥F

o The partial derivative depends on all paths from 𝑓 to 𝑥K

Example

𝑓

𝑦! 𝑦"

𝑥! 𝑥" 𝑥#

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 63

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 63 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 63 VISLabDEEP LEARNING ONE - 63 VISLab

How research gets done part II

Step 2 of deep learning research

[Recap: step 1: understand fundamentals, read papers.]

How to read papers?
Quick advice: think in terms of “passes”:
1st pass: Title -> abstract -> figures/tables -> conclusion -> Introduction
2nd pass: Intro->…->Conclusion, but skip details/don’t try to understand maths
3rd pass: Try to recap what you didn’t understand, reread those parts, be critical.
…. Dive into the code

After every pass you can drop out. Which is good. No need to detail-read every paper.

DEEP LEARNING ONE – 64

Backpropagation

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 65

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 65 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 65 VISLabDEEP LEARNING ONE - 65 VISLab

Backprop: even former head of Tesla AI thinks it’s important

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 66

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 66 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 66 VISLabDEEP LEARNING ONE - 66 VISLab

o The neural network loss is a composite function of modules

o We want the gradient w.r.t. to the parameters of the 𝑙 layer

𝑑ℒ
𝑑𝑤3

=
𝑑ℒ
𝑑ℎ.

n
𝑑ℎ.
𝑑ℎ.2$

n … n
𝑑ℎ3
𝑑𝑤3

⇒
𝑑ℒ
𝑑𝑤3

=
𝑑ℒ
𝑑ℎ3

⋅
𝑑ℎ3
𝑑𝑤3

o Back-propagation is an algorithm that computes the chain rule, with a specific
order of operations that is highly efficient.

Backpropagation⟺ Chain rule

Gradient of a module w.r.t. its parametersGradient of loss w.r.t. the module output

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 67

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 67 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 67 VISLabDEEP LEARNING ONE - 67 VISLab

o Backpropagating gradients means repeating computation of 2 quantities
𝑑ℒ
𝑑𝑤3

=
𝑑ℒ
𝑑ℎ3

⋅
𝑑ℎ3
𝑑𝑤3

o For ?J%
?;%

just compute the Jacobian of the 𝑙-th module w.r.t. to its parameters 𝑤3

o Very local rule → “every module looks for its own”

o Since computations can be very local, this means that
◦ graphs can be complex
◦ modules can be complex if differentiable

Backpropagation ⟺ Chain rule!!!

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 68

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 68 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 68 VISLabDEEP LEARNING ONE - 68 VISLab

o Backpropagating gradients means repeating computation of 2 quantities
𝑑ℒ
𝑑𝑤3

=
𝑑ℒ
𝑑ℎ3

⋅
𝑑ℎ3
𝑑𝑤3

o For ?ℒ
?J%

we apply chain rule again to recursively reuse computations
𝑑ℒ
𝑑ℎ3 =

𝑑ℒ
𝑑ℎ3f$

⋅
𝑑ℎ3f$
𝑑ℎ3

o Remember, the output of a module is the input for the next one: 𝑎3=𝑥3f$

Backpropagation ⟺ Chain rule but as an algorithm

Gradient of module w.r.t. its module inputRecursive rule → computation-friendly

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 69

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 69 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 69 VISLabDEEP LEARNING ONE - 69 VISLab

But you know this already from ML 1

… right?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 70

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 70 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 70 VISLabDEEP LEARNING ONE - 70 VISLab

But why do we actually use Backprop?
o Quiz: what are the advantages of backprop?

o 1) it’s the most accurate way of training neural networks

o 2) it’s how the brain also learns

o 3) it implicitly models recurrent structures in neural networks

o 4) otherwise you cannot even train a 3x3x3 neuron MLP

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 71

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 71 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 71 VISLabDEEP LEARNING ONE - 71 VISLab

o Remember we were able to find the gradients for x1 without any backprop magic

o This works easily for a 3x3x3 MLP.

Regarding point 4:

𝐿

𝑦! 𝑦"

𝑥! 𝑥"

(*)

(+)

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 72

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 72 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 72 VISLabDEEP LEARNING ONE - 72 VISLab

Re: point 2:
The Backprop in us: different!

https://www.nature.com/articles/ncomms13276

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 73

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 73 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 73 VISLabDEEP LEARNING ONE - 73 VISLab

Computational feasibility

x yf

x df/dx

y

o y = f(x)

o Each x’s contribution to y is given by the Jacobian,

df/dx

o Suppose x and y are some intermediate outputs
of size 32x32x512

o Then storing the Jacobian would take 1TB of memory.

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 74

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 74 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 74 VISLabDEEP LEARNING ONE - 74 VISLab

Chain rule visualized

𝑓! 𝑓" 𝑓$%! 𝑓$
𝑥& 𝑥! 𝑥$%! 𝑥$

….

𝑑𝑓!/𝑑𝑥& 𝑑𝑓"/𝑑𝑥! 𝑑𝑓$%!/𝑑𝑥$%" 𝑑𝑓$/𝑑𝑥$%!

𝑑𝑥$/𝑑𝑥&

How to adjust 𝑥! to minimize 𝑥$?
”just multiply Jacobians”
…
But this is not possible.

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 75

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 75 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 75 VISLabDEEP LEARNING ONE - 75 VISLab

o With x of size 32x32x512 and y=1,

o df/dx is only 32*32*512=524K elements ~ 2MB

o Of size 𝐷<×1

What if the output is a scalar?

x yf

x

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 76

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 76 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 76 VISLabDEEP LEARNING ONE - 76 VISLab

Chain rule visualized

𝑓! 𝑓" 𝑓$%! 𝑓$
𝑥& 𝑥! 𝑥$%! 𝑥$

….

𝑑𝑓!/𝑑𝑥& 𝑑𝑓"/𝑑𝑥! 𝑑𝑓$%!/𝑑𝑥$%" 𝑑𝑓$/𝑑𝑥$%!

Compute this first!
Too large

A simple matrix-vector product:
𝐷$%!×𝐷$ 𝐷$×1

Result again low size: 𝐷$%!×1

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 77

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 77 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 77 VISLabDEEP LEARNING ONE - 77 VISLab

Chain rule visualized

𝑓! 𝑓" 𝑓$%! 𝑓$
𝑥& 𝑥! 𝑥$%! 𝑥$

….

𝑑𝑓!/𝑑𝑥& 𝑑𝑓"/𝑑𝑥! 𝑑𝑓$%!/𝑑𝑥$%" 𝑑𝑓$/𝑑𝑥$%!

Compute this first!
Too large

In other words, the vector-matrix
product in the left hand side can
be computed as the derivative of
the scalar-valued projected
function p · f to the right.

p

AutoDiff toolboxes allow you to write efficient derivatives of <p,f> , and take care of the rest.

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 78

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 78 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 78 VISLabDEEP LEARNING ONE - 78 VISLab

Chain rule visualized

𝑓! 𝑓" 𝑓$%! 𝑓$
𝑥& 𝑥! 𝑥$%! 𝑥$

….

𝑑𝑓!/𝑑𝑥& 𝑑𝑓"/𝑑𝑥! 𝑑𝑓$%!/𝑑𝑥$%" 𝑑𝑓$/𝑑𝑥$%!

𝑑𝑥$/𝑑𝑥&

Keep going

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 79

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 79 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 79 VISLabDEEP LEARNING ONE - 79 VISLab

Chain rule visualized

𝑓! 𝑓" 𝑓$%! 𝑓$
𝑥& 𝑥! 𝑥$%! 𝑥$

….

𝑑𝑓!/𝑑𝑥& 𝑑𝑓"/𝑑𝑥! 𝑑𝑓$%!/𝑑𝑥$%" 𝑑𝑓$/𝑑𝑥$%!

𝑑𝑥$/𝑑𝑥&

Keep going

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 80

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 80 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 80 VISLabDEEP LEARNING ONE - 80 VISLab

But we still need the Jacobian?

o Yes, but: the operations we use generally have a very sparse Jacobian

o Sometimes projected Jacobian is more efficient to compute

o ReLU / Sigmoid etc.. E.g. softmax:

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 81

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 81 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 81 VISLabDEEP LEARNING ONE - 81 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 82

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 82 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 82 VISLabDEEP LEARNING ONE - 82 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 83

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 83 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 83 VISLabDEEP LEARNING ONE - 83 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 84

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 84 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 84 VISLabDEEP LEARNING ONE - 84 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 85

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 85 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 85 VISLabDEEP LEARNING ONE - 85 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 86

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 86 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 86 VISLabDEEP LEARNING ONE - 86 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 87

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 87 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 87 VISLabDEEP LEARNING ONE - 87 VISLab

o Compute the activation of each module in the network 𝒉3 = ℎ3 𝒘; 𝒙3
o Then, set 𝑥3f$: = ℎ3
o Store intermediate variables ℎ3

◦ will be needed for the backpropagation and saves time at the cost of memory

o Then, repeat recursively and in the right order

Computational graphs: Forward graph

𝒙 ℎ!

ℎ"

ℎ#

ℎ'

ℎ(

ℎ) 𝒉)𝒉!

𝒉"

𝒉#

𝒉'

𝒉(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 88

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 88 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 88 VISLabDEEP LEARNING ONE - 88 VISLab

o Go backwards and use gradient functions instead of activations

◦ Must have the gradient functions aJ%
a;%

, aJ
%

aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 89

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 89 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 89 VISLabDEEP LEARNING ONE - 89 VISLab

o Go backwards and use gradient functions instead of activations

◦ Must have the gradient functions aJ%
a;%

, aJ
%

aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 90

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 90 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 90 VISLabDEEP LEARNING ONE - 90 VISLab

o Go backwards and use gradient functions instead of activations

◦ Must have the gradient functions aJ%
a;%

, aJ
%

aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 91

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 91 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 91 VISLabDEEP LEARNING ONE - 91 VISLab

o Go backwards and use gradient functions instead of activations

◦ Must have the gradient functions aJ%
a;%

, aJ
%

aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 92

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 92 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 92 VISLabDEEP LEARNING ONE - 92 VISLab

o Go backwards and use gradient functions instead of activations

◦ Must have the gradient functions aJ%
a;%

, aJ
%

aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 93

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 93 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 93 VISLabDEEP LEARNING ONE - 93 VISLab

o Go backwards and use gradient functions instead of activations
◦ Must have the gradient functions aJ%a;%

, aJ%aJ%"#
w.r.t. to 𝑥3 & 𝑤3 implemented

o The gradients will need activations from forward propagation, better save them
◦ Sum all gradients from all samples in mini-batch

o Process also known as reverse-mode automatic differentiation
◦ Because the flow of computations is reverse to data flow

Computational graphs: Reverse graph

𝒙 𝜕ℎ!

𝜕ℎ"

𝜕ℎ#

𝜕ℎ'

𝜕ℎ(

𝜕ℎ) 𝜕)𝜕!

𝜕"

𝜕#

𝜕'

𝜕(

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 94

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 94 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 94 VISLabDEEP LEARNING ONE - 94 VISLab

o Step 1. Compute forward propagations for all layers recursively

ℎ% = ℎ% 𝑥% and 𝑥%&$ = ℎ%

o Step 2. Once done with forward propagation, follow the reverse path.
◦ Start from the last layer and for each new layer compute the gradients, using smart implementations
◦ Cache computations, when possible, to avoid redundant operations

o Step 3. Use the gradients (ℒ
(*! with Stochastic Gradient Descend to train w

Backpropagation in summary

𝑑ℒ
𝑑𝑤3

=
𝑑ℒ
𝑑ℎ3

⋅
𝑑ℎ3
𝑑𝑤3

𝑑ℒ
𝑑ℎ3

=
𝑑ℒ
𝑑ℎ3f$

⋅
𝑑ℎ3f$
𝑑ℎ3

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 95

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 95 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 95 VISLabDEEP LEARNING ONE - 95 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 96

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 96 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 96 VISLabDEEP LEARNING ONE - 96 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 97

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 97 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 97 VISLabDEEP LEARNING ONE - 97 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 98

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 98 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 98 VISLabDEEP LEARNING ONE - 98 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 99

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 99 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 99 VISLabDEEP LEARNING ONE - 99 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 100

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
100 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLab

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
100 VISLabDEEP LEARNING ONE - 100 VISLab

Forward propagation
ℎ& = 𝑥
ℎ! = 𝜎(𝑤!ℎ&) → Store ℎ! . Remember that 𝜕*𝜎 = 𝜎 ⋅ (1 − 𝜎)
ℎ" = 𝜎(𝑤"ℎ!) → Store ℎ"
ℒ = 0.5 ⋅ 𝑙 − ℎ" "

Backward propagation
𝑑ℒ
𝑑ℎ"

= −(𝑦∗ − ℎ")

𝑑ℒ
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑𝑤"

=
𝑑ℒ
𝑑ℎ"

ℎ!𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

ℎ!ℎ"(1 − ℎ")

𝑑ℒ
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑑ℎ"
𝑑ℎ!

=
𝑑ℒ
𝑑ℎ"

𝑤"𝜎 𝑤"ℎ! 1 − 𝜎 𝑤"ℎ! =
𝑑ℒ
𝑑ℎ"

𝑤"ℎ"(1 − ℎ")

𝑑ℒ
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

𝑑ℎ!
𝑑𝑤!

=
𝑑ℒ
𝑑ℎ!

ℎ&𝜎 𝑤!ℎ& 1 − 𝜎 𝑤!ℎ& =
𝑑ℒ
𝑑ℎ!

ℎ&ℎ!(1 − ℎ!)

Backpropagation visualization

ℒ

𝑥! 𝑥" 𝑥# 𝑥'

𝑤!

ℎ!! ℎ!" ℎ!#

ℎ"! ℎ"" ℎ"#
𝑤"

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 101

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
101 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLab

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
101 VISLabDEEP LEARNING ONE - 101 VISLab

o Backpropagation is as simple as it is complicated

o Mathematically, just the chain rule

o That simple, that we can even automate it (“reverse-mode differentiation”)

o However, algorithmically the devil is in the details to make it efficient

o And, theoretically, why does it even work given the strong non-convexity?

What’s the big deal?

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES DEEPER INTO DEEP
LEARNING AND OPTIMIZATIONS - 102

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
102 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLab

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE –
102 VISLabDEEP LEARNING ONE - 102 VISLab

o Deep Feedforward Networks

o Neural Network Modules

o Chain rule of Calculus

o Backpropagation

Reading material

o Deep Learning book, chapter 6

o Efficient Backprop, LeCun et al., 1998

o UDL chapter 7

o [Reading list is updated on canvas now!]

Summary

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES

